yosys/backends/smt2/smt2.cc

1687 lines
63 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/rtlil.h"
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/celltypes.h"
#include "kernel/log.h"
#include "kernel/mem.h"
#include <string>
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct Smt2Worker
{
CellTypes ct;
SigMap sigmap;
RTLIL::Module *module;
bool bvmode, memmode, wiresmode, verbose, statebv, statedt, forallmode;
dict<IdString, int> &mod_stbv_width;
int idcounter = 0, statebv_width = 0;
std::vector<std::string> decls, trans, hier, dtmembers;
std::map<RTLIL::SigBit, RTLIL::Cell*> bit_driver;
std::set<RTLIL::Cell*> exported_cells, hiercells, hiercells_queue;
pool<Cell*> recursive_cells, registers;
std::vector<Mem> memories;
dict<Cell*, Mem*> mem_cells;
std::set<Mem*> memory_queue;
pool<SigBit> clock_posedge, clock_negedge;
vector<string> ex_state_eq, ex_input_eq;
std::map<RTLIL::SigBit, std::pair<int, int>> fcache;
std::map<Mem*, int> memarrays;
std::map<int, int> bvsizes;
dict<IdString, char*> ids;
const char *get_id(IdString n)
{
if (ids.count(n) == 0) {
std::string str = log_id(n);
for (int i = 0; i < GetSize(str); i++) {
if (str[i] == '\\')
str[i] = '/';
}
ids[n] = strdup(str.c_str());
}
return ids[n];
}
template<typename T>
const char *get_id(T *obj) {
return get_id(obj->name);
}
void makebits(std::string name, int width = 0, std::string comment = std::string())
{
std::string decl_str;
if (statebv)
{
if (width == 0) {
decl_str = stringf("(define-fun |%s| ((state |%s_s|)) Bool (= ((_ extract %d %d) state) #b1))", name.c_str(), get_id(module), statebv_width, statebv_width);
statebv_width += 1;
} else {
decl_str = stringf("(define-fun |%s| ((state |%s_s|)) (_ BitVec %d) ((_ extract %d %d) state))", name.c_str(), get_id(module), width, statebv_width+width-1, statebv_width);
statebv_width += width;
}
}
else if (statedt)
{
if (width == 0) {
decl_str = stringf(" (|%s| Bool)", name.c_str());
} else {
decl_str = stringf(" (|%s| (_ BitVec %d))", name.c_str(), width);
}
}
else
{
if (width == 0) {
decl_str = stringf("(declare-fun |%s| (|%s_s|) Bool)", name.c_str(), get_id(module));
} else {
decl_str = stringf("(declare-fun |%s| (|%s_s|) (_ BitVec %d))", name.c_str(), get_id(module), width);
}
}
if (!comment.empty())
decl_str += " ; " + comment;
if (statedt)
dtmembers.push_back(decl_str + "\n");
else
decls.push_back(decl_str + "\n");
}
Smt2Worker(RTLIL::Module *module, bool bvmode, bool memmode, bool wiresmode, bool verbose, bool statebv, bool statedt, bool forallmode,
dict<IdString, int> &mod_stbv_width, dict<IdString, dict<IdString, pair<bool, bool>>> &mod_clk_cache) :
ct(module->design), sigmap(module), module(module), bvmode(bvmode), memmode(memmode), wiresmode(wiresmode),
verbose(verbose), statebv(statebv), statedt(statedt), forallmode(forallmode), mod_stbv_width(mod_stbv_width)
{
pool<SigBit> noclock;
makebits(stringf("%s_is", get_id(module)));
dict<IdString, Mem*> mem_dict;
memories = Mem::get_all_memories(module);
for (auto &mem : memories)
{
mem.narrow();
mem_dict[mem.memid] = &mem;
for (auto &port : mem.wr_ports)
{
if (port.clk_enable) {
SigSpec clk = sigmap(port.clk);
for (int i = 0; i < GetSize(clk); i++)
{
if (clk[i].wire == nullptr)
continue;
if (port.clk_polarity)
clock_posedge.insert(clk[i]);
else
clock_negedge.insert(clk[i]);
}
}
for (auto bit : sigmap(port.en))
noclock.insert(bit);
for (auto bit : sigmap(port.addr))
noclock.insert(bit);
for (auto bit : sigmap(port.data))
noclock.insert(bit);
}
for (auto &port : mem.rd_ports)
{
if (port.clk_enable) {
SigSpec clk = sigmap(port.clk);
for (int i = 0; i < GetSize(clk); i++)
{
if (clk[i].wire == nullptr)
continue;
if (port.clk_polarity)
clock_posedge.insert(clk[i]);
else
clock_negedge.insert(clk[i]);
}
}
for (auto bit : sigmap(port.en))
noclock.insert(bit);
for (auto bit : sigmap(port.addr))
noclock.insert(bit);
for (auto bit : sigmap(port.data))
noclock.insert(bit);
Cell *driver = port.cell ? port.cell : mem.cell;
for (auto bit : sigmap(port.data)) {
if (bit_driver.count(bit))
log_error("Found multiple drivers for %s.\n", log_signal(bit));
bit_driver[bit] = driver;
}
}
}
for (auto cell : module->cells())
for (auto &conn : cell->connections())
{
if (GetSize(conn.second) == 0)
continue;
// Handled above.
if (cell->is_mem_cell()) {
mem_cells[cell] = mem_dict[cell->parameters.at(ID::MEMID).decode_string()];
continue;
}
bool is_input = ct.cell_input(cell->type, conn.first);
bool is_output = ct.cell_output(cell->type, conn.first);
if (is_output && !is_input)
for (auto bit : sigmap(conn.second)) {
if (bit_driver.count(bit))
log_error("Found multiple drivers for %s.\n", log_signal(bit));
bit_driver[bit] = cell;
}
else if (is_output || !is_input)
log_error("Unsupported or unknown directionality on port %s of cell %s.%s (%s).\n",
log_id(conn.first), log_id(module), log_id(cell), log_id(cell->type));
if (cell->type.in(ID($dff), ID($_DFF_P_), ID($_DFF_N_)) && conn.first.in(ID::CLK, ID::C))
{
bool posedge = (cell->type == ID($_DFF_N_)) || (cell->type == ID($dff) && cell->getParam(ID::CLK_POLARITY).as_bool());
for (auto bit : sigmap(conn.second)) {
if (posedge)
clock_posedge.insert(bit);
else
clock_negedge.insert(bit);
}
}
else
if (mod_clk_cache.count(cell->type) && mod_clk_cache.at(cell->type).count(conn.first))
{
for (auto bit : sigmap(conn.second)) {
if (mod_clk_cache.at(cell->type).at(conn.first).first)
clock_posedge.insert(bit);
if (mod_clk_cache.at(cell->type).at(conn.first).second)
clock_negedge.insert(bit);
}
}
else
{
for (auto bit : sigmap(conn.second))
noclock.insert(bit);
}
}
for (auto bit : noclock) {
clock_posedge.erase(bit);
clock_negedge.erase(bit);
}
for (auto wire : module->wires())
{
if (!wire->port_input || GetSize(wire) != 1)
continue;
SigBit bit = sigmap(wire);
if (clock_posedge.count(bit))
mod_clk_cache[module->name][wire->name].first = true;
if (clock_negedge.count(bit))
mod_clk_cache[module->name][wire->name].second = true;
}
}
~Smt2Worker()
{
for (auto &it : ids)
free(it.second);
ids.clear();
}
const char *get_id(Module *m)
{
return get_id(m->name);
}
const char *get_id(Cell *c)
{
return get_id(c->name);
}
const char *get_id(Wire *w)
{
return get_id(w->name);
}
void register_bool(RTLIL::SigBit bit, int id)
{
if (verbose) log("%*s-> register_bool: %s %d\n", 2+2*GetSize(recursive_cells), "",
log_signal(bit), id);
sigmap.apply(bit);
log_assert(fcache.count(bit) == 0);
fcache[bit] = std::pair<int, int>(id, -1);
}
void register_bv(RTLIL::SigSpec sig, int id)
{
if (verbose) log("%*s-> register_bv: %s %d\n", 2+2*GetSize(recursive_cells), "",
log_signal(sig), id);
log_assert(bvmode);
sigmap.apply(sig);
log_assert(bvsizes.count(id) == 0);
bvsizes[id] = GetSize(sig);
for (int i = 0; i < GetSize(sig); i++) {
log_assert(fcache.count(sig[i]) == 0);
fcache[sig[i]] = std::pair<int, int>(id, i);
}
}
void register_boolvec(RTLIL::SigSpec sig, int id)
{
if (verbose) log("%*s-> register_boolvec: %s %d\n", 2+2*GetSize(recursive_cells), "",
log_signal(sig), id);
log_assert(bvmode);
sigmap.apply(sig);
register_bool(sig[0], id);
for (int i = 1; i < GetSize(sig); i++)
sigmap.add(sig[i], RTLIL::State::S0);
}
std::string get_bool(RTLIL::SigBit bit, const char *state_name = "state")
{
sigmap.apply(bit);
if (bit.wire == nullptr)
