yosys/passes/memory/memory_bram.cc

1366 lines
46 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct rules_t
{
struct portinfo_t {
int group, index, dupidx;
int wrmode, enable, transp, clocks, clkpol;
SigBit sig_clock;
SigSpec sig_addr, sig_data, sig_en;
bool effective_clkpol;
bool make_transp;
bool make_outreg;
int mapped_port;
};
struct bram_t {
IdString name;
int variant;
int groups, abits, dbits, init;
vector<int> ports, wrmode, enable, transp, clocks, clkpol;
void dump_config() const
{
log(" bram %s # variant %d\n", log_id(name), variant);
log(" init %d\n", init);
log(" abits %d\n", abits);
log(" dbits %d\n", dbits);
log(" groups %d\n", groups);
log(" ports "); for (int v : ports) log("%4d", v); log("\n");
log(" wrmode"); for (int v : wrmode) log("%4d", v); log("\n");
log(" enable"); for (int v : enable) log("%4d", v); log("\n");
log(" transp"); for (int v : transp) log("%4d", v); log("\n");
log(" clocks"); for (int v : clocks) log("%4d", v); log("\n");
log(" clkpol"); for (int v : clkpol) log("%4d", v); log("\n");
log(" endbram\n");
}
void check_vectors() const
{
if (groups != GetSize(ports)) log_error("Bram %s variant %d has %d groups but only %d entries in 'ports'.\n", log_id(name), variant, groups, GetSize(ports));
if (groups != GetSize(wrmode)) log_error("Bram %s variant %d has %d groups but only %d entries in 'wrmode'.\n", log_id(name), variant, groups, GetSize(wrmode));
if (groups != GetSize(enable)) log_error("Bram %s variant %d has %d groups but only %d entries in 'enable'.\n", log_id(name), variant, groups, GetSize(enable));
if (groups != GetSize(transp)) log_error("Bram %s variant %d has %d groups but only %d entries in 'transp'.\n", log_id(name), variant, groups, GetSize(transp));
if (groups != GetSize(clocks)) log_error("Bram %s variant %d has %d groups but only %d entries in 'clocks'.\n", log_id(name), variant, groups, GetSize(clocks));
if (groups != GetSize(clkpol)) log_error("Bram %s variant %d has %d groups but only %d entries in 'clkpol'.\n", log_id(name), variant, groups, GetSize(clkpol));
int group = 0;
for (auto e : enable)
if (e > dbits) log_error("Bram %s variant %d group %d has %d enable bits but only %d dbits.\n", log_id(name), variant, group, e, dbits);
}
vector<portinfo_t> make_portinfos() const
{
vector<portinfo_t> portinfos;
for (int i = 0; i < groups; i++)
for (int j = 0; j < ports[i]; j++) {
portinfo_t pi;
pi.group = i;
pi.index = j;
pi.dupidx = 0;
pi.wrmode = wrmode[i];
pi.enable = enable[i];
pi.transp = transp[i];
pi.clocks = clocks[i];
pi.clkpol = clkpol[i];
pi.mapped_port = -1;
pi.make_transp = false;
pi.make_outreg = false;
pi.effective_clkpol = false;
portinfos.push_back(pi);
}
return portinfos;
}
void find_variant_params(dict<IdString, Const> &variant_params, const bram_t &other) const
{
log_assert(name == other.name);
if (groups != other.groups)
log_error("Bram %s variants %d and %d have different values for 'groups'.\n", log_id(name), variant, other.variant);
if (abits != other.abits)
variant_params["\\CFG_ABITS"] = abits;
if (dbits != other.dbits)
variant_params["\\CFG_DBITS"] = dbits;
if (init != other.init)
variant_params["\\CFG_INIT"] = init;
for (int i = 0; i < groups; i++)
{
if (ports[i] != other.ports[i])
log_error("Bram %s variants %d and %d have different number of %c-ports.\n", log_id(name), variant, other.variant, 'A'+i);
if (wrmode[i] != other.wrmode[i])
variant_params[stringf("\\CFG_WRMODE_%c", 'A' + i)] = wrmode[i];
if (enable[i] != other.enable[i])
variant_params[stringf("\\CFG_ENABLE_%c", 'A' + i)] = enable[i];
if (transp[i] != other.transp[i])
variant_params[stringf("\\CFG_TRANSP_%c", 'A' + i)] = transp[i];
if (clocks[i] != other.clocks[i])
