Merge pull request #780 from lnis-uofu/rst_lut_in

Test reset signal from a global network to drive an LUT input
This commit is contained in:
tangxifan 2022-09-12 18:22:03 -07:00 committed by GitHub
commit 18cf3615ea
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
14 changed files with 1061 additions and 22 deletions

View File

@ -24,6 +24,14 @@ Repack's functionality are in the following aspects:
See details in :ref:`file_formats_repack_design_constraints`.
.. warning:: Design constraints are designed to help repacker to identify which clock net to be mapped to which pin, so that multi-clock benchmarks can be correctly implemented, in the case that VPR may not have sufficient vision on clock net mapping. **Try not to use design constraints to remap any other types of nets!!!**
.. option:: --ignore_global_nets_on_pins
Specify the mapping results of global nets should be ignored on which pins of a ``pb_type``. For example, ``--ignore_global_nets_on_pins clb.I[0:11]``. Once specified, the mapping results on the pins for all the global nets, such as clock, reset *etc.*, are ignored. Routing traces will be appeneded to other pins where the same global nets are mapped to.
.. note:: This option is designed for global nets which are applied to both data path and global networks. For example, a reset signal is mapped to both a LUT input and the reset pin of a FF. Suggest not to use the option in other purposes!
.. warning:: Users must specify the size/width of the pin. Currently, OpenFPGA cannot infer the pin size from the architecture!!!
.. option:: --verbose

View File

@ -21,9 +21,15 @@ ShellCommandId add_openfpga_repack_command(openfpga::Shell<OpenfpgaContext>& she
const ShellCommandClassId& cmd_class_id,
const std::vector<ShellCommandId>& dependent_cmds) {
Command shell_cmd("repack");
/* Add an option '--design_constraints' */
CommandOptionId opt_design_constraints = shell_cmd.add_option("design_constraints", false, "file path to the design constraints");
shell_cmd.set_option_require_value(opt_design_constraints, openfpga::OPT_STRING);
/* Add an option '--ignore_global_nets_on_pins' */
CommandOptionId opt_ignore_global_nets = shell_cmd.add_option("ignore_global_nets_on_pins", false, "Specify the pins where global nets will be ignored. Routing traces are merged to other pins");
shell_cmd.set_option_require_value(opt_ignore_global_nets, openfpga::OPT_STRING);
/* Add an option '--verbose' */
shell_cmd.add_option("verbose", false, "Enable verbose output");

View File

@ -30,6 +30,7 @@ int repack(OpenfpgaContext& openfpga_ctx,
const Command& cmd, const CommandContext& cmd_context) {
CommandOptionId opt_design_constraints = cmd.option("design_constraints");
CommandOptionId opt_ignore_global_nets = cmd.option("ignore_global_nets_on_pins");
CommandOptionId opt_verbose = cmd.option("verbose");
/* Load design constraints from file */
@ -40,22 +41,32 @@ int repack(OpenfpgaContext& openfpga_ctx,
repack_design_constraints = read_xml_repack_design_constraints(dc_fname.c_str());
}
/* Setup repacker options */
RepackOption options;
options.set_design_constraints(repack_design_constraints);
options.set_ignore_global_nets_on_pins(cmd_context.option_value(cmd, opt_ignore_global_nets));
options.set_verbose_output(cmd_context.option_enable(cmd, opt_verbose));
if (!options.valid()) {
VTR_LOG("Detected errors when parsing options!\n");
return CMD_EXEC_FATAL_ERROR;
}
pack_physical_pbs(g_vpr_ctx.device(),
g_vpr_ctx.atom(),
g_vpr_ctx.clustering(),
openfpga_ctx.mutable_vpr_device_annotation(),
openfpga_ctx.mutable_vpr_clustering_annotation(),
openfpga_ctx.vpr_bitstream_annotation(),
repack_design_constraints,
openfpga_ctx.arch().circuit_lib,
cmd_context.option_enable(cmd, opt_verbose));
options);
build_physical_lut_truth_tables(openfpga_ctx.mutable_vpr_clustering_annotation(),
g_vpr_ctx.atom(),
g_vpr_ctx.clustering(),
openfpga_ctx.vpr_device_annotation(),
openfpga_ctx.arch().circuit_lib,
cmd_context.option_enable(cmd, opt_verbose));
options.verbose_output());
/* TODO: should identify the error code from internal function execution */
return CMD_EXEC_SUCCESS;