return bit == RTLIL::State::S1 ? "true" : "false";
if (bit_driver.count(bit))
export_cell(bit_driver.at(bit));
sigmap.apply(bit);
if (fcache.count(bit) == 0) {
if (verbose) log("%*s-> external bool: %s\n", 2+2*GetSize(recursive_cells), "",
log_signal(bit));
makebits(stringf("%s#%d", get_id(module), idcounter), 0, log_signal(bit));
register_bool(bit, idcounter++);
}
auto f = fcache.at(bit);
if (f.second >= 0)
return stringf("(= ((_ extract %d %d) (|%s#%d| %s)) #b1)", f.second, f.second, get_id(module), f.first, state_name);
return stringf("(|%s#%d| %s)", get_id(module), f.first, state_name);
}
std::string get_bool(RTLIL::SigSpec sig, const char *state_name = "state")
{
return get_bool(sig.as_bit(), state_name);
}
std::string get_bv(RTLIL::SigSpec sig, const char *state_name = "state")
{
log_assert(bvmode);
sigmap.apply(sig);
std::vector<std::string> subexpr;
SigSpec orig_sig;
while (orig_sig != sig) {
for (auto bit : sig)
if (bit_driver.count(bit))
export_cell(bit_driver.at(bit));
orig_sig = sig;
sigmap.apply(sig);
}
for (int i = 0, j = 1; i < GetSize(sig); i += j, j = 1)
{
if (sig[i].wire == nullptr) {
while (i+j < GetSize(sig) && sig[i+j].wire == nullptr) j++;
subexpr.push_back("#b");
for (int k = i+j-1; k >= i; k--)
subexpr.back() += sig[k] == RTLIL::State::S1 ? "1" : "0";
continue;
}
if (fcache.count(sig[i]) && fcache.at(sig[i]).second == -1) {
subexpr.push_back(stringf("(ite %s #b1 #b0)", get_bool(sig[i], state_name).c_str()));
continue;
}
if (fcache.count(sig[i])) {
auto t1 = fcache.at(sig[i]);
while (i+j < GetSize(sig)) {
if (fcache.count(sig[i+j]) == 0)
break;
auto t2 = fcache.at(sig[i+j]);
if (t1.first != t2.first)
break;
if (t1.second+j != t2.second)
break;
j++;
}
if (t1.second == 0 && j == bvsizes.at(t1.first))
subexpr.push_back(stringf("(|%s#%d| %s)", get_id(module), t1.first, state_name));
else
subexpr.push_back(stringf("((_ extract %d %d) (|%s#%d| %s))",
t1.second + j - 1, t1.second, get_id(module), t1.first, state_name));
continue;
}
std::set<RTLIL::SigBit> seen_bits = { sig[i] };
while (i+j < GetSize(sig) && sig[i+j].wire && !fcache.count(sig[i+j]) && !seen_bits.count(sig[i+j]))
seen_bits.insert(sig[i+j]), j++;
if (verbose) log("%*s-> external bv: %s\n", 2+2*GetSize(recursive_cells), "",
log_signal(sig.extract(i, j)));
for (auto bit : sig.extract(i, j))
log_assert(bit_driver.count(bit) == 0);
makebits(stringf("%s#%d", get_id(module), idcounter), j, log_signal(sig.extract(i, j)));
subexpr.push_back(stringf("(|%s#%d| %s)", get_id(module), idcounter, state_name));
register_bv(sig.extract(i, j), idcounter++);
}
if (GetSize(subexpr) > 1) {
std::string expr = "", end_str = "";
for (int i = GetSize(subexpr)-1; i >= 0; i--) {
if (i > 0) expr += " (concat", end_str += ")";
expr += " " + subexpr[i];
}
return expr.substr(1) + end_str;
} else {
log_assert(GetSize(subexpr) == 1);
return subexpr[0];
}
}
void export_gate(RTLIL::Cell *cell, std::string expr)
{
RTLIL::SigBit bit = sigmap(cell->getPort(ID::Y).as_bit());
std::string processed_expr;
for (char ch : expr) {
if (ch == 'A') processed_expr += get_bool(cell->getPort(ID::A));
else if (ch == 'B') processed_expr += get_bool(cell->getPort(ID::B));
else if (ch == 'C') processed_expr += get_bool(cell->getPort(ID::C));
else if (ch == 'D') processed_expr += get_bool(cell->getPort(ID::D));
else if (ch == 'S') processed_expr += get_bool(cell->getPort(ID::S));
else processed_expr += ch;
}
if (verbose)
log("%*s-> import cell: %s\n", 2+2*GetSize(recursive_cells), "", log_id(cell));
decls.push_back(stringf("(define-fun |%s#%d| ((state |%s_s|)) Bool %s) ; %s\n",
get_id(module), idcounter, get_id(module), processed_expr.c_str(), log_signal(bit)));
register_bool(bit, idcounter++);
recursive_cells.erase(cell);
}
void export_bvop(RTLIL::Cell *cell, std::string expr, char type = 0)
{
RTLIL::SigSpec sig_a, sig_b;
RTLIL::SigSpec sig_y = sigmap(cell->getPort(ID::Y));
bool is_signed = cell->getParam(ID::A_SIGNED).as_bool();
int width = GetSize(sig_y);
if (type == 's' || type == 'd' || type == 'b') {
width = max(width, GetSize(cell->getPort(ID::A)));
if (cell->hasPort(ID::B))
width = max(width, GetSize(cell->getPort(ID::B)));
}
if (cell->hasPort(ID::A)) {
sig_a = cell->getPort(ID::A);
sig_a.extend_u0(width, is_signed);
}
if (cell->hasPort(ID::B)) {
sig_b = cell->getPort(ID::B);
sig_b.extend_u0(width, is_signed && !(type == 's'));
}
std::string processed_expr;
for (char ch : expr) {
if (ch == 'A') processed_expr += get_bv(sig_a);
else if (ch == 'B') processed_expr += get_bv(sig_b);
else if (ch == 'P') processed_expr += get_bv(cell->getPort(ID::B));
else if (ch == 'L') processed_expr += is_signed ? "a" : "l";
else if (ch == 'U') processed_expr += is_signed ? "s" : "u";
else processed_expr += ch;
}
if (width != GetSize(sig_y) && type != 'b')
processed_expr = stringf("((_ extract %d 0) %s)", GetSize(sig_y)-1, processed_expr.c_str());
if (verbose)
log("%*s-> import cell: %s\n", 2+2*GetSize(recursive_cells), "", log_id(cell));
if (type == 'b') {
decls.push_back(stringf("(define-fun |%s#%d| ((state |%s_s|)) Bool %s) ; %s\n",
get_id(module), idcounter, get_id(module), processed_expr.c_str(), log_signal(sig_y)));
register_boolvec(sig_y, idcounter++);
} else {
decls.push_back(stringf("(define-fun |%s#%d| ((state |%s_s|)) (_ BitVec %d) %s) ; %s\n",
get_id(module), idcounter, get_id(module), GetSize(sig_y), processed_expr.c_str(), log_signal(sig_y)));
register_bv(sig_y, idcounter++);
}
recursive_cells.erase(cell);
}
void export_reduce(RTLIL::Cell *cell, std::string expr, bool identity_val)
{
RTLIL::SigSpec sig_y = sigmap(cell->getPort(ID::Y));
std::string processed_expr;
for (char ch : expr)
if (ch == 'A' || ch == 'B') {
RTLIL::SigSpec sig = sigmap(cell->getPort(stringf("\\%c", ch)));
for (auto bit : sig)
processed_expr += " " + get_bool(bit);
if (GetSize(sig) == 1)
processed_expr += identity_val ? " true" : " false";
} else
processed_expr += ch;
if (verbose)
log("%*s-> import cell: %s\n", 2+2*GetSize(recursive_cells), "", log_id(cell));
decls.push_back(stringf("(define-fun |%s#%d| ((state |%s_s|)) Bool %s) ; %s\n",
get_id(module), idcounter, get_id(module), processed_expr.c_str(), log_signal(sig_y)));
register_boolvec(sig_y, idcounter++);
recursive_cells.erase(cell);
}
void export_cell(RTLIL::Cell *cell)
{
if (verbose)
log("%*s=> export_cell %s (%s) [%s]\n", 2+2*GetSize(recursive_cells), "",
log_id(cell), log_id(cell->type), exported_cells.count(cell) ? "old" : "new");
if (recursive_cells.count(cell))
log_error("Found logic loop in module %s! See cell %s.\n", get_id(module), get_id(cell));
if (exported_cells.count(cell))
return;
exported_cells.insert(cell);
recursive_cells.insert(cell);
if (cell->type == ID($initstate))
{
SigBit bit = sigmap(cell->getPort(ID::Y).as_bit());
decls.push_back(stringf("(define-fun |%s#%d| ((state |%s_s|)) Bool (|%s_is| state)) ; %s\n",
get_id(module), idcounter, get_id(module), get_id(module), log_signal(bit)));
register_bool(bit, idcounter++);
recursive_cells.erase(cell);
return;
}
if (cell->type.in(ID($_FF_), ID($_DFF_P_), ID($_DFF_N_)))
{
registers.insert(cell);
makebits(stringf("%s#%d", get_id(module), idcounter), 0, log_signal(cell->getPort(ID::Q)));
register_bool(cell->getPort(ID::Q), idcounter++);
recursive_cells.erase(cell);
