/******************************************************************** * This file includes functions that are used to organize memories * in the top module of FPGA fabric *******************************************************************/ #include #include /* Headers from vtrutil library */ #include "vtr_assert.h" #include "vtr_log.h" #include "vtr_time.h" /* Headers from vpr library */ #include "vpr_utils.h" /* Headers from openfpgashell library */ #include "command_exit_codes.h" #include "rr_gsb_utils.h" #include "openfpga_reserved_words.h" #include "openfpga_naming.h" #include "memory_utils.h" #include "decoder_library_utils.h" #include "module_manager_utils.h" #include "memory_bank_utils.h" #include "build_decoder_modules.h" #include "build_top_module_memory_bank.h" /* begin namespace openfpga */ namespace openfpga { /********************************************************************* * Top-level function to add nets for quicklogic memory banks * Each configuration region has independent memory bank circuitry * - Find the number of BLs and WLs required for each region * - Create BL and WL decoders, and add them to decoder library * - Create nets to connect from top-level module inputs to inputs of decoders * - Create nets to connect from outputs of decoders to BL/WL of configurable children * * Detailed schematic of how memory banks are connected in the top-level: * Consider a random Region X, local BL address lines are aligned to the LSB of the * top-level BL address lines * * top_bl_addr[N-1:0] * ^ * | local_bl_addr[N-1:0] * | * +-----+------------------+ * | | | * | +-------------------+ | * | | Word Line Decoder | | * | +-------------------+ | * | | * * The BL/WL decoders should have the same circuit designs no matter what region * they are placed even when the number of configuration bits are different * from one region to another! * This is designed to avoid any address collision between memory banks * since they are programmed in the same clock cycle * For example: * - Memory Bank A has 36 memory cells. * Its BL decoder has 3 address bit and 6 data output bit * Its WL decoder has 3 address bit and 6 data output bit * - Memory Bank B has 16 memory cells. * Its BL decoder has 2 address bit and 4 data output bit * Its WL decoder has 2 address bit and 4 data output bit * - If we try to program the 36th memory cell in bank A * the BL address will be 3'b110 * the WL address will be 3'b110 * the data input will be 1'b0 * - If we try to program the 4th memory cell in bank A * the BL address will be 3'b010 * the WL address will be 3'b010 * the data input will be 1'b1 * However, in both cases, this will trigger a parasitic programming in bank B * the BL address will be 2'b10 * the WL address will be 2'b10 * Assume the data input is expected to be 1'b1 for bank B * but it will be overwritten to 1'b0 when programming the 36th cell in bank A! * * Detailed schematic of each memory bank: * @note The numbers are just made to show a simplified example, practical cases are more complicated! * * WL_enable WL address * | | * v v * +-----------------------------------------------+ * | Word Line Decoder | * +-----------------------------------------------+ * +---------+ | | | * BL | | | | | * enable ---->| |-----------+---------------+---- ... |------+--> BL[0:2] * | | | | | | | | * | | | v | v | v * | Bit | | +-------+ | +-------+ | +------+ * BL | Line | +-->| SRAM | +-->| SRAM | +->| SRAM | * address ---->| Decoder | | | [0:8] | | | [0:5] | ... | | [0:7]| * | | | +-------+ | +-------+ | +------+ * | | | | | * | |-----------+--------------+--------- | -----+--> BL[0:9] * | | | | | | | | * | | | v | v | v * | | | +-------+ | +-------+ | +-------+ * | | +-->| SRAM | | | SRAM | +->| SRAM | * | | | | [0:80]| | | [0:63]| ... | | [0:31]| * | | | +-------+ | +-------+ | +-------+ * | | | | * | | | ... ... ... | ... * | | | | | * | |-----------+---------------+---- --- | -----+--> BL[0:3] * | | | | | | | | * | | | v | v | v * | | | +-------+ | +-------+ | +-------+ * | | +-->| SRAM | +-->| SRAM | +->| SRAM | * | | | |[0:5] | | | [0:8] | ... | | [0:2] | * | | | +-------+ | +-------+ | +-------+ * BL | | v v v * data_in ---->| | WL[0:9] WL[0:7] WL[0:4] * +---------+ * **********************************************************************/ void add_top_module_nets_cmos_ql_memory_bank_config_bus(ModuleManager& module_manager, DecoderLibrary& decoder_lib, const ModuleId& top_module, const CircuitLibrary& circuit_lib, const CircuitModelId& sram_model, const TopModuleNumConfigBits& num_config_bits) { /* Find Enable port from the top-level module */ ModulePortId en_port = module_manager.find_module_port(top_module, std::string(DECODER_ENABLE_PORT_NAME)); BasicPort en_port_info = module_manager.module_port(top_module, en_port); /* Find data-in port from the top-level module */ ModulePortId din_port = module_manager.find_module_port(top_module, std::string(DECODER_DATA_IN_PORT_NAME)); BasicPort din_port_info = module_manager.module_port(top_module, din_port); /* Data in port should match the number of configuration regions */ VTR_ASSERT(din_port_info.get_width() == module_manager.regions(top_module).size()); /* Find readback port from the top-level module */ ModulePortId readback_port = module_manager.find_module_port(top_module, std::string(DECODER_READBACK_PORT_NAME)); BasicPort readback_port_info; /* Readback port if available, should be a 1-bit port */ if (readback_port) { readback_port_info = module_manager.module_port(top_module, readback_port); VTR_ASSERT(readback_port_info.get_width() == 1); } /* Find BL and WL address port from the top-level module */ ModulePortId bl_addr_port = module_manager.find_module_port(top_module, std::string(DECODER_BL_ADDRESS_PORT_NAME)); BasicPort bl_addr_port_info = module_manager.module_port(top_module, bl_addr_port); ModulePortId wl_addr_port = module_manager.find_module_port(top_module, std::string(DECODER_WL_ADDRESS_PORT_NAME)); BasicPort wl_addr_port_info = module_manager.module_port(top_module, wl_addr_port); /* Find the top-level number of BLs and WLs required to access each memory bit */ size_t bl_addr_size = bl_addr_port_info.get_width(); size_t wl_addr_size = wl_addr_port_info.get_width(); /* Each memory bank has a unified number of BL/WLs */ size_t num_bls = 0; for (const auto& curr_config_bits : num_config_bits) { num_bls = std::max(num_bls, curr_config_bits.first); } size_t num_wls = 0; for (const auto& curr_config_bits : num_config_bits) { num_wls = std::max(num_wls, curr_config_bits.second); } /* Create separated memory bank circuitry, i.e., BL/WL decoders for each region */ for (const ConfigRegionId& config_region : module_manager.regions(top_module)) { /************************************************************** * Add the BL decoder module * Search the decoder library * If we find one, we use the module. * Otherwise, we create one and add it to the decoder library */ DecoderId bl_decoder_id = decoder_lib.find_decoder(bl_addr_size, num_bls, true, true, false, false); if (DecoderId::INVALID() == bl_decoder_id) { bl_decoder_id = decoder_lib.add_decoder(bl_addr_size, num_bls, true, true, false, false); } VTR_ASSERT(DecoderId::INVALID() != bl_decoder_id); /* Create a module if not existed yet */ std::string bl_decoder_module_name = generate_memory_decoder_with_data_in_subckt_name(bl_addr_size, num_bls); ModuleId bl_decoder_module = module_manager.find_module(bl_decoder_module_name); if (ModuleId::INVALID() == bl_decoder_module) { /* BL decoder has the same ports as the frame-based decoders * We reuse it here */ bl_decoder_module = build_bl_memory_decoder_module(module_manager, decoder_lib, bl_decoder_id); } VTR_ASSERT(ModuleId::INVALID() != bl_decoder_module); size_t curr_bl_decoder_instance_id = module_manager.num_instance(top_module, bl_decoder_module); module_manager.add_child_module(top_module, bl_decoder_module); /************************************************************** * Add the WL decoder module * Search the decoder library * If we find one, we use