View File

@ -388,10 +388,11 @@ void add_lb_router_nets(LbRouter& lb_router,
const VprDeviceAnnotation& device_annotation,
const ClusteringContext& clustering_ctx,
const VprClusteringAnnotation& clustering_annotation,
const RepackDesignConstraints& design_constraints,
const ClusterBlockId& block_id,
const bool& verbose) {
const RepackOption& options) {
size_t net_counter = 0;
bool verbose = options.verbose_output();
RepackDesignConstraints design_constraints = options.design_constraints();
/* Two spots to find source nodes for each nets
* - nets that appear in the inputs of a clustered block
@ -437,6 +438,54 @@ void add_lb_router_nets(LbRouter& lb_router,
pb_pin_mapped_nets[pb_pin] = atom_net_id;
}
/* Cache the sink nodes/routing traces for the global nets which is specifed to be ignored on given pins */
std::map<AtomNetId, std::vector<LbRRNodeId>> ignored_global_net_sinks;
std::map<AtomNetId, bool> ignored_atom_nets;
for (int j = 0; j < lb_type->pb_type->num_pins; j++) {
/* Get the source pb_graph pin and find the rr_node in logical block routing resource graph */
const t_pb_graph_pin* source_pb_pin = get_pb_graph_node_pin_from_block_pin(block_id, j);
VTR_ASSERT(source_pb_pin->parent_node == pb->pb_graph_node);
/* Bypass output pins */
if (OUT_PORT == source_pb_pin->port->type) {
continue;
}
/* Find the net mapped to this pin in clustering results*/
ClusterNetId cluster_net_id = clustering_ctx.clb_nlist.block_net(block_id, j);
/* Get the actual net id because it may be renamed during routing */
if (true == clustering_annotation.is_net_renamed(block_id, j)) {
cluster_net_id = clustering_annotation.net(block_id, j);
}
/* Bypass unmapped pins */
if (ClusterNetId::INVALID() == cluster_net_id) {
continue;
}
/* Only for global net which should be ignored, cache the sink nodes */
BasicPort curr_pin(std::string(source_pb_pin->port->name), source_pb_pin->pin_number, source_pb_pin->pin_number);
if ( (clustering_ctx.clb_nlist.net_is_ignored(cluster_net_id))
&& (clustering_ctx.clb_nlist.net_is_global(cluster_net_id))
&& (options.is_pin_ignore_global_nets(std::string(lb_type->pb_type->name), curr_pin))) {
/* Find the net mapped to this pin in clustering results*/
AtomNetId atom_net_id = pb_pin_mapped_nets[source_pb_pin];
std::vector<int> pb_route_indices = find_pb_route_by_atom_net(pb, source_pb_pin, atom_net_id);
VTR_ASSERT(1 == pb_route_indices.size());
int pb_route_index = pb_route_indices[0];
t_pb_graph_pin* packing_source_pb_pin = get_pb_graph_node_pin_from_block_pin(block_id, pb_route_index);
VTR_ASSERT(nullptr != packing_source_pb_pin);
/* Find all the sink pins in the pb_route, we walk through the input pins and find the pin */
std::vector<t_pb_graph_pin*> sink_pb_graph_pins = find_routed_pb_graph_pins_atom_net(pb, source_pb_pin, packing_source_pb_pin, atom_net_id, device_annotation, pb_pin_mapped_nets, pb_graph_pin_lookup_from_index);
std::vector<LbRRNodeId> sink_lb_rr_nodes = find_lb_net_physical_sink_lb_rr_nodes(lb_rr_graph, sink_pb_graph_pins, device_annotation);
VTR_ASSERT(sink_lb_rr_nodes.size() == sink_pb_graph_pins.size());
ignored_global_net_sinks[atom_net_id].insert(ignored_global_net_sinks[atom_net_id].end(), sink_lb_rr_nodes.begin(), sink_lb_rr_nodes.end());
ignored_atom_nets[atom_net_id] = true;
}
}
/* Cache all the source nodes and sinks node for each net
* net_terminal[net][0] is the list of source nodes
* net_terminal[net][1] is the list of sink nodes
@ -460,6 +509,12 @@ void add_lb_router_nets(LbRouter& lb_router,
/* Find the net mapped to this pin in clustering results*/
AtomNetId atom_net_id = pb_pin_mapped_nets[source_pb_pin];
BasicPort curr_pin(std::string(source_pb_pin->port->name), source_pb_pin->pin_number, source_pb_pin->pin_number);
if ( (ignored_atom_nets[atom_net_id])
&& (options.is_pin_ignore_global_nets(std::string(lb_type->pb_type->name), curr_pin))) {
continue;
}