return;
}
if (cell->type == ID($_BUF_)) return export_gate(cell, "A");
if (cell->type == ID($_NOT_)) return export_gate(cell, "(not A)");
if (cell->type == ID($_AND_)) return export_gate(cell, "(and A B)");
if (cell->type == ID($_NAND_)) return export_gate(cell, "(not (and A B))");
if (cell->type == ID($_OR_)) return export_gate(cell, "(or A B)");
if (cell->type == ID($_NOR_)) return export_gate(cell, "(not (or A B))");
if (cell->type == ID($_XOR_)) return export_gate(cell, "(xor A B)");
if (cell->type == ID($_XNOR_)) return export_gate(cell, "(not (xor A B))");
if (cell->type == ID($_ANDNOT_)) return export_gate(cell, "(and A (not B))");
if (cell->type == ID($_ORNOT_)) return export_gate(cell, "(or A (not B))");
if (cell->type == ID($_MUX_)) return export_gate(cell, "(ite S B A)");
if (cell->type == ID($_NMUX_)) return export_gate(cell, "(not (ite S B A))");
if (cell->type == ID($_AOI3_)) return export_gate(cell, "(not (or (and A B) C))");
if (cell->type == ID($_OAI3_)) return export_gate(cell, "(not (and (or A B) C))");
if (cell->type == ID($_AOI4_)) return export_gate(cell, "(not (or (and A B) (and C D)))");
if (cell->type == ID($_OAI4_)) return export_gate(cell, "(not (and (or A B) (or C D)))");
// FIXME: $lut
if (bvmode)
{
if (cell->type.in(ID($ff), ID($dff)))
{
registers.insert(cell);
makebits(stringf("%s#%d", get_id(module), idcounter), GetSize(cell->getPort(ID::Q)), log_signal(cell->getPort(ID::Q)));
register_bv(cell->getPort(ID::Q), idcounter++);
recursive_cells.erase(cell);
return;
}
if (cell->type.in(ID($anyconst), ID($anyseq), ID($allconst), ID($allseq)))
{
registers.insert(cell);
string infostr = cell->attributes.count(ID::src) ? cell->attributes.at(ID::src).decode_string().c_str() : get_id(cell);
if (cell->attributes.count(ID::reg))
infostr += " " + cell->attributes.at(ID::reg).decode_string();
decls.push_back(stringf("; yosys-smt2-%s %s#%d %d %s\n", cell->type.c_str() + 1, get_id(module), idcounter, GetSize(cell->getPort(ID::Y)), infostr.c_str()));
if (cell->getPort(ID::Y).is_wire() && cell->getPort(ID::Y).as_wire()->get_bool_attribute(ID::maximize)){
decls.push_back(stringf("; yosys-smt2-maximize %s#%d\n", get_id(module), idcounter));
log("Wire %s is maximized\n", cell->getPort(ID::Y).as_wire()->name.str().c_str());
}
else if (cell->getPort(ID::Y).is_wire() && cell->getPort(ID::Y).as_wire()->get_bool_attribute(ID::minimize)){
decls.push_back(stringf("; yosys-smt2-minimize %s#%d\n", get_id(module), idcounter));
log("Wire %s is minimized\n", cell->getPort(ID::Y).as_wire()->name.str().c_str());
}
makebits(stringf("%s#%d", get_id(module), idcounter), GetSize(cell->getPort(ID::Y)), log_signal(cell->getPort(ID::Y)));
if (cell->type == ID($anyseq))
ex_input_eq.push_back(stringf(" (= (|%s#%d| state) (|%s#%d| other_state))", get_id(module), idcounter, get_id(module), idcounter));
register_bv(cell->getPort(ID::Y), idcounter++);
recursive_cells.erase(cell);
return;
}
if (cell->type == ID($and)) return export_bvop(cell, "(bvand A B)");
if (cell->type == ID($or)) return export_bvop(cell, "(bvor A B)");
if (cell->type == ID($xor)) return export_bvop(cell, "(bvxor A B)");
if (cell->type == ID($xnor)) return export_bvop(cell, "(bvxnor A B)");
if (cell->type == ID($shl)) return export_bvop(cell, "(bvshl A B)", 's');
if (cell->type == ID($shr)) return export_bvop(cell, "(bvlshr A B)", 's');
if (cell->type == ID($sshl)) return export_bvop(cell, "(bvshl A B)", 's');
if (cell->type == ID($sshr)) return export_bvop(cell, "(bvLshr A B)", 's');
if (cell->type.in(ID($shift), ID($shiftx))) {
if (cell->getParam(ID::B_SIGNED).as_bool()) {
return export_bvop(cell, stringf("(ite (bvsge P #b%0*d) "
"(bvlshr A B) (bvlshr A (bvneg B)))",
GetSize(cell->getPort(ID::B)), 0), 's');
} else {
return export_bvop(cell, "(bvlshr A B)", 's');
}
}
if (cell->type == ID($lt)) return export_bvop(cell, "(bvUlt A B)", 'b');
if (cell->type == ID($le)) return export_bvop(cell, "(bvUle A B)", 'b');
if (cell->type == ID($ge)) return export_bvop(cell, "(bvUge A B)", 'b');
if (cell->type == ID($gt)) return export_bvop(cell, "(bvUgt A B)", 'b');
if (cell->type == ID($ne)) return export_bvop(cell, "(distinct A B)", 'b');
if (cell->type == ID($nex)) return export_bvop(cell, "(distinct A B)", 'b');
if (cell->type == ID($eq)) return export_bvop(cell, "(= A B)", 'b');
if (cell->type == ID($eqx)) return export_bvop(cell, "(= A B)", 'b');
if (cell->type == ID($not)) return export_bvop(cell, "(bvnot A)");
if (cell->type == ID($pos)) return export_bvop(cell, "A");
if (cell->type == ID($neg)) return export_bvop(cell, "(bvneg A)");
if (cell->type == ID($add)) return export_bvop(cell, "(bvadd A B)");
if (cell->type == ID($sub)) return export_bvop(cell, "(bvsub A B)");
if (cell->type == ID($mul)) return export_bvop(cell, "(bvmul A B)");
if (cell->type == ID($div)) return export_bvop(cell, "(bvUdiv A B)", 'd');
// "rem" = truncating modulo
if (cell->type == ID($mod)) return export_bvop(cell, "(bvUrem A B)", 'd');
// "mod" = flooring modulo
if (cell->type == ID($modfloor)) {
// bvumod doesn't exist because it's the same as bvurem
if (cell->getParam(ID::A_SIGNED).as_bool()) {
return export_bvop(cell, "(bvsmod A B)", 'd');
} else {
return export_bvop(cell, "(bvurem A B)", 'd');
}
}
if (cell->type.in(ID($reduce_and), ID($reduce_or), ID($reduce_bool)) &&
2*GetSize(cell->getPort(ID::A).chunks()) < GetSize(cell->getPort(ID::A))) {
bool is_and = cell->type == ID($reduce_and);
string bits(GetSize(cell->getPort(ID::A)), is_and ? '1' : '0');
return export_bvop(cell, stringf("(%s A #b%s)", is_and ? "=" : "distinct", bits.c_str()), 'b');
}
if (cell->type == ID($reduce_and)) return export_reduce(cell, "(and A)", true);
if (cell->type == ID($reduce_or)) return export_reduce(cell, "(or A)", false);
if (cell->type == ID($reduce_xor)) return export_reduce(cell, "(xor A)", false);
if (cell->type == ID($reduce_xnor)) return export_reduce(cell, "(not (xor A))", false);
if (cell->type == ID($reduce_bool)) return export_reduce(cell, "(or A)", false);
if (cell->type == ID($logic_not)) return export_reduce(cell, "(not (or A))", false);
if (cell->type == ID($logic_and)) return export_reduce(cell, "(and (or A) (or B))", false);
if (cell->type == ID($logic_or)) return export_reduce(cell, "(or A B)", false);
if (cell->type.in(ID($mux), ID($pmux)))
{
int width = GetSize(cell->getPort(ID::Y));
std::string processed_expr = get_bv(cell->getPort(ID::A));
RTLIL::SigSpec sig_b = cell->getPort(ID::B);
RTLIL::SigSpec sig_s = cell->getPort(ID::S);
get_bv(sig_b);
get_bv(sig_s);
for (int i = 0; i < GetSize(sig_s); i++)
processed_expr = stringf("(ite %s %s %s)", get_bool(sig_s[i]).c_str(),
get_bv(sig_b.extract(i*width, width)).c_str(), processed_expr.c_str());
if (verbose)
log("%*s-> import cell: %s\n", 2+2*GetSize(recursive_cells), "", log_id(cell));
RTLIL::SigSpec sig = sigmap(cell->getPort(ID::Y));
decls.push_back(stringf("(define-fun |%s#%d| ((state |%s_s|)) (_ BitVec %d) %s) ; %s\n",
get_id(module), idcounter, get_id(module), width, processed_expr.c_str(), log_signal(sig)));
register_bv(sig, idcounter++);
recursive_cells.erase(cell);
return;
}
// FIXME: $slice $concat
}
if (memmode && cell->is_mem_cell())
{
Mem *mem = mem_cells[cell];
if (memarrays.count(mem)) {
