OpenFPGA/openfpga/src/fabric/build_top_module_memory_ban...

478 lines
25 KiB
C++
Raw Normal View History

/********************************************************************
* This file includes functions that are used to organize memories
* in the top module of FPGA fabric
*******************************************************************/
#include <cmath>
#include <limits>
/* Headers from vtrutil library */
#include "vtr_assert.h"
#include "vtr_log.h"
#include "vtr_time.h"
/* Headers from vpr library */
#include "vpr_utils.h"
/* Headers from openfpgashell library */
#include "command_exit_codes.h"
#include "rr_gsb_utils.h"
#include "openfpga_reserved_words.h"
#include "openfpga_naming.h"
#include "memory_utils.h"
#include "decoder_library_utils.h"
#include "module_manager_utils.h"
#include "memory_bank_utils.h"
#include "build_decoder_modules.h"
#include "build_top_module_memory_bank.h"
/* begin namespace openfpga */
namespace openfpga {
/*********************************************************************
* Top-level function to add nets for quicklogic memory banks
* Each configuration region has independent memory bank circuitry
* - Find the number of BLs and WLs required for each region
* - Create BL and WL decoders, and add them to decoder library
* - Create nets to connect from top-level module inputs to inputs of decoders
* - Create nets to connect from outputs of decoders to BL/WL of configurable children
*
* Detailed schematic of how memory banks are connected in the top-level:
* Consider a random Region X, local BL address lines are aligned to the LSB of the
* top-level BL address lines
*
* top_bl_addr[N-1:0]
* ^
* | local_bl_addr[N-1:0]
* |
* +-----+------------------+
* | | |
* | +-------------------+ |
* | | Word Line Decoder | |
* | +-------------------+ |
* | |
*
* The BL/WL decoders should have the same circuit designs no matter what region
* they are placed even when the number of configuration bits are different
* from one region to another!
* This is designed to avoid any address collision between memory banks
* since they are programmed in the same clock cycle
* For example:
* - Memory Bank A has 36 memory cells.
* Its BL decoder has 3 address bit and 6 data output bit
* Its WL decoder has 3 address bit and 6 data output bit
* - Memory Bank B has 16 memory cells.
* Its BL decoder has 2 address bit and 4 data output bit
* Its WL decoder has 2 address bit and 4 data output bit
* - If we try to program the 36th memory cell in bank A
* the BL address will be 3'b110
* the WL address will be 3'b110
* the data input will be 1'b0
* - If we try to program the 4th memory cell in bank A
* the BL address will be 3'b010
* the WL address will be 3'b010
* the data input will be 1'b1
* However, in both cases, this will trigger a parasitic programming in bank B
* the BL address will be 2'b10
* the WL address will be 2'b10
* Assume the data input is expected to be 1'b1 for bank B
* but it will be overwritten to 1'b0 when programming the 36th cell in bank A!
*
* Detailed schematic of each memory bank:
* @note The numbers are just made to show a simplified example, practical cases are more complicated!
*
* WL_enable WL address
* | |
* v v
* +-----------------------------------------------+
* | Word Line Decoder |
* +-----------------------------------------------+
* +---------+ | | |
* BL | | | | |
* enable ---->| |-----------+---------------+---- ... |------+--> BL[0:2]
* | | | | | | | |
* | | | v | v | v
* | Bit | | +-------+ | +-------+ | +------+
* BL | Line | +-->| SRAM | +-->| SRAM | +->| SRAM |
* address ---->| Decoder | | | [0:8] | | | [0:5] | ... | | [0:7]|
* | | | +-------+ | +-------+ | +------+
* | | | | |
* | |-----------+--------------+--------- | -----+--> BL[0:9]
* | | | | | | | |
* | | | v | v | v
* | | | +-------+ | +-------+ | +-------+
* | | +-->| SRAM | | | SRAM | +->| SRAM |
* | | | | [0:80]| | | [0:63]| ... | | [0:31]|
* | | | +-------+ | +-------+ | +-------+
* | | | |
* | | | ... ... ... | ...