/* Check if the net information is constrained or not */
std::string constrained_net_name = design_constraints.find_constrained_pin_net(std::string(lb_type->pb_type->name), BasicPort(std::string(source_pb_pin->port->name), source_pb_pin->pin_number, source_pb_pin->pin_number));
@ -573,6 +628,10 @@ void add_lb_router_nets(LbRouter& lb_router,
sink_pb_pin->to_string().c_str());
}
/* Append sink nodes from ignored global net cache */
sink_lb_rr_nodes.insert(sink_lb_rr_nodes.end(), ignored_global_net_sinks[atom_net_id_to_route].begin(), ignored_global_net_sinks[atom_net_id_to_route].end());
VTR_LOGV(verbose, "Append %ld sinks from the routing traces of ignored global nets\n", ignored_global_net_sinks[atom_net_id_to_route].size());
/* Add the net */
add_lb_router_net_to_route(lb_router, lb_rr_graph,
std::vector<LbRRNodeId>(1, source_lb_rr_node),
@ -671,13 +730,13 @@ void repack_cluster(const AtomContext& atom_ctx,
const VprDeviceAnnotation& device_annotation,
VprClusteringAnnotation& clustering_annotation,
const VprBitstreamAnnotation& bitstream_annotation,
const RepackDesignConstraints& design_constraints,
const ClusterBlockId& block_id,
const bool& verbose) {
const RepackOption& options) {
/* Get the pb graph that current clustered block is mapped to */
t_logical_block_type_ptr lb_type = clustering_ctx.clb_nlist.block_type(block_id);
t_pb_graph_node* pb_graph_head = lb_type->pb_graph_head;
VTR_ASSERT(nullptr != pb_graph_head);
bool verbose = options.verbose_output();
/* We should get a non-empty graph */
const LbRRGraph& lb_rr_graph = device_annotation.physical_lb_rr_graph(pb_graph_head);
@ -693,8 +752,7 @@ void repack_cluster(const AtomContext& atom_ctx,
/* Add nets to be routed with source and terminals */
add_lb_router_nets(lb_router, lb_type, lb_rr_graph, atom_ctx, device_annotation,
clustering_ctx, const_cast<const VprClusteringAnnotation&>(clustering_annotation),
design_constraints,
block_id, verbose);
block_id, options);
/* Initialize the modes to expand routing trees with the physical modes in device annotation
* This is a must-do before running the routeri in the purpose of repacking!!!
@ -740,8 +798,7 @@ void repack_clusters(const AtomContext& atom_ctx,
const VprDeviceAnnotation& device_annotation,
VprClusteringAnnotation& clustering_annotation,
const VprBitstreamAnnotation& bitstream_annotation,
const RepackDesignConstraints& design_constraints,
const bool& verbose) {
const RepackOption& options) {
vtr::ScopedStartFinishTimer timer("Repack clustered blocks to physical implementation of logical tile");
for (auto blk_id : clustering_ctx.clb_nlist.blocks()) {
@ -749,8 +806,8 @@ void repack_clusters(const AtomContext& atom_ctx,
device_annotation,
clustering_annotation,
bitstream_annotation,
design_constraints,
blk_id, verbose);
blk_id,
options);
}
}
@ -808,22 +865,20 @@ void pack_physical_pbs(const DeviceContext& device_ctx,
VprDeviceAnnotation& device_annotation,
VprClusteringAnnotation& clustering_annotation,
const VprBitstreamAnnotation& bitstream_annotation,
const RepackDesignConstraints& design_constraints,
const CircuitLibrary& circuit_lib,
const bool& verbose) {
const RepackOption& options) {
/* build the routing resource graph for each logical tile */
build_physical_lb_rr_graphs(device_ctx,
device_annotation,
verbose);
options.verbose_output());
/* Call the LbRouter to re-pack each clustered block to physical implementation */
repack_clusters(atom_ctx, clustering_ctx,
const_cast<const VprDeviceAnnotation&>(device_annotation),
clustering_annotation,
bitstream_annotation,
design_constraints,
verbose);
options);
/* Annnotate wire LUTs that are ONLY created by repacker!!!
* This is a MUST RUN!
@ -833,7 +888,7 @@ void pack_physical_pbs(const DeviceContext& device_ctx,
clustering_ctx,
device_annotation,
circuit_lib,
verbose);
options.verbose_output());
}
} /* end namespace openfpga */