the module. * Otherwise, we create one and add it to the decoder library */ DecoderId wl_decoder_id = decoder_lib.find_decoder(wl_addr_size, num_wls, true, false, false, readback_port != ModulePortId::INVALID()); if (DecoderId::INVALID() == wl_decoder_id) { wl_decoder_id = decoder_lib.add_decoder(wl_addr_size, num_wls, true, false, false, readback_port != ModulePortId::INVALID()); } VTR_ASSERT(DecoderId::INVALID() != wl_decoder_id); /* Create a module if not existed yet */ std::string wl_decoder_module_name = generate_memory_decoder_subckt_name(wl_addr_size, num_wls); ModuleId wl_decoder_module = module_manager.find_module(wl_decoder_module_name); if (ModuleId::INVALID() == wl_decoder_module) { /* BL decoder has the same ports as the frame-based decoders * We reuse it here */ wl_decoder_module = build_wl_memory_decoder_module(module_manager, decoder_lib, wl_decoder_id); } VTR_ASSERT(ModuleId::INVALID() != wl_decoder_module); size_t curr_wl_decoder_instance_id = module_manager.num_instance(top_module, wl_decoder_module); module_manager.add_child_module(top_module, wl_decoder_module); /************************************************************** * Add module nets from the top module to BL decoder's inputs */ ModulePortId bl_decoder_en_port = module_manager.find_module_port(bl_decoder_module, std::string(DECODER_ENABLE_PORT_NAME)); BasicPort bl_decoder_en_port_info = module_manager.module_port(bl_decoder_module, bl_decoder_en_port); ModulePortId bl_decoder_addr_port = module_manager.find_module_port(bl_decoder_module, std::string(DECODER_ADDRESS_PORT_NAME)); BasicPort bl_decoder_addr_port_info = module_manager.module_port(bl_decoder_module, bl_decoder_addr_port); ModulePortId bl_decoder_din_port = module_manager.find_module_port(bl_decoder_module, std::string(DECODER_DATA_IN_PORT_NAME)); BasicPort bl_decoder_din_port_info = module_manager.module_port(bl_decoder_module, bl_decoder_din_port); /* Data in port of the local BL decoder should always be 1 */ VTR_ASSERT(1 == bl_decoder_din_port_info.get_width()); /* Top module Enable port -> BL Decoder Enable port */ add_module_bus_nets(module_manager, top_module, top_module, 0, en_port, bl_decoder_module, curr_bl_decoder_instance_id, bl_decoder_en_port); /* Top module Address port -> BL Decoder Address port */ add_module_bus_nets(module_manager, top_module, top_module, 0, bl_addr_port, bl_decoder_module, curr_bl_decoder_instance_id, bl_decoder_addr_port); /* Top module data_in port -> BL Decoder data_in port: * Note that each region has independent data_in connection from the top-level module * The pin index is the configuration region index */ ModuleNetId din_net = create_module_source_pin_net(module_manager, top_module, top_module, 0, din_port, din_port_info.pins()[size_t(config_region)]); VTR_ASSERT(ModuleNetId::INVALID() != din_net); /* Configure the net sink */ module_manager.add_module_net_sink(top_module, din_net, bl_decoder_module, curr_bl_decoder_instance_id, bl_decoder_din_port, bl_decoder_din_port_info.pins()[0]); /************************************************************** * Add module nets from the top module to WL decoder's inputs */ ModulePortId wl_decoder_en_port = module_manager.find_module_port(wl_decoder_module, std::string(DECODER_ENABLE_PORT_NAME)); BasicPort wl_decoder_en_port_info = module_manager.module_port(wl_decoder_module, wl_decoder_en_port); ModulePortId wl_decoder_addr_port = module_manager.find_module_port(wl_decoder_module, std::string(DECODER_ADDRESS_PORT_NAME)); BasicPort wl_decoder_addr_port_info = module_manager.module_port(wl_decoder_module, wl_decoder_addr_port); ModulePortId wl_decoder_readback_port = module_manager.find_module_port(wl_decoder_module, std::string(DECODER_READBACK_PORT_NAME)); BasicPort wl_decoder_readback_port_info; if (wl_decoder_readback_port) { wl_decoder_readback_port_info = module_manager.module_port(wl_decoder_module, wl_decoder_readback_port); } /* Top module Enable port -> WL Decoder Enable port */ add_module_bus_nets(module_manager, top_module, top_module, 