recursive_cells.erase(cell);
return;
}
int arrayid = idcounter++;
memarrays[mem] = arrayid;
int abits = ceil_log2(mem->size);
bool has_sync_wr = false;
bool has_async_wr = false;
for (auto &port : mem->wr_ports) {
if (port.clk_enable)
has_sync_wr = true;
else
has_async_wr = true;
}
if (has_async_wr && has_sync_wr)
log_error("Memory %s.%s has mixed clocked/nonclocked write ports. This is not supported by \"write_smt2\".\n", log_id(cell), log_id(module));
decls.push_back(stringf("; yosys-smt2-memory %s %d %d %d %d %s\n", get_id(mem->memid), abits, mem->width, GetSize(mem->rd_ports), GetSize(mem->wr_ports), has_async_wr ? "async" : "sync"));
string memstate;
if (has_async_wr) {
memstate = stringf("%s#%d#final", get_id(module), arrayid);
} else {
memstate = stringf("%s#%d#0", get_id(module), arrayid);
}
if (statebv)
{
makebits(memstate, mem->width*mem->size, get_id(mem->memid));
decls.push_back(stringf("(define-fun |%s_m %s| ((state |%s_s|)) (_ BitVec %d) (|%s| state))\n",
get_id(module), get_id(mem->memid), get_id(module), mem->width*mem->size, memstate.c_str()));
for (int i = 0; i < GetSize(mem->rd_ports); i++)
{
auto &port = mem->rd_ports[i];
SigSpec addr_sig = port.addr;
addr_sig.extend_u0(abits);
std::string addr = get_bv(addr_sig);
if (port.clk_enable)
log_error("Read port %d (%s) of memory %s.%s is clocked. This is not supported by \"write_smt2\"! "
"Call \"memory\" with -nordff to avoid this error.\n", i, log_signal(port.data), log_id(mem->memid), log_id(module));
decls.push_back(stringf("(define-fun |%s_m:R%dA %s| ((state |%s_s|)) (_ BitVec %d) %s) ; %s\n",
get_id(module), i, get_id(mem->memid), get_id(module), abits, addr.c_str(), log_signal(addr_sig)));
std::string read_expr = "#b";
for (int k = 0; k < mem->width; k++)
read_expr += "0";
for (int k = 0; k < mem->size; k++)
read_expr = stringf("(ite (= (|%s_m:R%dA %s| state) #b%s) ((_ extract %d %d) (|%s| state))\n %s)",
get_id(module), i, get_id(mem->memid), Const(k+mem->start_offset, abits).as_string().c_str(),
mem->width*(k+1)-1, mem->width*k, memstate.c_str(), read_expr.c_str());
decls.push_back(stringf("(define-fun |%s#%d| ((state |%s_s|)) (_ BitVec %d)\n %s) ; %s\n",
get_id(module), idcounter, get_id(module), mem->width, read_expr.c_str(), log_signal(port.data)));
decls.push_back(stringf("(define-fun |%s_m:R%dD %s| ((state |%s_s|)) (_ BitVec %d) (|%s#%d| state))\n",
get_id(module), i, get_id(mem->memid), get_id(module), mem->width, get_id(module), idcounter));
register_bv(port.data, idcounter++);
}
}
else
{
if (statedt)
dtmembers.push_back(stringf(" (|%s| (Array (_ BitVec %d) (_ BitVec %d))) ; %s\n",
memstate.c_str(), abits, mem->width, get_id(mem->memid)));
else
decls.push_back(stringf("(declare-fun |%s| (|%s_s|) (Array (_ BitVec %d) (_ BitVec %d))) ; %s\n",
memstate.c_str(), get_id(module), abits, mem->width, get_id(mem->memid)));
decls.push_back(stringf("(define-fun |%s_m %s| ((state |%s_s|)) (Array (_ BitVec %d) (_ BitVec %d)) (|%s| state))\n",
get_id(module), get_id(mem->memid), get_id(module), abits, mem->width, memstate.c_str()));
for (int i = 0; i < GetSize(mem->rd_ports); i++)
{
auto &port = mem->rd_ports[i];
SigSpec addr_sig = port.addr;
addr_sig.extend_u0(abits);
std::string addr = get_bv(addr_sig);
if (port.clk_enable)
log_error("Read port %d (%s) of memory %s.%s is clocked. This is not supported by \"write_smt2\"! "
"Call \"memory\" with -nordff to avoid this error.\n", i, log_signal(port.data), log_id(mem->memid), log_id(module));
decls.push_back(stringf("(define-fun |%s_m:R%dA %s| ((state |%s_s|)) (_ BitVec %d) %s) ; %s\n",
get_id(module), i, get_id(mem->memid), get_id(module), abits, addr.c_str(), log_signal(addr_sig)));
decls.push_back(stringf("(define-fun |%s#%d| ((state |%s_s|)) (_ BitVec %d) (select (|%s| state) (|%s_m:R%dA %s| state))) ; %s\n",
get_id(module), idcounter, get_id(module), mem->width, memstate.c_str(), get_id(module), i, get_id(mem->memid), log_signal(port.data)));
decls.push_back(stringf("(define-fun |%s_m:R%dD %s| ((state |%s_s|)) (_ BitVec %d) (|%s#%d| state))\n",
get_id(module), i, get_id(mem->memid), get_id(module), mem->width, get_id(module), idcounter));
register_bv(port.data, idcounter++);
}
}
memory_queue.insert(mem);
recursive_cells.erase(cell);
return;
}
Module *m = module->design->module(cell->type);
if (m != nullptr)
{
decls.push_back(stringf("; yosys-smt2-cell %s %s\n", get_id(cell->type), get_id(cell->name)));
string cell_state = stringf("(|%s_h %s| state)", get_id(module), get_id(cell->name));
for (auto &conn : cell->connections())
{
if (GetSize(conn.second) == 0)
continue;
Wire *w = m->wire(conn.first);
SigSpec sig = sigmap(conn.second);
if (w->port_output && !w->port_input) {
if (GetSize(w) > 1) {
if (bvmode) {
makebits(stringf("%s#%d", get_id(module), idcounter), GetSize(w), log_signal(sig));
register_bv(sig, idcounter++);
} else {
for (int i = 0; i < GetSize(w); i++) {
makebits(stringf("%s#%d", get_id(module), idcounter), 0, log_signal(sig[i]));
register_bool(sig[i], idcounter++);
}
}
} else {
makebits(stringf("%s#%d", get_id(module), idcounter), 0, log_signal(sig));
register_bool(sig, idcounter++);
}
}
}
if (statebv)
makebits(stringf("%s_h %s", get_id(module), get_id(cell->name)), mod_stbv_width.at(cell->type));
else if (statedt)
dtmembers.push_back(stringf(" (|%s_h %s| |%s_s|)\n",
get_id(module), get_id(cell->name), get_id(cell->type)));
else
decls.push_back(stringf("(declare-fun |%s_h %s| (|%s_s|) |%s_s|)\n",
get_id(module), get_id(cell->name), get_id(module), get_id(cell->type)));
hiercells.insert(cell);
hiercells_queue.insert(cell);
recursive_cells.erase(cell);
return;
}
if (cell->type.in(ID($dffe), ID($sdff), ID($sdffe), ID($sdffce)) || cell->type.str().substr(0, 6) == "$_SDFF" || (cell->type.str().substr(0, 6) == "$_DFFE" && cell->type.str().size() == 10)) {
log_error("Unsupported cell type %s for cell %s.%s -- please run `dffunmap` before `write_smt2`.\n",
log_id(cell->type), log_id(module), log_id(cell));
}
if (cell->type.in(ID($adff), ID($adffe), ID($dffsr), ID($dffsre)) || cell->type.str().substr(0, 5) == "$_DFF") {
log_error("Unsupported cell type %s for cell %s.%s -- please run `async2sync; dffunmap` or `clk2fflogic` before `write_smt2`.\n",
log_id(cell->type), log_id(module), log_id(cell));
}
if (cell->type.in(ID($sr), ID($dlatch), ID($adlatch), ID($dlatchsr)) || cell->type.str().substr(0, 8) == "$_DLATCH" || cell->type.str().substr(0, 5) == "$_SR_") {
log_error("Unsupported cell type %s for cell %s.%s -- please run `clk2fflogic` before `write_smt2`.\n",
log_id(cell->type), log_id(module), log_id(cell));
}
log_error("Unsupported cell type %s for cell %s.%s.\n",
log_id(cell->type), log_id(module), log_id(cell));
}
void run()
{
if (verbose) log("=> export logic driving outputs\n");
pool<SigBit> reg_bits;
for (auto cell : module->cells())
if (cell->type.in(ID($ff), ID($dff), ID($_FF_), ID($_DFF_P_), ID($_DFF_N_))) {
// not using sigmap -- we want the net directly at the dff output
for (auto bit : cell->getPort(ID::Q))
reg_bits.insert(bit);
}
for (auto wire : module->wires()) {
bool is_register = false;
for (auto bit : SigSpec(wire))
if (reg_bits.count(bit))
is_register = true;
if (wire->port_id || is_register || wire->get_bool_attribute(ID::keep) || (wiresmode && wire->name.isPublic())) {