View File

@ -9,8 +9,8 @@
#include "vpr_clustering_annotation.h"
#include "vpr_routing_annotation.h"
#include "vpr_bitstream_annotation.h"
#include "repack_design_constraints.h"
#include "circuit_library.h"
#include "repack_option.h"
/********************************************************************
* Function declaration
@ -25,9 +25,8 @@ void pack_physical_pbs(const DeviceContext& device_ctx,
VprDeviceAnnotation& device_annotation,
VprClusteringAnnotation& clustering_annotation,
const VprBitstreamAnnotation& bitstream_annotation,
const RepackDesignConstraints& design_constraints,
const CircuitLibrary& circuit_lib,
const bool& verbose);
const RepackOption& options);
} /* end namespace openfpga */

View File

@ -0,0 +1,127 @@
/******************************************************************************
* Memember functions for data structure RepackOption
******************************************************************************/
#include <map>
#include <array>
#include "vtr_assert.h"
#include "vtr_log.h"
#include "repack_option.h"
#include "openfpga_tokenizer.h"
#include "openfpga_port_parser.h"
/* begin namespace openfpga */
namespace openfpga {
/**************************************************
* Public Constructors
*************************************************/
RepackOption::RepackOption() {
verbose_output_ = false;
num_parse_errors_ = 0;
}
/**************************************************
* Public Accessors
*************************************************/
RepackDesignConstraints RepackOption::design_constraints() const {
return design_constraints_;
}
bool RepackOption::is_pin_ignore_global_nets(const std::string& pb_type_name, const BasicPort& pin) const {
auto result = ignore_global_nets_on_pins_.find(pb_type_name);
if (result == ignore_global_nets_on_pins_.end()) {
/* Not found, return false */
return false;
} else {
/* If the pin is contained by the ignore list, return true */
for (BasicPort existing_port : result->second) {
if (existing_port.mergeable(pin) && existing_port.contained(pin)) {
return true;
}
}
}
return false;
}
bool RepackOption::verbose_output() const {
return verbose_output_;
}
/******************************************************************************
* Private Mutators
******************************************************************************/
void RepackOption::set_design_constraints(const RepackDesignConstraints& design_constraints) {
design_constraints_ = design_constraints;
}
void RepackOption::set_ignore_global_nets_on_pins(const std::string& content) {
num_parse_errors_ = 0;
/* Split the content using a tokenizer */
StringToken tokenizer(content);
std::vector<std::string> tokens = tokenizer.split(',');
/* Parse each token */
for (std::string token : tokens) {
/* Extract the pb_type name and port name */
StringToken pin_tokenizer(token);
std::vector<std::string> pin_info = pin_tokenizer.split('.');
/* Expect two contents, otherwise error out */
if (pin_info.size() != 2) {
std::string err_msg = std::string("Invalid content '") + token + std::string("' to skip, expect <pb_type_name>.<pin>\n");
VTR_LOG_ERROR(err_msg.c_str());
num_parse_errors_++;
continue;
}
std::string pb_type_name = pin_info[0];
PortParser port_parser(pin_info[1]);
BasicPort curr_port = port_parser.port();
if (!curr_port.is_valid()) {
std::string err_msg = std::string("Invalid pin definition '") + token + std::string("', expect <pb_type_name>.<pin_name>[int:int]\n");
VTR_LOG_ERROR(err_msg.c_str());
num_parse_errors_++;
continue;
}
/* Check if the existing port already in the ignore list or not */
auto result = ignore_global_nets_on_pins_.find(pb_type_name);
if (result == ignore_global_nets_on_pins_.end()) {
/* Not found, push the port */
ignore_global_nets_on_pins_[pb_type_name].push_back(curr_port);
} else {
/* Already a list of ports. Check one by one.
* - It already contained, do nothing but throw a warning.
* - If we can merge, merge it.
* - Otherwise, create it */
bool included_by_existing_port = false;
for (BasicPort existing_port : result->second) {
if (existing_port.mergeable(curr_port)) {
if (!existing_port.contained(curr_port)) {
result->second.push_back(curr_port);
included_by_existing_port = true;
break;
} else {
std::string warn_msg = std::string("Pin definition '") + token + std::string("' is already included by other pin\n");
VTR_LOG_WARN(warn_msg.c_str());
}
}
}
if (!included_by_existing_port) {
result->second.push_back(curr_port);
}
}
}
}
void RepackOption::set_verbose_output(const bool& enabled) {
verbose_output_ = enabled;
}
bool RepackOption::valid() const {
if (num_parse_errors_) {
return false;
}
return true;
}
} /* end namespace openfpga */

View File

@ -0,0 +1,52 @@
#ifndef REPACK_OPTION_H
#define REPACK_OPTION_H
/********************************************************************
* Include header files required by the data structure definition
*******************************************************************/
#include <string>
#include <vector>
#include "repack_design_constraints.h"
/* Begin namespace openfpga */
namespace openfpga {
/********************************************************************
* Options for RRGSB writer
*******************************************************************/
class RepackOption {
public: /* Public constructor */
/* Set default options */
RepackOption();
public: /* Public accessors */
RepackDesignConstraints design_constraints() const;
/* Identify if a pin should ignore all the global nets */
bool is_pin_ignore_global_nets(const std::string& pb_type_name, const BasicPort& pin) const;
bool verbose_output() const;
public: /* Public mutators */
void set_design_constraints(const RepackDesignConstraints& design_constraints);
void set_ignore_global_nets_on_pins(const std::string& content);
void set_verbose_output(const bool& enabled);
public: /* Public validators */
/* Check if the following internal data is valid or not:
* - no parsing errors
*/
bool valid() const;
private: /* Internal Data */
RepackDesignConstraints design_constraints_;
/* The pin information on which global nets should be mapped to: [pb_type_name][0..num_ports]
* For example:
* - clb.I[0:1], clb.I[5:6] -> ["clb"][BasicPort(I, 0, 1), BasicPort(I, 5, 6)]
* - clb.I[0:1], clb.I[2:6] -> ["clb"][BasicPort(I, 0, 6)]
*/
std::map<std::string, std::vector<BasicPort>> ignore_global_nets_on_pins_;
bool verbose_output_;
/* A flag to indicate if the data parse is invalid or not */
int num_parse_errors_;
};
} /* End namespace openfpga*/
#endif

