yosys/passes/equiv/equiv_mark.cc

240 lines
5.8 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct EquivMarkWorker
{
Module *module;
SigMap sigmap;
// cache for traversing signal flow graph
dict<SigBit, pool<IdString>> up_bit2cells;
dict<IdString, pool<SigBit>> up_cell2bits;
pool<IdString> edge_cells, equiv_cells;
// graph traversal state
pool<SigBit> queue, visited;
// assigned regions
dict<IdString, int> cell_regions;
dict<SigBit, int> bit_regions;
int next_region;
// merge-find
mfp<int> region_mf;
EquivMarkWorker(Module *module) : module(module), sigmap(module)
{
for (auto cell : module->cells())
{
if (cell->type == "$equiv")
equiv_cells.insert(cell->name);
for (auto &port : cell->connections())
{
if (cell->input(port.first))
for (auto bit : sigmap(port.second))
up_cell2bits[cell->name].insert(bit);
if (cell->output(port.first))
for (auto bit : sigmap(port.second))
up_bit2cells[bit].insert(cell->name);
}
}
next_region = 0;
}
void mark()
{
while (!queue.empty())
{
pool<IdString> cells;
for (auto &bit : queue)
{
// log_assert(bit_regions.count(bit) == 0);
bit_regions[bit] = next_region;
visited.insert(bit);
for (auto cell : up_bit2cells[bit])
if (edge_cells.count(cell) == 0)
cells.insert(cell);
}
queue.clear();
for (auto cell : cells)
{
if (next_region == 0 && equiv_cells.count(cell))
continue;
if (cell_regions.count(cell)) {
if (cell_regions.at(cell) != 0)
region_mf.merge(cell_regions.at(cell), next_region);
continue;
}
cell_regions[cell] = next_region;
for (auto bit : up_cell2bits[cell])
if (visited.count(bit) == 0)
queue.insert(bit);
}
}
next_region++;
}
void run()
{
log("Running equiv_mark on module %s:\n", log_id(module));
// marking region 0
for (auto wire : module->wires())
if (wire->port_id > 0)
for (auto bit : sigmap(wire))
queue.insert(bit);
for (auto cell_name : equiv_cells)
{
auto cell = module->cell(cell_name);
SigSpec sig_a = sigmap(cell->getPort("\\A"));
SigSpec sig_b = sigmap(cell->getPort("\\B"));
if (sig_a == sig_b) {
for (auto bit : sig_a)
queue.insert(bit);
edge_cells.insert(cell_name);
cell_regions[cell_name] = 0;
}
}
mark();
// marking unsolved regions
for (auto cell : module->cells())
{
if (cell_regions.count(cell->name) || cell->type != "$equiv")
continue;
SigSpec sig_a = sigmap(cell->getPort("\\A"));
SigSpec sig_b = sigmap(cell->getPort("\\B"));
log_assert(sig_a != sig_b);
for (auto bit : sig_a)
queue.insert(bit);
for (auto bit : sig_b)
queue.insert(bit);
cell_regions[cell->name] = next_region;
mark();
}
// setting attributes
dict<int, int> final_region_map;
int next_final_region = 0;
dict<int, int> region_cell_count;
dict<int, int> region_wire_count;
for (int i = 0; i < next_region; i++) {
int r = region_mf.find(i);
if (final_region_map.count(r) == 0)
final_region_map[r] = next_final_region++;
final_region_map[i] = final_region_map[r];
}
for (auto cell : module->cells())
{
if (cell_regions.count(cell->name)) {
int r = final_region_map.at(cell_regions.at(cell->name));
cell->attributes["\\equiv_region"] = Const(r);
region_cell_count[r]++;
} else
cell->attributes.erase("\\equiv_region");
}
for (auto wire : module->wires())
{
pool<int> regions;
for (auto bit : sigmap(wire))
if (bit_regions.count(bit))
regions.insert(region_mf.find(bit_regions.at(bit)));
if (GetSize(regions) == 1) {
int r = final_region_map.at(*regions.begin());
wire->attributes["\\equiv_region"] = Const(r);
region_wire_count[r]++;
} else
wire->attributes.erase("\\equiv_region");
}
for (int i = 0; i < next_final_region; i++)
log(" region %d: %d cells, %d wires\n", i, region_wire_count[i], region_cell_count[i]);
}
};
struct EquivMarkPass : public Pass {
EquivMarkPass() : Pass("equiv_mark", "mark equivalence checking regions") { }
virtual void help()
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" equiv_mark [options] [selection]\n");
log("\n");
log("This command marks the regions in an equivalence checking module. Region 0 is\n");
log("the proven part of the circuit. Regions with higher numbers are connected\n");
log("unproven subcricuits. The integer attribute 'equiv_region' is set on all\n");
log("wires and cells.\n");
log("\n");
}
virtual void execute(std::vector<std::string> args, Design *design)
{
log_header("Executing EQUIV_MARK pass.\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
// if (args[argidx] == "-foobar") {
// continue;
// }
break;
}
extra_args(args, argidx, design);
for (auto module : design->selected_whole_modules_warn()) {
EquivMarkWorker worker(module);
worker.run();
}
}
} EquivMarkPass;
PRIVATE_NAMESPACE_END