0, en_port, wl_decoder_module, curr_wl_decoder_instance_id, wl_decoder_en_port); /* Top module Address port -> WL Decoder Address port */ add_module_bus_nets(module_manager, top_module, top_module, 0, wl_addr_port, wl_decoder_module, curr_wl_decoder_instance_id, wl_decoder_addr_port); /* Top module readback port -> WL Decoder readback port */ if (wl_decoder_readback_port) { add_module_bus_nets(module_manager, top_module, top_module, 0, readback_port, wl_decoder_module, curr_wl_decoder_instance_id, wl_decoder_readback_port); } /************************************************************** * Precompute the BLs and WLs distribution across the FPGA fabric * The distribution is a matrix which contains the starting index of BL/WL for each column or row */ std::pair child_x_range = compute_memory_bank_regional_configurable_child_x_range(module_manager, top_module, config_region); std::pair child_y_range = compute_memory_bank_regional_configurable_child_y_range(module_manager, top_module, config_region); std::map num_bls_per_tile = compute_memory_bank_regional_bitline_numbers_per_tile(module_manager, top_module, config_region, circuit_lib, sram_model); std::map num_wls_per_tile = compute_memory_bank_regional_wordline_numbers_per_tile(module_manager, top_module, config_region, circuit_lib, sram_model); std::map bl_start_index_per_tile = compute_memory_bank_regional_blwl_start_index_per_tile(child_x_range, num_bls_per_tile); std::map wl_start_index_per_tile = compute_memory_bank_regional_blwl_start_index_per_tile(child_y_range, num_wls_per_tile); /************************************************************** * Add nets from BL data out to each configurable child * BL data output pins are connected to the BL input pins of each PB/CB/SB * For all the PB/CB/SB in the same column, they share the same set of BLs * A quick example * * BL[i .. i + sqrt(N)] * | * | CLB[1][H] * | +---------+ * | | SRAM | * +-->| [0..N] | * | +---------+ * | * ... * | CLB[1][1] * | +---------+ * | | SRAM | * +-->| [0..N] | * | +---------+ * | */ ModulePortId bl_decoder_dout_port = module_manager.find_module_port(bl_decoder_module, std::string(DECODER_DATA_OUT_PORT_NAME)); BasicPort bl_decoder_dout_port_info = module_manager.module_port(bl_decoder_module, bl_decoder_dout_port); for (size_t child_id = 0; child_id < module_manager.region_configurable_children(top_module, config_region).size(); ++child_id) { ModuleId child_module = module_manager.region_configurable_children(top_module, config_region)[child_id]; vtr::Point coord = module_manager.region_configurable_child_coordinates(top_module, config_region)[child_id]; size_t child_instance = module_manager.region_configurable_child_instances(top_module, config_region)[child_id]; /* Find the BL port */ ModulePortId child_bl_port = module_manager.find_module_port(child_module, std::string(MEMORY_BL_PORT_NAME)); BasicPort child_bl_port_info = module_manager.module_port(child_module, child_bl_port); size_t cur_bl_index = 0; for (const size_t& sink_bl_pin : child_bl_port_info.pins()) { size_t bl_pin_id = bl_start_index_per_tile[coord.x()] + cur_bl_index; /* Find the BL decoder data index: * It should be the starting index plus an offset which is the residual when divided by the number of BLs in this tile */ VTR_ASSERT(bl_pin_id < bl_decoder_dout_port_info.pins().size()); /* Create net */ ModuleNetId net = create_module_source_pin_net(module_manager, top_module, bl_decoder_module, curr_bl_decoder_instance_id, bl_decoder_dout_port, bl_decoder_dout_port_info.pins()[bl_pin_id]); VTR_ASSERT(ModuleNetId::INVALID() != net); /* Add net sink */ module_manager.add_module_net_sink(top_module, net, child_module, child_instance, child_bl_port, sink_bl_pin); cur_bl_index++; } } /************************************************************** * Add nets from WL data out to each configurable child */ ModulePortId wl_decoder_dout_port = module_manager.find_module_port(wl_decoder_module, std::string(DECODER_DATA_OUT_PORT_NAME)); BasicPort