variant_params[stringf("\\CFG_CLOCKS_%c", 'A' + i)] = clocks[i];
if (clkpol[i] != other.clkpol[i])
variant_params[stringf("\\CFG_CLKPOL_%c", 'A' + i)] = clkpol[i];
}
}
};
struct match_t {
IdString name;
dict<string, int> min_limits, max_limits;
bool or_next_if_better, make_transp, make_outreg;
char shuffle_enable;
vector<vector<std::tuple<bool,IdString,Const>>> attributes;
};
dict<IdString, vector<bram_t>> brams;
vector<match_t> matches;
std::ifstream infile;
vector<string> tokens;
vector<string> labels;
int linecount;
void syntax_error()
{
if (tokens.empty())
log_error("Unexpected end of rules file in line %d.\n", linecount);
log_error("Syntax error in rules file line %d.\n", linecount);
}
bool next_line()
{
string line;
while (std::getline(infile, line)) {
tokens.clear();
labels.clear();
linecount++;
for (string tok = next_token(line); !tok.empty(); tok = next_token(line)) {
if (tok[0] == '@') {
labels.push_back(tok.substr(1));
continue;
}
if (tok[0] == '#')
break;
tokens.push_back(tok);
}
if (!tokens.empty())
return true;
}
return false;
}
bool parse_single_int(const char *stmt, int &value)
{
if (GetSize(tokens) == 2 && tokens[0] == stmt) {
value = atoi(tokens[1].c_str());
return true;
}
return false;
}
bool parse_int_vect(const char *stmt, vector<int> &value)
{
if (GetSize(tokens) >= 2 && tokens[0] == stmt) {
value.resize(GetSize(tokens)-1);
for (int i = 1; i < GetSize(tokens); i++)
value[i-1] = atoi(tokens[i].c_str());
return true;
}
return false;
}
void parse_bram()
{
IdString bram_name = RTLIL::escape_id(tokens[1]);
if (GetSize(tokens) != 2)
syntax_error();
vector<vector<string>> lines_nolabels;
std::map<string, vector<vector<string>>> lines_labels;
while (next_line())
{
if (GetSize(tokens) == 1 && tokens[0] == "endbram")
break;
if (labels.empty())
lines_nolabels.push_back(tokens);
for (auto lab : labels)
lines_labels[lab].push_back(tokens);
}
std::map<string, vector<vector<string>>> variant_lines;
if (lines_labels.empty())
variant_lines[""] = lines_nolabels;
for (auto &it : lines_labels) {
variant_lines[it.first] = lines_nolabels;
variant_lines[it.first].insert(variant_lines[it.first].end(), it.second.begin(), it.second.end());
}
for (auto &it : variant_lines)
{
bram_t data;
data.name = bram_name;
data.variant = GetSize(brams[data.name]) + 1;
data.groups = 0;
data.abits = 0;
data.dbits = 0;
data.init = 0;
for (auto &line_tokens : it.second)
{
tokens = line_tokens;
if (parse_single_int("groups", data.groups))
continue;
if (parse_single_int("abits", data.abits))
continue;
if (parse_single_int("dbits", data.dbits))
continue;
if (parse_single_int("init", data.init))
continue;
if (parse_int_vect("ports", data.ports))
continue;
if (parse_int_vect("wrmode", data.wrmode))
continue;
if (parse_int_vect("enable", data.enable))
continue;
if (parse_int_vect("transp", data.transp))
continue;
if (parse_int_vect("clocks", data.clocks))
continue;
if (parse_int_vect("clkpol", data.clkpol))
continue;
syntax_error();
}
data.check_vectors();
brams[data.name].push_back(data);
}
}
void parse_match()
{
if (GetSize(tokens) != 2)
syntax_error();
match_t data;
data.name = RTLIL::escape_id(tokens[1]);
data.or_next_if_better = false;
data.make_transp = false;
data.make_outreg = false;
data.shuffle_enable = 0;
while (next_line())
{
if (!labels.empty())
syntax_error();
if (GetSize(tokens) == 1 && tokens[0] == "endmatch") {
matches.push_back(data);
break;
}
if (GetSize(tokens) == 3 && tokens[0] == "min") {
data.min_limits[tokens[1]] = atoi(tokens[2].c_str());
continue;
}
if (GetSize(tokens) == 3 && tokens[0] == "max") {
data.max_limits[tokens[1]] = atoi(tokens[2].c_str());
continue;
}
if (GetSize(tokens) == 2 && tokens[0] == "shuffle_enable" && GetSize(tokens[1]) == 1 && 'A' <= tokens[1][0] && tokens[1][0] <= 'Z') {