View File

@ -0,0 +1,26 @@
/////////////////////////////////////////
// Functionality: A register driven by a combinational logic with reset signal
// Author: Xifan Tang
////////////////////////////////////////
`timescale 1ns / 1ps
module rst_on_lut(a, b, q, out, clk, rst);
input wire rst;
input wire clk;
input wire a;
input wire b;
output reg q;
output wire out;
always @(posedge rst or posedge clk) begin
if (rst) begin
q <= 0;
end else begin
q <= a;
end
end
assign out = b & ~rst;
endmodule

View File

@ -0,0 +1,76 @@
# Run VPR for the 'and' design
#--write_rr_graph example_rr_graph.xml
vpr ${VPR_ARCH_FILE} ${VPR_TESTBENCH_BLIF} --clock_modeling ideal
# Read OpenFPGA architecture definition
read_openfpga_arch -f ${OPENFPGA_ARCH_FILE}
# Read OpenFPGA simulation settings
read_openfpga_simulation_setting -f ${OPENFPGA_SIM_SETTING_FILE}
# Annotate the OpenFPGA architecture to VPR data base
# to debug use --verbose options
link_openfpga_arch --sort_gsb_chan_node_in_edges
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
# Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing #--verbose
# Write the fabric hierarchy of module graph to a file
# This is used by hierarchical PnR flows
write_fabric_hierarchy --file ./fabric_hierarchy.txt
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
# Strongly recommend it is done after all the fix-up have been applied
repack --ignore_global_nets_on_pins clb.I[0:11] #--verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --write_file fabric_independent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose
# Write fabric-dependent bitstream
write_fabric_bitstream --file fabric_bitstream.bit --format plain_text
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file ./SRC --explicit_port_mapping --include_timing --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
# - Must specify the reference benchmark file if you want to output any testbenches
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_full_testbench --file ./SRC --reference_benchmark_file_path ${REFERENCE_VERILOG_TESTBENCH} --include_signal_init --pin_constraints_file ${OPENFPGA_PIN_CONSTRAINTS_FILE} --bitstream fabric_bitstream.bit
write_preconfigured_fabric_wrapper --embed_bitstream iverilog --file ./SRC --pin_constraints_file ${OPENFPGA_PIN_CONSTRAINTS_FILE}
write_preconfigured_testbench --file ./SRC --reference_benchmark_file_path ${REFERENCE_VERILOG_TESTBENCH} --pin_constraints_file ${OPENFPGA_PIN_CONSTRAINTS_FILE}
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --file ./SDC
# Write SDC to disable timing for configure ports
write_sdc_disable_timing_configure_ports --file ./SDC/disable_configure_ports.sdc
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file ./SDC_analysis
# Finish and exit OpenFPGA
exit
# Note :
# To run verification at the end of the flow maintain source in ./SRC directory

View File

@ -129,6 +129,8 @@ echo -e "Testing K4N5 with pattern based local routing";
run-task basic_tests/k4_series/k4n5_pattern_local_routing $@
echo -e "Testing K4N4 with custom I/O location syntax";
run-task basic_tests/k4_series/k4n4_custom_io_loc $@
echo -e "Testing K4N4 with a local routing where reset can driven LUT inputs";
run-task basic_tests/k4_series/k4n4_rstOnLut $@
echo -e "Testing different tile organizations";
echo -e "Testing tiles with pins only on top and left sides";

View File

@ -0,0 +1,7 @@
<pin_constraints>
<!-- For a given .blif file, we want to assign
- the reset signal to the op_reset[0] port of the FPGA fabric
-->
<set_io pin="op_reset[0]" net="rst"/>
</pin_constraints>

View File

@ -0,0 +1,42 @@
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# Configuration file for running experiments
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
# Each job execute fpga_flow script on combination of architecture & benchmark
# timeout_each_job is timeout for each job
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
[GENERAL]
run_engine=openfpga_shell
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
power_analysis = false
spice_output=false
verilog_output=true
timeout_each_job = 3*60
fpga_flow=yosys_vpr
[OpenFPGA_SHELL]
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/ignore_global_nets_on_pins_example_script.openfpga
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_frac_N4_fracff_40nm_cc_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/fixed_sim_openfpga.xml
[ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_frac_N4_tileable_fracff_rstOnLut_40nm.xml
[BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/rst_on_lut/rst_on_lut.v
[SYNTHESIS_PARAM]
# Yosys script parameters
bench_yosys_cell_sim_verilog_common=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/openfpga_dff_sim.v
bench_yosys_dff_map_verilog_common=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/openfpga_dff_map.v
bench_read_verilog_options_common = -nolatches
bench_yosys_common=${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_yosys_vpr_dff_flow.ys
bench_yosys_rewrite_common=${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_yosys_vpr_flow_with_rewrite.ys;${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_rewrite_flow.ys
bench0_top = rst_on_lut
bench0_openfpga_pin_constraints_file = ${PATH:TASK_DIR}/config/pin_constraints_reset.xml
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
end_flow_with_test=
vpr_fpga_verilog_formal_verification_top_netlist=