RTLIL::SigSpec sig = sigmap(wire);
std::vector<std::string> comments;
if (wire->port_input)
comments.push_back(stringf("; yosys-smt2-input %s %d\n", get_id(wire), wire->width));
if (wire->port_output)
comments.push_back(stringf("; yosys-smt2-output %s %d\n", get_id(wire), wire->width));
if (is_register)
comments.push_back(stringf("; yosys-smt2-register %s %d\n", get_id(wire), wire->width));
if (wire->get_bool_attribute(ID::keep) || (wiresmode && wire->name.isPublic()))
comments.push_back(stringf("; yosys-smt2-wire %s %d\n", get_id(wire), wire->width));
if (GetSize(wire) == 1 && (clock_posedge.count(sig) || clock_negedge.count(sig)))
comments.push_back(stringf("; yosys-smt2-clock %s%s%s\n", get_id(wire),
clock_posedge.count(sig) ? " posedge" : "", clock_negedge.count(sig) ? " negedge" : ""));
if (bvmode && GetSize(sig) > 1) {
std::string sig_bv = get_bv(sig);
if (!comments.empty())
decls.insert(decls.end(), comments.begin(), comments.end());
decls.push_back(stringf("(define-fun |%s_n %s| ((state |%s_s|)) (_ BitVec %d) %s)\n",
get_id(module), get_id(wire), get_id(module), GetSize(sig), sig_bv.c_str()));
if (wire->port_input)
ex_input_eq.push_back(stringf(" (= (|%s_n %s| state) (|%s_n %s| other_state))",
get_id(module), get_id(wire), get_id(module), get_id(wire)));
} else {
std::vector<std::string> sig_bool;
for (int i = 0; i < GetSize(sig); i++) {
sig_bool.push_back(get_bool(sig[i]));
}
if (!comments.empty())
decls.insert(decls.end(), comments.begin(), comments.end());
for (int i = 0; i < GetSize(sig); i++) {
if (GetSize(sig) > 1) {
decls.push_back(stringf("(define-fun |%s_n %s %d| ((state |%s_s|)) Bool %s)\n",
get_id(module), get_id(wire), i, get_id(module), sig_bool[i].c_str()));
if (wire->port_input)
ex_input_eq.push_back(stringf(" (= (|%s_n %s %d| state) (|%s_n %s %d| other_state))",
get_id(module), get_id(wire), i, get_id(module), get_id(wire), i));
} else {
decls.push_back(stringf("(define-fun |%s_n %s| ((state |%s_s|)) Bool %s)\n",
get_id(module), get_id(wire), get_id(module), sig_bool[i].c_str()));
if (wire->port_input)
ex_input_eq.push_back(stringf(" (= (|%s_n %s| state) (|%s_n %s| other_state))",
get_id(module), get_id(wire), get_id(module), get_id(wire)));
}
}
}
}
}
if (verbose) log("=> export logic associated with the initial state\n");
vector<string> init_list;
for (auto wire : module->wires())
if (wire->attributes.count(ID::init)) {
RTLIL::SigSpec sig = sigmap(wire);
Const val = wire->attributes.at(ID::init);
val.bits.resize(GetSize(sig), State::Sx);
if (bvmode && GetSize(sig) > 1) {
Const mask(State::S1, GetSize(sig));
bool use_mask = false;
for (int i = 0; i < GetSize(sig); i++)
if (val[i] != State::S0 && val[i] != State::S1) {
val[i] = State::S0;
mask[i] = State::S0;
use_mask = true;
}
if (use_mask)
init_list.push_back(stringf("(= (bvand %s #b%s) #b%s) ; %s", get_bv(sig).c_str(), mask.as_string().c_str(), val.as_string().c_str(), get_id(wire)));
else
init_list.push_back(stringf("(= %s #b%s) ; %s", get_bv(sig).c_str(), val.as_string().c_str(), get_id(wire)));
} else {
for (int i = 0; i < GetSize(sig); i++)
if (val[i] == State::S0 || val[i] == State::S1)
init_list.push_back(stringf("(= %s %s) ; %s", get_bool(sig[i]).c_str(), val[i] == State::S1 ? "true" : "false", get_id(wire)));
}
}
if (verbose) log("=> export logic driving asserts\n");
int assert_id = 0, assume_id = 0, cover_id = 0;
vector<string> assert_list, assume_list, cover_list;
for (auto cell : module->cells())
{
if (cell->type.in(ID($assert), ID($assume), ID($cover)))
{
int &id = cell->type == ID($assert) ? assert_id :
cell->type == ID($assume) ? assume_id :
cell->type == ID($cover) ? cover_id : *(int*)nullptr;
char postfix = cell->type == ID($assert) ? 'a' :
cell->type == ID($assume) ? 'u' :
cell->type == ID($cover) ? 'c' : 0;
string name_a = get_bool(cell->getPort(ID::A));
string name_en = get_bool(cell->getPort(ID::EN));
string infostr = (cell->name[0] == '$' && cell->attributes.count(ID::src)) ? cell->attributes.at(ID::src).decode_string() : get_id(cell);
decls.push_back(stringf("; yosys-smt2-%s %d %s\n", cell->type.c_str() + 1, id, infostr.c_str()));
if (cell->type == ID($cover))
decls.push_back(stringf("(define-fun |%s_%c %d| ((state |%s_s|)) Bool (and %s %s)) ; %s\n",
get_id(module), postfix, id, get_id(module), name_a.c_str(), name_en.c_str(), get_id(cell)));
else
decls.push_back(stringf("(define-fun |%s_%c %d| ((state |%s_s|)) Bool (or %s (not %s))) ; %s\n",
get_id(module), postfix, id, get_id(module), name_a.c_str(), name_en.c_str(), get_id(cell)));
if (cell->type == ID($assert))
assert_list.push_back(stringf("(|%s_a %d| state)", get_id(module), id));
else if (cell->type == ID($assume))
assume_list.push_back(stringf("(|%s_u %d| state)", get_id(module), id));
id++;
}
}
if (verbose) log("=> export logic driving hierarchical cells\n");
for (auto cell : module->cells())
if (module->design->module(cell->type) != nullptr)
export_cell(cell);
while (!hiercells_queue.empty())
{
std::set<RTLIL::Cell*> queue;
queue.swap(hiercells_queue);
for (auto cell : queue)
{
string cell_state = stringf("(|%s_h %s| state)", get_id(module), get_id(cell->name));
Module *m = module->design->module(cell->type);
log_assert(m != nullptr);
hier.push_back(stringf(" (= (|%s_is| state) (|%s_is| %s))\n",
get_id(module), get_id(cell->type), cell_state.c_str()));
for (auto &conn : cell->connections())
{
if (GetSize(conn.second) == 0)
continue;
Wire *w = m->wire(conn.first);
SigSpec sig = sigmap(conn.second);
if (bvmode || GetSize(w) == 1) {
hier.push_back(stringf(" (= %s (|%s_n %s| %s)) ; %s.%s\n", (GetSize(w) > 1 ? get_bv(sig) : get_bool(sig)).c_str(),
get_id(cell->type), get_id(w), cell_state.c_str(), get_id(cell->type), get_id(w)));
} else {
for (int i = 0; i < GetSize(w); i++)
hier.push_back(stringf(" (= %s (|%s_n %s %d| %s)) ; %s.%s[%d]\n", get_bool(sig[i]).c_str(),
get_id(cell->type), get_id(w), i, cell_state.c_str(), get_id(cell->type), get_id(w), i));
}
}
}
}
for (int iter = 1; !registers.empty() || !memory_queue.empty(); iter++)
{
pool<Cell*> this_regs;
this_regs.swap(registers);
if (verbose) log("=> export logic driving registers [iteration %d]\n", iter);
for (auto cell : this_regs)
{
if (cell->type.in(ID($_FF_), ID($_DFF_P_), ID($_DFF_N_)))
{
std::string expr_d = get_bool(cell->getPort(ID::D));
std::string expr_q = get_bool(cell->getPort(ID::Q), "next_state");
trans.push_back(stringf(" (= %s %s) ; %s %s\n", expr_d.c_str(), expr_q.c_str(), get_id(cell), log_signal(cell->getPort(ID::Q))));
ex_state_eq.push_back(stringf("(= %s %s)", get_bool(cell->getPort(ID::Q)).c_str(), get_bool(cell->getPort(ID::Q), "other_state").c_str()));
}
if (cell->type.in(ID($ff), ID($dff)))
{
std::string expr_d = get_bv(cell->getPort(ID::D));
std::string expr_q = get_bv(cell->getPort(ID::Q), "next_state");
trans.push_back(stringf(" (= %s %s) ; %s %s\n", expr_d.c_str(), expr_q.c_str(), get_id(cell), log_signal(cell->getPort(ID::Q))));
ex_state_eq.push_back(stringf("(= %s %s)", get_bv(cell->getPort(ID::Q)).c_str(), get_bv(cell->getPort(ID::Q), "other_state").c_str()));
}
if (cell->type.in(ID($anyconst), ID($allconst)))
{
std::string expr_d = get_bv(cell->getPort(ID::Y));
std::string expr_q = get_bv(cell->getPort(ID::Y), "next_state");