data.shuffle_enable = tokens[1][0];
continue;
}
if (GetSize(tokens) == 1 && tokens[0] == "make_transp") {
data.make_transp = true;
continue;
}
if (GetSize(tokens) == 1 && tokens[0] == "make_outreg") {
data.make_transp = true;
data.make_outreg = true;
continue;
}
if (GetSize(tokens) == 1 && tokens[0] == "or_next_if_better") {
data.or_next_if_better = true;
continue;
}
if (GetSize(tokens) >= 2 && tokens[0] == "attribute") {
data.attributes.emplace_back();
for (int idx = 1; idx < GetSize(tokens); idx++) {
size_t c1 = tokens[idx][0] == '!' ? 1 : 0;
size_t c2 = tokens[idx].find("=");
bool exists = (c1 == 0);
IdString key = RTLIL::escape_id(tokens[idx].substr(c1, c2));
Const val = c2 != std::string::npos ? tokens[idx].substr(c2+1) : RTLIL::Const(1);
data.attributes.back().emplace_back(exists, key, val);
}
continue;
}
syntax_error();
}
}
void parse(string filename)
{
rewrite_filename(filename);
infile.open(filename);
linecount = 0;
if (infile.fail())
log_error("Can't open rules file `%s'.\n", filename.c_str());
while (next_line())
{
if (!labels.empty())
syntax_error();
if (tokens[0] == "bram") {
parse_bram();
continue;
}
if (tokens[0] == "match") {
parse_match();
continue;
}
syntax_error();
}
infile.close();
}
};
bool replace_cell(Cell *cell, const rules_t &rules, const rules_t::bram_t &bram, const rules_t::match_t &match, dict<string, int> &match_properties, int mode)
{
Module *module = cell->module;
auto portinfos = bram.make_portinfos();
int dup_count = 1;
pair<SigBit, bool> make_transp_clk;
bool enable_make_transp = false;
int make_transp_enbits = 0;
dict<int, pair<SigBit, bool>> clock_domains;
dict<int, bool> clock_polarities;
dict<int, bool> read_transp;
pool<int> clocks_wr_ports;
pool<int> clkpol_wr_ports;
int clocks_max = 0;
int clkpol_max = 0;
int transp_max = 0;
clock_polarities[0] = false;
clock_polarities[1] = true;
for (auto &pi : portinfos) {
if (pi.wrmode) {
clocks_wr_ports.insert(pi.clocks);
if (pi.clkpol > 1)
clkpol_wr_ports.insert(pi.clkpol);
}
clocks_max = max(clocks_max, pi.clocks);
clkpol_max = max(clkpol_max, pi.clkpol);
transp_max = max(transp_max, pi.transp);
}
log(" Mapping to bram type %s (variant %d):\n", log_id(bram.name), bram.variant);
// bram.dump_config();
int mem_size = cell->getParam("\\SIZE").as_int();
int mem_abits = cell->getParam("\\ABITS").as_int();
int mem_width = cell->getParam("\\WIDTH").as_int();
// int mem_offset = cell->getParam("\\OFFSET").as_int();
bool cell_init = !SigSpec(cell->getParam("\\INIT")).is_fully_undef();
vector<Const> initdata;
if (cell_init) {
Const initparam = cell->getParam("\\INIT");
initdata.reserve(mem_size);
for (int i=0; i < mem_size; i++)
initdata.push_back(initparam.extract(mem_width*i, mem_width, State::Sx));
}
int wr_ports = cell->getParam("\\WR_PORTS").as_int();
auto wr_clken = SigSpec(cell->getParam("\\WR_CLK_ENABLE"));
auto wr_clkpol = SigSpec(cell->getParam("\\WR_CLK_POLARITY"));
wr_clken.extend_u0(wr_ports);
wr_clkpol.extend_u0(wr_ports);
SigSpec wr_en = cell->getPort("\\WR_EN");
SigSpec wr_clk = cell->getPort("\\WR_CLK");
SigSpec wr_data = cell->getPort("\\WR_DATA");
SigSpec wr_addr = cell->getPort("\\WR_ADDR");
int rd_ports = cell->getParam("\\RD_PORTS").as_int();
auto rd_clken = SigSpec(cell->getParam("\\RD_CLK_ENABLE"));
auto rd_clkpol = SigSpec(cell->getParam("\\RD_CLK_POLARITY"));
auto rd_transp = SigSpec(cell->getParam("\\RD_TRANSPARENT"));
rd_clken.extend_u0(rd_ports);
rd_clkpol.extend_u0(rd_ports);
rd_transp.extend_u0(rd_ports);
SigSpec rd_en = cell->getPort("\\RD_EN");
SigSpec rd_clk = cell->getPort("\\RD_CLK");
SigSpec rd_data = cell->getPort("\\RD_DATA");
SigSpec rd_addr = cell->getPort("\\RD_ADDR");