wl_decoder_dout_port_info = module_manager.module_port(wl_decoder_module, wl_decoder_dout_port); for (size_t child_id = 0; child_id < module_manager.region_configurable_children(top_module, config_region).size(); ++child_id) { ModuleId child_module = module_manager.region_configurable_children(top_module, config_region)[child_id]; vtr::Point coord = module_manager.region_configurable_child_coordinates(top_module, config_region)[child_id]; size_t child_instance = module_manager.region_configurable_child_instances(top_module, config_region)[child_id]; /* Find the WL port */ ModulePortId child_wl_port = module_manager.find_module_port(child_module, std::string(MEMORY_WL_PORT_NAME)); BasicPort child_wl_port_info = module_manager.module_port(child_module, child_wl_port); size_t cur_wl_index = 0; for (const size_t& sink_wl_pin : child_wl_port_info.pins()) { size_t wl_pin_id = wl_start_index_per_tile[coord.y()] + cur_wl_index; VTR_ASSERT(wl_pin_id < wl_decoder_dout_port_info.pins().size()); /* Create net */ ModuleNetId net = create_module_source_pin_net(module_manager, top_module, wl_decoder_module, curr_wl_decoder_instance_id, wl_decoder_dout_port, wl_decoder_dout_port_info.pins()[wl_pin_id]); VTR_ASSERT(ModuleNetId::INVALID() != net); /* Add net sink */ module_manager.add_module_net_sink(top_module, net, child_module, child_instance, child_wl_port, sink_wl_pin); cur_wl_index++; } } /************************************************************** * Optional: Add nets from WLR data out to each configurable child */ ModulePortId wl_decoder_data_ren_port = module_manager.find_module_port(wl_decoder_module, std::string(DECODER_DATA_READ_ENABLE_PORT_NAME)); BasicPort wl_decoder_data_ren_port_info; if (wl_decoder_data_ren_port) { wl_decoder_data_ren_port_info = module_manager.module_port(wl_decoder_module, wl_decoder_data_ren_port); for (size_t child_id = 0; child_id < module_manager.region_configurable_children(top_module, config_region).size(); ++child_id) { ModuleId child_module = module_manager.region_configurable_children(top_module, config_region)[child_id]; vtr::Point coord = module_manager.region_configurable_child_coordinates(top_module, config_region)[child_id]; size_t child_instance = module_manager.region_configurable_child_instances(top_module, config_region)[child_id]; /* Find the WL port */ ModulePortId child_wlr_port = module_manager.find_module_port(child_module, std::string(MEMORY_WLR_PORT_NAME)); BasicPort child_wlr_port_info = module_manager.module_port(child_module, child_wlr_port); size_t cur_wlr_index = 0; for (const size_t& sink_wlr_pin : child_wlr_port_info.pins()) { size_t wlr_pin_id = wl_start_index_per_tile[coord.y()] + cur_wlr_index; VTR_ASSERT(wlr_pin_id < wl_decoder_data_ren_port_info.pins().size()); /* Create net */ ModuleNetId net = create_module_source_pin_net(module_manager, top_module, wl_decoder_module, curr_wl_decoder_instance_id, wl_decoder_data_ren_port, wl_decoder_data_ren_port_info.pins()[wlr_pin_id]); VTR_ASSERT(ModuleNetId::INVALID() != net); /* Add net sink */ module_manager.add_module_net_sink(top_module, net, child_module, child_instance, child_wlr_port, sink_wlr_pin); cur_wlr_index++; } } } /************************************************************** * Add the BL and WL decoders to the end of configurable children list * Note: this MUST be done after adding all the module nets to other regular configurable children */ module_manager.add_configurable_child(top_module, bl_decoder_module, curr_bl_decoder_instance_id); module_manager.add_configurable_child_to_region(top_module, config_region, bl_decoder_module, curr_bl_decoder_instance_id, module_manager.configurable_children(top_module).size() - 1); module_manager.add_configurable_child(top_module, wl_decoder_module, curr_wl_decoder_instance_id); module_manager.add_configurable_child_to_region(top_module, config_region, wl_decoder_module, curr_wl_decoder_instance_id, module_manager.configurable_children(top_module).size() - 1); } } } /* end namespace openfpga */