* | | | | |
* | |-----------+---------------+---- --- | -----+--> BL[0:3]
* | | | | | | | |
* | | | v | v | v
* | | | +-------+ | +-------+ | +-------+
* | | +-->| SRAM | +-->| SRAM | +->| SRAM |
* | | | |[0:5] | | | [0:8] | ... | | [0:2] |
* | | | +-------+ | +-------+ | +-------+
* BL | | v v v
* data_in ---->| | WL[0:9] WL[0:7] WL[0:4]
* +---------+
*
**********************************************************************/
void add_top_module_nets_cmos_ql_memory_bank_config_bus(ModuleManager& module_manager,
DecoderLibrary& decoder_lib,
const ModuleId& top_module,
const CircuitLibrary& circuit_lib,
const CircuitModelId& sram_model,
const TopModuleNumConfigBits& num_config_bits) {
/* Find Enable port from the top-level module */
ModulePortId en_port = module_manager.find_module_port(top_module, std::string(DECODER_ENABLE_PORT_NAME));
BasicPort en_port_info = module_manager.module_port(top_module, en_port);
/* Find data-in port from the top-level module */
ModulePortId din_port = module_manager.find_module_port(top_module, std::string(DECODER_DATA_IN_PORT_NAME));
BasicPort din_port_info = module_manager.module_port(top_module, din_port);
/* Data in port should match the number of configuration regions */
VTR_ASSERT(din_port_info.get_width() == module_manager.regions(top_module).size());
/* Find readback port from the top-level module */
ModulePortId readback_port = module_manager.find_module_port(top_module, std::string(DECODER_READBACK_PORT_NAME));
BasicPort readback_port_info;
/* Readback port if available, should be a 1-bit port */
if (readback_port) {
readback_port_info = module_manager.module_port(top_module, readback_port);
VTR_ASSERT(readback_port_info.get_width() == 1);
}
/* Find BL and WL address port from the top-level module */
ModulePortId bl_addr_port = module_manager.find_module_port(top_module, std::string(DECODER_BL_ADDRESS_PORT_NAME));
BasicPort bl_addr_port_info = module_manager.module_port(top_module, bl_addr_port);
ModulePortId wl_addr_port = module_manager.find_module_port(top_module, std::string(DECODER_WL_ADDRESS_PORT_NAME));
BasicPort wl_addr_port_info = module_manager.module_port(top_module, wl_addr_port);
/* Find the top-level number of BLs and WLs required to access each memory bit */
size_t bl_addr_size = bl_addr_port_info.get_width();
size_t wl_addr_size = wl_addr_port_info.get_width();
/* Each memory bank has a unified number of BL/WLs */
size_t num_bls = 0;
for (const auto& curr_config_bits : num_config_bits) {
num_bls = std::max(num_bls, curr_config_bits.first);
}
size_t num_wls = 0;
for (const auto& curr_config_bits : num_config_bits) {
num_wls = std::max(num_wls, curr_config_bits.second);
}
/* Create separated memory bank circuitry, i.e., BL/WL decoders for each region */
for (const ConfigRegionId& config_region : module_manager.regions(top_module)) {
/**************************************************************
* Add the BL decoder module
* Search the decoder library
* If we find one, we use the module.
* Otherwise, we create one and add it to the decoder library
*/
DecoderId bl_decoder_id = decoder_lib.find_decoder(bl_addr_size, num_bls,
true, true, false, false);
if (DecoderId::INVALID() == bl_decoder_id) {
bl_decoder_id = decoder_lib.add_decoder(bl_addr_size, num_bls, true, true, false, false);
}
VTR_ASSERT(DecoderId::INVALID() != bl_decoder_id);
/* Create a module if not existed yet */
std::string bl_decoder_module_name = generate_memory_decoder_with_data_in_subckt_name(bl_addr_size, num_bls);
ModuleId bl_decoder_module = module_manager.find_module(bl_decoder_module_name);
if (ModuleId::INVALID() == bl_decoder_module) {
/* BL decoder has the same ports as the frame-based decoders
* We reuse it here
*/
bl_decoder_module = build_bl_memory_decoder_module(module_manager,
decoder_lib,
bl_decoder_id);
}
VTR_ASSERT(ModuleId::INVALID() != bl_decoder_module);
size_t curr_bl_decoder_instance_id = module_manager.num_instance(top_module, bl_decoder_module);
module_manager.add_child_module(top_module, bl_decoder_module);
/**************************************************************
* Add the WL decoder module
* Search the decoder library
* If we find one, we use the module.