View File

@ -22,6 +22,7 @@ Please reveal the following architecture features in the names to help quickly s
- reduced\_io: If I/Os only appear a certain or multiple sides of FPGAs
- registerable\_io: If I/Os are registerable (can be either combinational or sequential)
- CustomIoLoc: Use OpenFPGA's extended custom I/O location syntax
- rstOnLut: The reset signal of CLB can feed LUT inputs through a local routing architecture
- <feature\_size>: The technology node which the delay numbers are extracted from.
- TileOrgz<Type>: How tile is organized.
* Top-left (Tl): the pins of a tile are placed on the top side and left side only

View File

@ -0,0 +1,627 @@
<!--
Flagship Heterogeneous Architecture (No Carry Chains) for VTR 7.0.
- 40 nm technology
- General purpose logic block:
K = 4, N = 4, fracturable 4 LUTs (can operate as one 4-LUT or two 3-LUTs with all 3 inputs shared)
with optionally registered outputs
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
Authors: Xifan Tang
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch)
that describe them.
-->
<models>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io">
<input_ports>
<port name="outpad"/>
</input_ports>
<output_ports>
<port name="inpad"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="frac_lut4">
<input_ports>
<port name="in"/>
</input_ports>
<output_ports>
<port name="lut3_out"/>
<port name="lut4_out"/>
</output_ports>
</model>
<!-- A virtual model for scan-chain flip-flop to be used in the physical mode of FF -->
<model name="dff">
<input_ports>
<port name="D" clock="C"/>
<port name="C" is_clock="1"/>
</input_ports>
<output_ports>
<port name="Q" clock="C"/>
</output_ports>
</model>
<!-- A virtual model for scan-chain flip-flop to be used in the physical mode of FF -->
<model name="dffr">
<input_ports>
<port name="D" clock="C"/>
<port name="R" clock="C"/>
<port name="C" is_clock="1"/>
</input_ports>
<output_ports>
<port name="Q" clock="C"/>
</output_ports>
</model>
<!-- A virtual model for scan-chain flip-flop to be used in the physical mode of FF -->
<model name="dffrn">
<input_ports>
<port name="D" clock="C"/>
<port name="RN" clock="C"/>
<port name="C" is_clock="1"/>
</input_ports>
<output_ports>
<port name="Q" clock="C"/>
</output_ports>
</model>
</models>
<tiles>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<tile name="io" capacity="8" area="0">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">io.outpad io.inpad</loc>
<loc side="top">io.outpad io.inpad</loc>
<loc side="right">io.outpad io.inpad</loc>
<loc side="bottom">io.outpad io.inpad</loc>
</pinlocations>
</tile>
<tile name="clb" area="53894">
<equivalent_sites>
<site pb_type="clb"/>
</equivalent_sites>
<input name="I" num_pins="12" equivalent="full"/>
<input name="reset" num_pins="1" is_non_clock_global="true"/>
<output name="O" num_pins="8" equivalent="none"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
<fc_override port_name="clk" fc_type="frac" fc_val="0"/>
<fc_override port_name="reset" fc_type="frac" fc_val="0"/>
</fc>
<pinlocations pattern="spread"/>
</tile>
</tiles>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout tileable="true">
<auto_layout aspect_ratio="1.0">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</auto_layout>
<fixed_layout name="2x2" width="4" height="4">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
<fixed_layout name="4x4" width="6" height="6">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
<fixed_layout name="48x48" width="50" height="50">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
</layout>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/>
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3" sub_type="subset" sub_fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist>
<segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="0"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<complexblocklist>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<!-- A mode denotes the physical implementation of an I/O
This mode will be not packable but is mainly used for fabric verilog generation
-->
<mode name="physical" disable_packing="true">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- IOs go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of I/Os is needed.
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
-->
<!-- Place I/Os on the sides of the FPGA -->
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
area is 60 L^2 yields a tile area of 84375 MWTAs.
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
This means that only 37% of our area is in the general routing, and 63% is inside the logic
block. Note that the crossbar / local interconnect is considered part of the logic block
area in this analysis. That is a lower proportion of of routing area than most academics
assume, but note that the total routing area really includes the crossbar, which would push
routing area up significantly, we estimate into the ~70% range.
-->
<pb_type name="clb">
<input name="I" num_pins="12" equivalent="full"/>
<input name="reset" num_pins="1"/>
<output name="O" num_pins="8" equivalent="none"/>
<clock name="clk" num_pins="1"/>
<!-- Describe fracturable logic element.
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
The outputs of the fracturable logic element can be optionally registered
-->
<pb_type name="fle" num_pb="4">
<input name="in" num_pins="4"/>