trans.push_back(stringf(" (= %s %s) ; %s %s\n", expr_d.c_str(), expr_q.c_str(), get_id(cell), log_signal(cell->getPort(ID::Y))));
if (cell->type == ID($anyconst))
ex_state_eq.push_back(stringf("(= %s %s)", get_bv(cell->getPort(ID::Y)).c_str(), get_bv(cell->getPort(ID::Y), "other_state").c_str()));
}
}
std::set<Mem*> this_mems;
this_mems.swap(memory_queue);
for (auto mem : this_mems)
{
int arrayid = memarrays.at(mem);
int abits = ceil_log2(mem->size);;
bool has_sync_wr = false;
bool has_async_wr = false;
for (auto &port : mem->wr_ports) {
if (port.clk_enable)
has_sync_wr = true;
else
has_async_wr = true;
}
string initial_memstate, final_memstate;
if (has_async_wr) {
log_assert(!has_sync_wr);
initial_memstate = stringf("%s#%d#0", get_id(module), arrayid);
final_memstate = stringf("%s#%d#final", get_id(module), arrayid);
}
if (statebv)
{
if (has_async_wr) {
makebits(final_memstate, mem->width*mem->size, get_id(mem->memid));
}
for (int i = 0; i < GetSize(mem->wr_ports); i++)
{
auto &port = mem->wr_ports[i];
SigSpec addr_sig = port.addr;
addr_sig.extend_u0(abits);
std::string addr = get_bv(addr_sig);
std::string data = get_bv(port.data);
std::string mask = get_bv(port.en);
decls.push_back(stringf("(define-fun |%s_m:W%dA %s| ((state |%s_s|)) (_ BitVec %d) %s) ; %s\n",
get_id(module), i, get_id(mem->memid), get_id(module), abits, addr.c_str(), log_signal(addr_sig)));
addr = stringf("(|%s_m:W%dA %s| state)", get_id(module), i, get_id(mem->memid));
decls.push_back(stringf("(define-fun |%s_m:W%dD %s| ((state |%s_s|)) (_ BitVec %d) %s) ; %s\n",
get_id(module), i, get_id(mem->memid), get_id(module), mem->width, data.c_str(), log_signal(port.data)));
data = stringf("(|%s_m:W%dD %s| state)", get_id(module), i, get_id(mem->memid));
decls.push_back(stringf("(define-fun |%s_m:W%dM %s| ((state |%s_s|)) (_ BitVec %d) %s) ; %s\n",
get_id(module), i, get_id(mem->memid), get_id(module), mem->width, mask.c_str(), log_signal(port.en)));
mask = stringf("(|%s_m:W%dM %s| state)", get_id(module), i, get_id(mem->memid));
std::string data_expr;
for (int k = mem->size-1; k >= 0; k--) {
std::string new_data = stringf("(bvor (bvand %s %s) (bvand ((_ extract %d %d) (|%s#%d#%d| state)) (bvnot %s)))",
data.c_str(), mask.c_str(), mem->width*(k+1)-1, mem->width*k, get_id(module), arrayid, i, mask.c_str());
data_expr += stringf("\n (ite (= %s #b%s) %s ((_ extract %d %d) (|%s#%d#%d| state)))",
addr.c_str(), Const(k+mem->start_offset, abits).as_string().c_str(), new_data.c_str(),
mem->width*(k+1)-1, mem->width*k, get_id(module), arrayid, i);
}
decls.push_back(stringf("(define-fun |%s#%d#%d| ((state |%s_s|)) (_ BitVec %d) (concat%s)) ; %s\n",
get_id(module), arrayid, i+1, get_id(module), mem->width*mem->size, data_expr.c_str(), get_id(mem->memid)));
}
}
else
{
if (has_async_wr) {
if (statedt)
dtmembers.push_back(stringf(" (|%s| (Array (_ BitVec %d) (_ BitVec %d))) ; %s\n",
initial_memstate.c_str(), abits, mem->width, get_id(mem->memid)));
else
decls.push_back(stringf("(declare-fun |%s| (|%s_s|) (Array (_ BitVec %d) (_ BitVec %d))) ; %s\n",
initial_memstate.c_str(), get_id(module), abits, mem->width, get_id(mem->memid)));
}
for (int i = 0; i < GetSize(mem->wr_ports); i++)
{
auto &port = mem->wr_ports[i];
SigSpec addr_sig = port.addr;
addr_sig.extend_u0(abits);
std::string addr = get_bv(addr_sig);
std::string data = get_bv(port.data);
std::string mask = get_bv(port.en);
decls.push_back(stringf("(define-fun |%s_m:W%dA %s| ((state |%s_s|)) (_ BitVec %d) %s) ; %s\n",
get_id(module), i, get_id(mem->memid), get_id(module), abits, addr.c_str(), log_signal(addr_sig)));
addr = stringf("(|%s_m:W%dA %s| state)", get_id(module), i, get_id(mem->memid));
decls.push_back(stringf("(define-fun |%s_m:W%dD %s| ((state |%s_s|)) (_ BitVec %d) %s) ; %s\n",
get_id(module), i, get_id(mem->memid), get_id(module), mem->width, data.c_str(), log_signal(port.data)));
data = stringf("(|%s_m:W%dD %s| state)", get_id(module), i, get_id(mem->memid));
decls.push_back(stringf("(define-fun |%s_m:W%dM %s| ((state |%s_s|)) (_ BitVec %d) %s) ; %s\n",
get_id(module), i, get_id(mem->memid), get_id(module), mem->width, mask.c_str(), log_signal(port.en)));
mask = stringf("(|%s_m:W%dM %s| state)", get_id(module), i, get_id(mem->memid));
data = stringf("(bvor (bvand %s %s) (bvand (select (|%s#%d#%d| state) %s) (bvnot %s)))",
data.c_str(), mask.c_str(), get_id(module), arrayid, i, addr.c_str(), mask.c_str());
decls.push_back(stringf("(define-fun |%s#%d#%d| ((state |%s_s|)) (Array (_ BitVec %d) (_ BitVec %d)) "
"(store (|%s#%d#%d| state) %s %s)) ; %s\n",
get_id(module), arrayid, i+1, get_id(module), abits, mem->width,
get_id(module), arrayid, i, addr.c_str(), data.c_str(), get_id(mem->memid)));
}
}
std::string expr_d = stringf("(|%s#%d#%d| state)", get_id(module), arrayid, GetSize(mem->wr_ports));
std::string expr_q = stringf("(|%s#%d#0| next_state)", get_id(module), arrayid);
trans.push_back(stringf(" (= %s %s) ; %s\n", expr_d.c_str(), expr_q.c_str(), get_id(mem->memid)));
ex_state_eq.push_back(stringf("(= (|%s#%d#0| state) (|%s#%d#0| other_state))", get_id(module), arrayid, get_id(module), arrayid));
if (has_async_wr)
hier.push_back(stringf(" (= %s (|%s| state)) ; %s\n", expr_d.c_str(), final_memstate.c_str(), get_id(mem->memid)));
Const init_data = mem->get_init_data();
for (int i = 0; i < mem->size; i++)
{
if (i*mem->width >= GetSize(init_data))
break;
Const initword = init_data.extract(i*mem->width, mem->width, State::Sx);
Const initmask = initword;
bool gen_init_constr = false;
for (int k = 0; k < GetSize(initword); k++) {
if (initword[k] == State::S0 || initword[k] == State::S1) {
gen_init_constr = true;
initmask[k] = State::S1;
} else {
initmask[k] = State::S0;
initword[k] = State::S0;
}
}
if (gen_init_constr)
{
if (statebv)
/* FIXME */;
else
init_list.push_back(stringf("(= (bvand (select (|%s#%d#0| state) #b%s) #b%s) #b%s) ; %s[%d]",
get_id(module), arrayid, Const(i, abits).as_string().c_str(),
initmask.as_string().c_str(), initword.as_string().c_str(), get_id(mem->memid), i));
}
}
}
}
if (verbose) log("=> finalizing SMT2 representation of %s.\n", log_id(module));
for (auto c : hiercells) {
assert_list.push_back(stringf("(|%s_a| (|%s_h %s| state))", get_id(c->type), get_id(module), get_id(c->name)));
assume_list.push_back(stringf("(|%s_u| (|%s_h %s| state))", get_id(c->type), get_id(module), get_id(c->name)));
init_list.push_back(stringf("(|%s_i| (|%s_h %s| state))", get_id(c->type), get_id(module), get_id(c->name)));
hier.push_back(stringf(" (|%s_h| (|%s_h %s| state))\n", get_id(c->type), get_id(module), get_id(c->name)));
trans.push_back(stringf(" (|%s_t| (|%s_h %s| state) (|%s_h %s| next_state))\n",
get_id(c->type), get_id(module), get_id(c->name), get_id(module), get_id(c->name)));
ex_state_eq.push_back(stringf("(|%s_ex_state_eq| (|%s_h %s| state) (|%s_h %s| other_state))\n",
get_id(c->type), get_id(module), get_id(c->name), get_id(module), get_id(c->name)));
}
if (forallmode)
{
string expr = ex_state_eq.empty() ? "true" : "(and";
if (!ex_state_eq.empty()) {
if (GetSize(ex_state_eq) == 1) {
expr = "\n " + ex_state_eq.front() + "\n";
} else {
for (auto &str : ex_state_eq)
expr += stringf("\n %s", str.c_str());
expr += "\n)";
}
}