* Otherwise, we create one and add it to the decoder library
*/
DecoderId wl_decoder_id = decoder_lib.find_decoder(wl_addr_size, num_wls,
true, false, false, readback_port != ModulePortId::INVALID());
if (DecoderId::INVALID() == wl_decoder_id) {
wl_decoder_id = decoder_lib.add_decoder(wl_addr_size, num_wls, true, false, false, readback_port != ModulePortId::INVALID());
}
VTR_ASSERT(DecoderId::INVALID() != wl_decoder_id);
/* Create a module if not existed yet */
std::string wl_decoder_module_name = generate_memory_decoder_subckt_name(wl_addr_size, num_wls);
ModuleId wl_decoder_module = module_manager.find_module(wl_decoder_module_name);
if (ModuleId::INVALID() == wl_decoder_module) {
/* BL decoder has the same ports as the frame-based decoders
* We reuse it here
*/
wl_decoder_module = build_wl_memory_decoder_module(module_manager,
decoder_lib,
wl_decoder_id);
}
VTR_ASSERT(ModuleId::INVALID() != wl_decoder_module);
size_t curr_wl_decoder_instance_id = module_manager.num_instance(top_module, wl_decoder_module);
module_manager.add_child_module(top_module, wl_decoder_module);
/**************************************************************
* Add module nets from the top module to BL decoder's inputs
*/
ModulePortId bl_decoder_en_port = module_manager.find_module_port(bl_decoder_module, std::string(DECODER_ENABLE_PORT_NAME));
BasicPort bl_decoder_en_port_info = module_manager.module_port(bl_decoder_module, bl_decoder_en_port);
ModulePortId bl_decoder_addr_port = module_manager.find_module_port(bl_decoder_module, std::string(DECODER_ADDRESS_PORT_NAME));
BasicPort bl_decoder_addr_port_info = module_manager.module_port(bl_decoder_module, bl_decoder_addr_port);
ModulePortId bl_decoder_din_port = module_manager.find_module_port(bl_decoder_module, std::string(DECODER_DATA_IN_PORT_NAME));
BasicPort bl_decoder_din_port_info = module_manager.module_port(bl_decoder_module, bl_decoder_din_port);
/* Data in port of the local BL decoder should always be 1 */
VTR_ASSERT(1 == bl_decoder_din_port_info.get_width());
/* Top module Enable port -> BL Decoder Enable port */
add_module_bus_nets(module_manager,
top_module,
top_module, 0, en_port,
bl_decoder_module, curr_bl_decoder_instance_id, bl_decoder_en_port);
/* Top module Address port -> BL Decoder Address port */
add_module_bus_nets(module_manager,
top_module,
top_module, 0, bl_addr_port,
bl_decoder_module, curr_bl_decoder_instance_id, bl_decoder_addr_port);
/* Top module data_in port -> BL Decoder data_in port:
* Note that each region has independent data_in connection from the top-level module
* The pin index is the configuration region index
*/
ModuleNetId din_net = create_module_source_pin_net(module_manager, top_module,
top_module, 0,
din_port,
din_port_info.pins()[size_t(config_region)]);
VTR_ASSERT(ModuleNetId::INVALID() != din_net);
/* Configure the net sink */
module_manager.add_module_net_sink(top_module, din_net, bl_decoder_module, curr_bl_decoder_instance_id, bl_decoder_din_port, bl_decoder_din_port_info.pins()[0]);
/**************************************************************
* Add module nets from the top module to WL decoder's inputs
*/
ModulePortId wl_decoder_en_port = module_manager.find_module_port(wl_decoder_module, std::string(DECODER_ENABLE_PORT_NAME));
BasicPort wl_decoder_en_port_info = module_manager.module_port(wl_decoder_module, wl_decoder_en_port);
ModulePortId wl_decoder_addr_port = module_manager.find_module_port(wl_decoder_module, std::string(DECODER_ADDRESS_PORT_NAME));
BasicPort wl_decoder_addr_port_info = module_manager.module_port(wl_decoder_module, wl_decoder_addr_port);
ModulePortId wl_decoder_readback_port = module_manager.find_module_port(wl_decoder_module, std::string(DECODER_READBACK_PORT_NAME));
BasicPort wl_decoder_readback_port_info;
if (wl_decoder_readback_port) {
wl_decoder_readback_port_info = module_manager.module_port(wl_decoder_module, wl_decoder_readback_port);
}
/* Top module Enable port -> WL Decoder Enable port */
add_module_bus_nets(module_manager,
top_module,
top_module, 0, en_port,