<input name="reset" num_pins="1"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<!-- Physical mode definition begin (physical implementation of the fle) -->
<mode name="physical" disable_packing="true">
<pb_type name="fabric" num_pb="1">
<input name="in" num_pins="4"/>
<input name="reset" num_pins="1"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<pb_type name="frac_logic" num_pb="1">
<input name="in" num_pins="4"/>
<output name="out" num_pins="2"/>
<!-- Define LUT -->
<pb_type name="frac_lut4" blif_model=".subckt frac_lut4" num_pb="1">
<input name="in" num_pins="4"/>
<output name="lut3_out" num_pins="2"/>
<output name="lut4_out" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="direct1" input="frac_logic.in" output="frac_lut4.in"/>
<direct name="direct2" input="frac_lut4.lut3_out[1]" output="frac_logic.out[1]"/>
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
<mux name="mux1" input="frac_lut4.lut4_out frac_lut4.lut3_out[0]" output="frac_logic.out[0]"/>
</interconnect>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".subckt dffr" num_pb="2">
<input name="D" num_pins="1" port_class="D"/>
<input name="R" num_pins="1"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="C" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="C"/>
<T_setup value="66e-12" port="ff.R" clock="C"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="C"/>
</pb_type>
<interconnect>
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
<direct name="direct2" input="frac_logic.out[1:0]" output="ff[1:0].D"/>
<complete name="direct3" input="fabric.clk" output="ff[1:0].C"/>
<complete name="direct4" input="fabric.reset" output="ff[1:0].R"/>
<mux name="mux1" input="ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
</mux>
<mux name="mux2" input="ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="fabric.in"/>
<direct name="direct2" input="fabric.out" output="fle.out"/>
<direct name="direct3" input="fle.clk" output="fabric.clk"/>
<direct name="direct4" input="fle.reset" output="fabric.reset"/>
</interconnect>
</mode>
<!-- Physical mode definition end (physical implementation of the fle) -->
<!-- Dual 3-LUT mode definition begin -->
<mode name="n2_lut3">
<pb_type name="lut3inter" num_pb="1">
<input name="in" num_pins="3"/>
<input name="reset" num_pins="1"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<pb_type name="ble3" num_pb="2">
<input name="in" num_pins="3"/>
<input name="reset" num_pins="1"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define the LUT -->
<pb_type name="lut3" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="3" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
-->
<delay_matrix type="max" in_port="lut3.in" out_port="lut3.out">
235e-12
235e-12
235e-12
</delay_matrix>
</pb_type>
<!-- Define the flip-flop -->
<pb_type name="ff" num_pb="1">
<input name="D" num_pins="1"/>
<input name="R" num_pins="1"/>
<output name="Q" num_pins="1"/>
<clock name="C" num_pins="1"/>
<mode name="latch">
<pb_type name="latch" blif_model=".latch" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="latch.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="latch.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="latch.D"/>
<direct name="direct2" input="ff.C" output="latch.clk"/>
<direct name="direct3" input="latch.Q" output="ff.Q"/>
</interconnect>
</mode>
<mode name="dff">
<pb_type name="dff" blif_model=".subckt dff" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="C" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="dff.D" clock="C"/>
<T_clock_to_Q max="124e-12" port="dff.Q" clock="C"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="dff.D"/>
<direct name="direct2" input="ff.C" output="dff.C"/>
<direct name="direct3" input="dff.Q" output="ff.Q"/>
</interconnect>
</mode>
<mode name="dffr">
<pb_type name="dffr" blif_model=".subckt dffr" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<input name="R" num_pins="1"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="C" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="dffr.D" clock="C"/>
<T_setup value="66e-12" port="dffr.R" clock="C"/>
<T_clock_to_Q max="124e-12" port="dffr.Q" clock="C"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="dffr.D"/>
<direct name="direct2" input="ff.C" output="dffr.C"/>
<direct name="direct3" input="ff.R" output="dffr.R"/>
<direct name="direct4" input="dffr.Q" output="ff.Q"/>
</interconnect>
</mode>
<mode name="dffrn">
<pb_type name="dffrn" blif_model=".subckt dffrn" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<input name="RN" num_pins="1"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="C" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="dffrn.D" clock="C"/>
<T_setup value="66e-12" port="dffrn.RN" clock="C"/>
<T_clock_to_Q max="124e-12" port="dffrn.Q" clock="C"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="dffrn.D"/>
<direct name="direct2" input="ff.C" output="dffrn.C"/>
<direct name="direct3" input="ff.R" output="dffrn.RN"/>
<direct name="direct4" input="dffrn.Q" output="ff.Q"/>
</interconnect>
</mode>
</pb_type>
<interconnect>
<direct name="direct1" input="ble3.in[2:0]" output="lut3[0:0].in[2:0]"/>
<direct name="direct2" input="lut3[0:0].out" output="ff[0:0].D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
<pack_pattern name="ble3" in_port="lut3[0:0].out" out_port="ff[0:0].D"/>
</direct>
<direct name="direct3" input="ble3.clk" output="ff[0:0].C"/>