decls.push_back(stringf("(define-fun |%s_ex_state_eq| ((state |%s_s|) (other_state |%s_s|)) Bool %s)\n",
get_id(module), get_id(module), get_id(module), expr.c_str()));
expr = ex_input_eq.empty() ? "true" : "(and";
if (!ex_input_eq.empty()) {
if (GetSize(ex_input_eq) == 1) {
expr = "\n " + ex_input_eq.front() + "\n";
} else {
for (auto &str : ex_input_eq)
expr += stringf("\n %s", str.c_str());
expr += "\n)";
}
}
decls.push_back(stringf("(define-fun |%s_ex_input_eq| ((state |%s_s|) (other_state |%s_s|)) Bool %s)\n",
get_id(module), get_id(module), get_id(module), expr.c_str()));
}
string assert_expr = assert_list.empty() ? "true" : "(and";
if (!assert_list.empty()) {
if (GetSize(assert_list) == 1) {
assert_expr = "\n " + assert_list.front() + "\n";
} else {
for (auto &str : assert_list)
assert_expr += stringf("\n %s", str.c_str());
assert_expr += "\n)";
}
}
decls.push_back(stringf("(define-fun |%s_a| ((state |%s_s|)) Bool %s)\n",
get_id(module), get_id(module), assert_expr.c_str()));
string assume_expr = assume_list.empty() ? "true" : "(and";
if (!assume_list.empty()) {
if (GetSize(assume_list) == 1) {
assume_expr = "\n " + assume_list.front() + "\n";
} else {
for (auto &str : assume_list)
assume_expr += stringf("\n %s", str.c_str());
assume_expr += "\n)";
}
}
decls.push_back(stringf("(define-fun |%s_u| ((state |%s_s|)) Bool %s)\n",
get_id(module), get_id(module), assume_expr.c_str()));
string init_expr = init_list.empty() ? "true" : "(and";
if (!init_list.empty()) {
if (GetSize(init_list) == 1) {
init_expr = "\n " + init_list.front() + "\n";
} else {
for (auto &str : init_list)
init_expr += stringf("\n %s", str.c_str());
init_expr += "\n)";
}
}
decls.push_back(stringf("(define-fun |%s_i| ((state |%s_s|)) Bool %s)\n",
get_id(module), get_id(module), init_expr.c_str()));
}
void write(std::ostream &f)
{
f << stringf("; yosys-smt2-module %s\n", get_id(module));
if (statebv) {
f << stringf("(define-sort |%s_s| () (_ BitVec %d))\n", get_id(module), statebv_width);
mod_stbv_width[module->name] = statebv_width;
} else
if (statedt) {
f << stringf("(declare-datatype |%s_s| ((|%s_mk|\n", get_id(module), get_id(module));
for (auto it : dtmembers)
f << it;
f << stringf(")))\n");
} else
f << stringf("(declare-sort |%s_s| 0)\n", get_id(module));
for (auto it : decls)
f << it;
f << stringf("(define-fun |%s_h| ((state |%s_s|)) Bool ", get_id(module), get_id(module));
if (GetSize(hier) > 1) {
f << "(and\n";
for (auto it : hier)
f << it;
f << "))\n";
} else
if (GetSize(hier) == 1)
f << "\n" + hier.front() + ")\n";
else
f << "true)\n";
f << stringf("(define-fun |%s_t| ((state |%s_s|) (next_state |%s_s|)) Bool ", get_id(module), get_id(module), get_id(module));
if (GetSize(trans) > 1) {
f << "(and\n";
for (auto it : trans)
f << it;
f << "))";
} else
if (GetSize(trans) == 1)
f << "\n" + trans.front() + ")";
else
f << "true)";
f << stringf(" ; end of module %s\n", get_id(module));
}
};
struct Smt2Backend : public Backend {
Smt2Backend() : Backend("smt2", "write design to SMT-LIBv2 file") { }
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" write_smt2 [options] [filename]\n");
log("\n");
log("Write a SMT-LIBv2 [1] description of the current design. For a module with name\n");
log("'<mod>' this will declare the sort '<mod>_s' (state of the module) and will\n");
log("define and declare functions operating on that state.\n");
log("\n");
log("The following SMT2 functions are generated for a module with name '<mod>'.\n");
log("Some declarations/definitions are printed with a special comment. A prover\n");
log("using the SMT2 files can use those comments to collect all relevant metadata\n");
log("about the design.\n");
log("\n");
log(" ; yosys-smt2-module <mod>\n");
log(" (declare-sort |<mod>_s| 0)\n");
log(" The sort representing a state of module <mod>.\n");
log("\n");
log(" (define-fun |<mod>_h| ((state |<mod>_s|)) Bool (...))\n");
log(" This function must be asserted for each state to establish the\n");
log(" design hierarchy.\n");
log("\n");
log(" ; yosys-smt2-input <wirename> <width>\n");
log(" ; yosys-smt2-output <wirename> <width>\n");
log(" ; yosys-smt2-register <wirename> <width>\n");
log(" ; yosys-smt2-wire <wirename> <width>\n");
log(" (define-fun |<mod>_n <wirename>| (|<mod>_s|) (_ BitVec <width>))\n");
log(" (define-fun |<mod>_n <wirename>| (|<mod>_s|) Bool)\n");
log(" For each port, register, and wire with the 'keep' attribute set an\n");
log(" accessor function is generated. Single-bit wires are returned as Bool,\n");
log(" multi-bit wires as BitVec.\n");
log("\n");
log(" ; yosys-smt2-cell <submod> <instancename>\n");
log(" (declare-fun |<mod>_h <instancename>| (|<mod>_s|) |<submod>_s|)\n");
log(" There is a function like that for each hierarchical instance. It\n");
log(" returns the sort that represents the state of the sub-module that\n");
log(" implements the instance.\n");
log("\n");
log(" (declare-fun |<mod>_is| (|<mod>_s|) Bool)\n");
log(" This function must be asserted 'true' for initial states, and 'false'\n");
log(" otherwise.\n");
log("\n");
log(" (define-fun |<mod>_i| ((state |<mod>_s|)) Bool (...))\n");
log(" This function must be asserted 'true' for initial states. For\n");
log(" non-initial states it must be left unconstrained.\n");
log("\n");
log(" (define-fun |<mod>_t| ((state |<mod>_s|) (next_state |<mod>_s|)) Bool (...))\n");
log(" This function evaluates to 'true' if the states 'state' and\n");
log(" 'next_state' form a valid state transition.\n");
log("\n");
log(" (define-fun |<mod>_a| ((state |<mod>_s|)) Bool (...))\n");
log(" This function evaluates to 'true' if all assertions hold in the state.\n");
log("\n");
log(" (define-fun |<mod>_u| ((state |<mod>_s|)) Bool (...))\n");
log(" This function evaluates to 'true' if all assumptions hold in the state.\n");
log("\n");
log(" ; yosys-smt2-assert <id> <filename:linenum>\n");
log(" (define-fun |<mod>_a <id>| ((state |<mod>_s|)) Bool (...))\n");
log(" Each $assert cell is converted into one of this functions. The function\n");
log(" evaluates to 'true' if the assert statement holds in the state.\n");
log("\n");
log(" ; yosys-smt2-assume <id> <filename:linenum>\n");
log(" (define-fun |<mod>_u <id>| ((state |<mod>_s|)) Bool (...))\n");
log(" Each $assume cell is converted into one of this functions. The function\n");
log(" evaluates to 'true' if the assume statement holds in the state.\n");
log("\n");
log(" ; yosys-smt2-cover <id> <filename:linenum>\n");
log(" (define-fun |<mod>_c <id>| ((state |<mod>_s|)) Bool (...))\n");
log(" Each $cover cell is converted into one of this functions. The function\n");
log(" evaluates to 'true' if the cover statement is activated in the state.\n");
log("\n");
log("Options:\n");
log("\n");
log(" -verbose\n");
log(" this will print the recursive walk used to export the modules.\n");
log("\n");
log(" -stbv\n");
log(" Use a BitVec sort to represent a state instead of an uninterpreted\n");
log(" sort. As a side-effect this will prevent use of arrays to model\n");
log(" memories.\n");
log("\n");
log(" -stdt\n");
log(" Use SMT-LIB 2.6 style datatypes to represent a state instead of an\n");
log(" uninterpreted sort.\n");
log("\n");
log(" -nobv\n");
log(" disable support for BitVec (FixedSizeBitVectors theory). without this\n");