wl_decoder_module, curr_wl_decoder_instance_id, wl_decoder_en_port);
/* Top module Address port -> WL Decoder Address port */
add_module_bus_nets(module_manager,
top_module,
top_module, 0, wl_addr_port,
wl_decoder_module, curr_wl_decoder_instance_id, wl_decoder_addr_port);
/* Top module readback port -> WL Decoder readback port */
if (wl_decoder_readback_port) {
add_module_bus_nets(module_manager,
top_module,
top_module, 0, readback_port,
wl_decoder_module, curr_wl_decoder_instance_id, wl_decoder_readback_port);
}
/**************************************************************
* Precompute the BLs and WLs distribution across the FPGA fabric
* The distribution is a matrix which contains the starting index of BL/WL for each column or row
*/
std::pair<int, int> child_x_range = compute_memory_bank_regional_configurable_child_x_range(module_manager, top_module, config_region);
std::pair<int, int> child_y_range = compute_memory_bank_regional_configurable_child_y_range(module_manager, top_module, config_region);
std::map<int, size_t> num_bls_per_tile = compute_memory_bank_regional_bitline_numbers_per_tile(module_manager, top_module,
config_region,
circuit_lib, sram_model);
std::map<int, size_t> num_wls_per_tile = compute_memory_bank_regional_wordline_numbers_per_tile(module_manager, top_module,
config_region,
circuit_lib, sram_model);
std::map<int, size_t> bl_start_index_per_tile = compute_memory_bank_regional_blwl_start_index_per_tile(child_x_range, num_bls_per_tile);
std::map<int, size_t> wl_start_index_per_tile = compute_memory_bank_regional_blwl_start_index_per_tile(child_y_range, num_wls_per_tile);
/**************************************************************
* Add nets from BL data out to each configurable child
* BL data output pins are connected to the BL input pins of each PB/CB/SB
* For all the PB/CB/SB in the same column, they share the same set of BLs
* A quick example
*
* BL[i .. i + sqrt(N)]
* |
* | CLB[1][H]
* | +---------+
* | | SRAM |
* +-->| [0..N] |
* | +---------+
* |
* ...
* | CLB[1][1]
* | +---------+
* | | SRAM |
* +-->| [0..N] |
* | +---------+
* |
*/
ModulePortId bl_decoder_dout_port = module_manager.find_module_port(bl_decoder_module, std::string(DECODER_DATA_OUT_PORT_NAME));
BasicPort bl_decoder_dout_port_info = module_manager.module_port(bl_decoder_module, bl_decoder_dout_port);
for (size_t child_id = 0; child_id < module_manager.region_configurable_children(top_module, config_region).size(); ++child_id) {
ModuleId child_module = module_manager.region_configurable_children(top_module, config_region)[child_id];
vtr::Point<int> coord = module_manager.region_configurable_child_coordinates(top_module, config_region)[child_id];
size_t child_instance = module_manager.region_configurable_child_instances(top_module, config_region)[child_id];
/* Find the BL port */
ModulePortId child_bl_port = module_manager.find_module_port(child_module, std::string(MEMORY_BL_PORT_NAME));
BasicPort child_bl_port_info = module_manager.module_port(child_module, child_bl_port);
size_t cur_bl_index = 0;
for (const size_t& sink_bl_pin : child_bl_port_info.pins()) {
size_t bl_pin_id = bl_start_index_per_tile[coord.x()] + cur_bl_index;
/* Find the BL decoder data index:
* It should be the starting index plus an offset which is the residual when divided by the number of BLs in this tile
*/
VTR_ASSERT(bl_pin_id < bl_decoder_dout_port_info.pins().size());
/* Create net */
ModuleNetId net = create_module_source_pin_net(module_manager, top_module,
bl_decoder_module, curr_bl_decoder_instance_id,
bl_decoder_dout_port,
bl_decoder_dout_port_info.pins()[bl_pin_id]);
VTR_ASSERT(ModuleNetId::INVALID() != net);
/* Add net sink */
module_manager.add_module_net_sink(top_module, net,
child_module, child_instance, child_bl_port, sink_bl_pin);
cur_bl_index++;
}
}
/**************************************************************
* Add nets from WL data out to each configurable child
*/
ModulePortId wl_decoder_dout_port = module_manager.find_module_port(wl_decoder_module, std::string(DECODER_DATA_OUT_PORT_NAME));