<direct name="direct4" input="ble3.reset" output="ff[0:0].R"/>
<mux name="mux1" input="ff[0:0].Q lut3.out[0:0]" output="ble3.out[0:0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut3.out[0:0]" out_port="ble3.out[0:0]"/>
<delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="ble3.out[0:0]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="lut3inter.in" output="ble3[0:0].in"/>
<direct name="direct2" input="lut3inter.in" output="ble3[1:1].in"/>
<direct name="direct3" input="ble3[1:0].out" output="lut3inter.out"/>
<complete name="complete1" input="lut3inter.clk" output="ble3[1:0].clk"/>
<complete name="complete2" input="lut3inter.reset" output="ble3[1:0].reset"/>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[2:0]" output="lut3inter.in"/>
<direct name="direct2" input="lut3inter.out" output="fle.out"/>
<direct name="direct3" input="fle.clk" output="lut3inter.clk"/>
<direct name="direct4" input="fle.reset" output="lut3inter.reset"/>
</interconnect>
</mode>
<!-- Dual 3-LUT mode definition end -->
<!-- 4-LUT mode definition begin -->
<mode name="n1_lut4">
<!-- Define 4-LUT mode -->
<pb_type name="ble4" num_pb="1">
<input name="in" num_pins="4"/>
<input name="reset" num_pins="1"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define LUT -->
<pb_type name="lut4" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="4" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
261e-12
261e-12
261e-12
261e-12
</delay_matrix>
</pb_type>
<!-- Define the flip-flop -->
<pb_type name="ff" num_pb="1">
<input name="D" num_pins="1"/>
<input name="R" num_pins="1"/>
<output name="Q" num_pins="1"/>
<clock name="C" num_pins="1"/>
<mode name="latch">
<pb_type name="latch" blif_model=".latch" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="latch.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="latch.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="latch.D"/>
<direct name="direct2" input="ff.C" output="latch.clk"/>
<direct name="direct3" input="latch.Q" output="ff.Q"/>
</interconnect>
</mode>
<mode name="dff">
<pb_type name="dff" blif_model=".subckt dff" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="C" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="dff.D" clock="C"/>
<T_clock_to_Q max="124e-12" port="dff.Q" clock="C"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="dff.D"/>
<direct name="direct2" input="ff.C" output="dff.C"/>
<direct name="direct3" input="dff.Q" output="ff.Q"/>
</interconnect>
</mode>
<mode name="dffr">
<pb_type name="dffr" blif_model=".subckt dffr" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<input name="R" num_pins="1"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="C" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="dffr.D" clock="C"/>
<T_setup value="66e-12" port="dffr.R" clock="C"/>
<T_clock_to_Q max="124e-12" port="dffr.Q" clock="C"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="dffr.D"/>
<direct name="direct2" input="ff.C" output="dffr.C"/>
<direct name="direct3" input="ff.R" output="dffr.R"/>
<direct name="direct4" input="dffr.Q" output="ff.Q"/>
</interconnect>
</mode>
<mode name="dffrn">
<pb_type name="dffrn" blif_model=".subckt dffrn" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<input name="RN" num_pins="1"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="C" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="dffrn.D" clock="C"/>
<T_setup value="66e-12" port="dffrn.RN" clock="C"/>
<T_clock_to_Q max="124e-12" port="dffrn.Q" clock="C"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="dffrn.D"/>
<direct name="direct2" input="ff.C" output="dffrn.C"/>
<direct name="direct3" input="ff.R" output="dffrn.RN"/>
<direct name="direct4" input="dffrn.Q" output="ff.Q"/>
</interconnect>
</mode>
</pb_type>
<interconnect>
<direct name="direct1" input="ble4.in" output="lut4[0:0].in"/>
<direct name="direct2" input="lut4.out" output="ff.D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
<pack_pattern name="ble4" in_port="lut4.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble4.clk" output="ff.C"/>
<direct name="direct4" input="ble4.reset" output="ff.R"/>
<mux name="mux1" input="ff.Q lut4.out" output="ble4.out">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut4.out" out_port="ble4.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble4.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="ble4.in"/>
<direct name="direct2" input="ble4.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble4.clk"/>
<direct name="direct4" input="fle.reset" output="ble4.reset"/>
</interconnect>
</mode>
<!-- 6-LUT mode definition end -->
</pb_type>
<interconnect>
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[3:0].out clb.reset" output="fle[3:0].in">
<delay_constant max="95e-12" in_port="clb.I clb.reset" out_port="fle[3:0].in"/>
<delay_constant max="75e-12" in_port="fle[3:0].out" out_port="fle[3:0].in"/>
</complete>
<complete name="clks" input="clb.clk" output="fle[3:0].clk">
</complete>
<complete name="resets" input="clb.reset" output="fle[3:0].reset">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[3:0].out[0:0]" output="clb.O[3:0]"/>
<direct name="clbouts2" input="fle[3:0].out[1:1]" output="clb.O[7:4]"/>
</interconnect>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- Place this general purpose logic block in any unspecified column -->
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
</complexblocklist>
</architecture>