log(" option multi-bit wires are represented using the BitVec sort and\n");
log(" support for coarse grain cells (incl. arithmetic) is enabled.\n");
log("\n");
log(" -nomem\n");
log(" disable support for memories (via ArraysEx theory). this option is\n");
log(" implied by -nobv. only $mem cells without merged registers in\n");
log(" read ports are supported. call \"memory\" with -nordff to make sure\n");
log(" that no registers are merged into $mem read ports. '<mod>_m' functions\n");
log(" will be generated for accessing the arrays that are used to represent\n");
log(" memories.\n");
log("\n");
log(" -wires\n");
log(" create '<mod>_n' functions for all public wires. by default only ports,\n");
log(" registers, and wires with the 'keep' attribute are exported.\n");
log("\n");
log(" -tpl <template_file>\n");
log(" use the given template file. the line containing only the token '%%%%'\n");
log(" is replaced with the regular output of this command.\n");
log("\n");
log(" -solver-option <option> <value>\n");
log(" emit a `; yosys-smt2-solver-option` directive for yosys-smtbmc to write\n");
log(" the given option as a `(set-option ...)` command in the SMT-LIBv2.\n");
log("\n");
log("[1] For more information on SMT-LIBv2 visit http://smt-lib.org/ or read David\n");
log("R. Cok's tutorial: https://smtlib.github.io/jSMTLIB/SMTLIBTutorial.pdf\n");
log("\n");
log("---------------------------------------------------------------------------\n");
log("\n");
log("Example:\n");
log("\n");
log("Consider the following module (test.v). We want to prove that the output can\n");
log("never transition from a non-zero value to a zero value.\n");
log("\n");
log(" module test(input clk, output reg [3:0] y);\n");
log(" always @(posedge clk)\n");
log(" y <= (y << 1) | ^y;\n");
log(" endmodule\n");
log("\n");
log("For this proof we create the following template (test.tpl).\n");
log("\n");
log(" ; we need QF_UFBV for this proof\n");
log(" (set-logic QF_UFBV)\n");
log("\n");
log(" ; insert the auto-generated code here\n");
log(" %%%%\n");
log("\n");
log(" ; declare two state variables s1 and s2\n");
log(" (declare-fun s1 () test_s)\n");
log(" (declare-fun s2 () test_s)\n");
log("\n");
log(" ; state s2 is the successor of state s1\n");
log(" (assert (test_t s1 s2))\n");
log("\n");
log(" ; we are looking for a model with y non-zero in s1\n");
log(" (assert (distinct (|test_n y| s1) #b0000))\n");
log("\n");
log(" ; we are looking for a model with y zero in s2\n");
log(" (assert (= (|test_n y| s2) #b0000))\n");
log("\n");
log(" ; is there such a model?\n");
log(" (check-sat)\n");
log("\n");
log("The following yosys script will create a 'test.smt2' file for our proof:\n");
log("\n");
log(" read_verilog test.v\n");
log(" hierarchy -check; proc; opt; check -assert\n");
log(" write_smt2 -bv -tpl test.tpl test.smt2\n");
log("\n");
log("Running 'cvc4 test.smt2' will print 'unsat' because y can never transition\n");
log("from non-zero to zero in the test design.\n");
log("\n");
}
void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) override
{
std::ifstream template_f;
bool bvmode = true, memmode = true, wiresmode = false, verbose = false, statebv = false, statedt = false;
bool forallmode = false;
dict<std::string, std::string> solver_options;
log_header(design, "Executing SMT2 backend.\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
if (args[argidx] == "-tpl" && argidx+1 < args.size()) {
template_f.open(args[++argidx]);
if (template_f.fail())
log_error("Can't open template file `%s'.\n", args[argidx].c_str());
continue;
}
if (args[argidx] == "-bv" || args[argidx] == "-mem") {
log_warning("Options -bv and -mem are now the default. Support for -bv and -mem will be removed in the future.\n");
continue;
}
if (args[argidx] == "-stbv") {
statebv = true;
statedt = false;
continue;
}
if (args[argidx] == "-stdt") {
statebv = false;
statedt = true;
continue;
}
if (args[argidx] == "-nobv") {
bvmode = false;
memmode = false;
continue;
}
if (args[argidx] == "-nomem") {
memmode = false;
continue;
}
if (args[argidx] == "-wires") {
wiresmode = true;
continue;
}
if (args[argidx] == "-verbose") {
verbose = true;
continue;
}
if (args[argidx] == "-solver-option" && argidx+2 < args.size()) {
solver_options.emplace(args[argidx+1], args[argidx+2]);
argidx += 2;
continue;
}
break;
}
extra_args(f, filename, args, argidx);
if (template_f.is_open()) {
std::string line;
while (std::getline(template_f, line)) {
int indent = 0;
while (indent < GetSize(line) && (line[indent] == ' ' || line[indent] == '\t'))
indent++;
if (line.compare(indent, 2, "%%") == 0)
break;
*f << line << std::endl;
}
}
*f << stringf("; SMT-LIBv2 description generated by %s\n", yosys_version_str);
if (!bvmode)
*f << stringf("; yosys-smt2-nobv\n");
if (!memmode)
*f << stringf("; yosys-smt2-nomem\n");
if (statebv)
*f << stringf("; yosys-smt2-stbv\n");
if (statedt)
*f << stringf("; yosys-smt2-stdt\n");
for (auto &it : solver_options)
*f << stringf("; yosys-smt2-solver-option %s %s\n", it.first.c_str(), it.second.c_str());
std::vector<RTLIL::Module*> sorted_modules;
// extract module dependencies
std::map<RTLIL::Module*, std::set<RTLIL::Module*>> module_deps;
for (auto mod : design->modules()) {
module_deps[mod] = std::set<RTLIL::Module*>();
for (auto cell : mod->cells())
if (design->has(cell->type))
module_deps[mod].insert(design->module(cell->type));
}
// simple good-enough topological sort
// (O(n*m) on n elements and depth m)
while (module_deps.size() > 0) {
size_t sorted_modules_idx = sorted_modules.size();
for (auto &it : module_deps) {
for (auto &dep : it.second)
if (module_deps.count(dep) > 0)
goto not_ready_yet;
// log("Next in topological sort: %s\n", log_id(it.first->name));
sorted_modules.push_back(it.first);
not_ready_yet:;
}
if (sorted_modules_idx == sorted_modules.size())
log_error("Cyclic dependency between modules found! Cycle includes module %s.\n", log_id(module_deps.begin()->first->name));
while (sorted_modules_idx < sorted_modules.size())
module_deps.erase(sorted_modules.at(sorted_modules_idx++));
}
dict<IdString, int> mod_stbv_width;
dict<IdString, dict<IdString, pair<bool, bool>>> mod_clk_cache;
Module *topmod = design->top_module();
std::string topmod_id;
for (auto module : sorted_modules)
for (auto cell : module->cells())
if (cell->type.in(ID($allconst), ID($allseq)))
goto found_forall;
if (0) {
found_forall:
forallmode = true;
*f << stringf("; yosys-smt2-forall\n");
if (!statebv && !statedt)
log_error("Forall-exists problems are only supported in -stbv or -stdt mode.\n");
}
for (auto module : sorted_modules)
{
if (module->get_blackbox_attribute() || module->has_processes_warn())
continue;
log("Creating SMT-LIBv2 representation of module %s.\n", log_id(module));
Smt2Worker worker(module, bvmode, memmode, wiresmode, verbose, statebv, statedt, forallmode, mod_stbv_width, mod_clk_cache);
worker.run();
worker.write(*f);
if (module == topmod)
topmod_id = worker.get_id(module);
}
if (topmod)
*f << stringf("; yosys-smt2-topmod %s\n", topmod_id.c_str());
*f << stringf("; end of yosys output\n");
if (template_f.is_open()) {
std::string line;
while (std::getline(template_f, line))
*f << line << std::endl;
}
}
} Smt2Backend;
PRIVATE_NAMESPACE_END