BasicPort wl_decoder_dout_port_info = module_manager.module_port(wl_decoder_module, wl_decoder_dout_port);
for (size_t child_id = 0; child_id < module_manager.region_configurable_children(top_module, config_region).size(); ++child_id) {
ModuleId child_module = module_manager.region_configurable_children(top_module, config_region)[child_id];
vtr::Point<int> coord = module_manager.region_configurable_child_coordinates(top_module, config_region)[child_id];
size_t child_instance = module_manager.region_configurable_child_instances(top_module, config_region)[child_id];
/* Find the WL port */
ModulePortId child_wl_port = module_manager.find_module_port(child_module, std::string(MEMORY_WL_PORT_NAME));
BasicPort child_wl_port_info = module_manager.module_port(child_module, child_wl_port);
size_t cur_wl_index = 0;
for (const size_t& sink_wl_pin : child_wl_port_info.pins()) {
size_t wl_pin_id = wl_start_index_per_tile[coord.y()] + cur_wl_index;
VTR_ASSERT(wl_pin_id < wl_decoder_dout_port_info.pins().size());
/* Create net */
ModuleNetId net = create_module_source_pin_net(module_manager, top_module,
wl_decoder_module, curr_wl_decoder_instance_id,
wl_decoder_dout_port,
wl_decoder_dout_port_info.pins()[wl_pin_id]);
VTR_ASSERT(ModuleNetId::INVALID() != net);
/* Add net sink */
module_manager.add_module_net_sink(top_module, net,
child_module, child_instance, child_wl_port, sink_wl_pin);
cur_wl_index++;
}
}
/**************************************************************
* Optional: Add nets from WLR data out to each configurable child
*/
ModulePortId wl_decoder_data_ren_port = module_manager.find_module_port(wl_decoder_module, std::string(DECODER_DATA_READ_ENABLE_PORT_NAME));
BasicPort wl_decoder_data_ren_port_info;
if (wl_decoder_data_ren_port) {
wl_decoder_data_ren_port_info = module_manager.module_port(wl_decoder_module, wl_decoder_data_ren_port);
for (size_t child_id = 0; child_id < module_manager.region_configurable_children(top_module, config_region).size(); ++child_id) {
ModuleId child_module = module_manager.region_configurable_children(top_module, config_region)[child_id];
vtr::Point<int> coord = module_manager.region_configurable_child_coordinates(top_module, config_region)[child_id];
size_t child_instance = module_manager.region_configurable_child_instances(top_module, config_region)[child_id];
/* Find the WL port */
ModulePortId child_wlr_port = module_manager.find_module_port(child_module, std::string(MEMORY_WLR_PORT_NAME));
BasicPort child_wlr_port_info = module_manager.module_port(child_module, child_wlr_port);
size_t cur_wlr_index = 0;
for (const size_t& sink_wlr_pin : child_wlr_port_info.pins()) {
size_t wlr_pin_id = wl_start_index_per_tile[coord.y()] + cur_wlr_index;
VTR_ASSERT(wlr_pin_id < wl_decoder_data_ren_port_info.pins().size());
/* Create net */
ModuleNetId net = create_module_source_pin_net(module_manager, top_module,
wl_decoder_module, curr_wl_decoder_instance_id,
wl_decoder_data_ren_port,
wl_decoder_data_ren_port_info.pins()[wlr_pin_id]);
VTR_ASSERT(ModuleNetId::INVALID() != net);
/* Add net sink */
module_manager.add_module_net_sink(top_module, net,
child_module, child_instance, child_wlr_port, sink_wlr_pin);
cur_wlr_index++;
}
}
}
/**************************************************************
* Add the BL and WL decoders to the end of configurable children list
* Note: this MUST be done after adding all the module nets to other regular configurable children
*/
module_manager.add_configurable_child(top_module, bl_decoder_module, curr_bl_decoder_instance_id);
module_manager.add_configurable_child_to_region(top_module,
config_region,
bl_decoder_module,
curr_bl_decoder_instance_id,
module_manager.configurable_children(top_module).size() - 1);
module_manager.add_configurable_child(top_module, wl_decoder_module, curr_wl_decoder_instance_id);
module_manager.add_configurable_child_to_region(top_module,
config_region,
wl_decoder_module,
curr_wl_decoder_instance_id,
module_manager.configurable_children(top_module).size() - 1);
}
}
} /* end namespace openfpga */