if (match.shuffle_enable && bram.dbits >= portinfos.at(match.shuffle_enable - 'A').enable*2 && portinfos.at(match.shuffle_enable - 'A').enable > 0 && wr_ports > 0)
{
int bucket_size = bram.dbits / portinfos.at(match.shuffle_enable - 'A').enable;
log(" Shuffle bit order to accommodate enable buckets of size %d..\n", bucket_size);
// extract unshuffled data/enable bits
std::vector<SigSpec> old_wr_en;
std::vector<SigSpec> old_wr_data;
std::vector<SigSpec> old_rd_data;
for (int i = 0; i < wr_ports; i++) {
old_wr_en.push_back(wr_en.extract(i*mem_width, mem_width));
old_wr_data.push_back(wr_data.extract(i*mem_width, mem_width));
}
for (int i = 0; i < rd_ports; i++)
old_rd_data.push_back(rd_data.extract(i*mem_width, mem_width));
// analyze enable structure
std::vector<SigSpec> en_order;
dict<SigSpec, vector<int>> bits_wr_en;
for (int i = 0; i < mem_width; i++) {
SigSpec sig;
for (int j = 0; j < wr_ports; j++)
sig.append(old_wr_en[j][i]);
if (bits_wr_en.count(sig) == 0)
en_order.push_back(sig);
bits_wr_en[sig].push_back(i);
}
// re-create memory ports
std::vector<SigSpec> new_wr_en(GetSize(old_wr_en));
std::vector<SigSpec> new_wr_data(GetSize(old_wr_data));
std::vector<SigSpec> new_rd_data(GetSize(old_rd_data));
std::vector<std::vector<State>> new_initdata;
std::vector<int> shuffle_map;
if (cell_init)
new_initdata.resize(mem_size);
for (auto &it : en_order)
{
auto &bits = bits_wr_en.at(it);
int buckets = (GetSize(bits) + bucket_size - 1) / bucket_size;
int fillbits = buckets*bucket_size - GetSize(bits);
SigBit fillbit;
for (int i = 0; i < GetSize(bits); i++) {
for (int j = 0; j < wr_ports; j++) {
new_wr_en[j].append(old_wr_en[j][bits[i]]);
new_wr_data[j].append(old_wr_data[j][bits[i]]);
fillbit = old_wr_en[j][bits[i]];
}
for (int j = 0; j < rd_ports; j++)
new_rd_data[j].append(old_rd_data[j][bits[i]]);
if (cell_init) {
for (int j = 0; j < mem_size; j++)
new_initdata[j].push_back(initdata[j][bits[i]]);
}
shuffle_map.push_back(bits[i]);
}
for (int i = 0; i < fillbits; i++) {
for (int j = 0; j < wr_ports; j++) {
new_wr_en[j].append(fillbit);
new_wr_data[j].append(State::S0);
}
for (int j = 0; j < rd_ports; j++)
new_rd_data[j].append(State::Sx);
if (cell_init) {
for (int j = 0; j < mem_size; j++)
new_initdata[j].push_back(State::Sx);
}
shuffle_map.push_back(-1);
}
}
log(" Results of bit order shuffling:");
for (int v : shuffle_map)
log(" %d", v);
log("\n");
// update mem_*, wr_*, and rd_* variables
mem_width = GetSize(new_wr_en.front());
wr_en = SigSpec(0, wr_ports * mem_width);
wr_data = SigSpec(0, wr_ports * mem_width);
rd_data = SigSpec(0, rd_ports * mem_width);
for (int i = 0; i < wr_ports; i++) {
wr_en.replace(i*mem_width, new_wr_en[i]);
wr_data.replace(i*mem_width, new_wr_data[i]);
}
for (int i = 0; i < rd_ports; i++)
rd_data.replace(i*mem_width, new_rd_data[i]);
if (cell_init) {
for (int i = 0; i < mem_size; i++)
initdata[i] = Const(new_initdata[i]);
}
}
// assign write ports
pair<SigBit, bool> wr_clkdom;
for (int cell_port_i = 0, bram_port_i = 0; cell_port_i < wr_ports; cell_port_i++)
{
bool clken = wr_clken[cell_port_i] == State::S1;
bool clkpol = wr_clkpol[cell_port_i] == State::S1;
SigBit clksig = wr_clk[cell_port_i];
pair<SigBit, bool> clkdom(clksig, clkpol);
if (!clken)
clkdom = pair<SigBit, bool>(State::S1, false);
wr_clkdom = clkdom;
log(" Write port #%d is in clock domain %s%s.\n",
cell_port_i, clkdom.second ? "" : "!",
clken ? log_signal(clkdom.first) : "~async~");
for (; bram_port_i < GetSize(portinfos); bram_port_i++)
{
auto &pi = portinfos[bram_port_i];
make_transp_enbits = pi.enable;
make_transp_clk = clkdom;
if (pi.wrmode != 1)
skip_bram_wport:
continue;
if (clken) {
if (pi.clocks == 0) {
log(" Bram port %c%d has incompatible clock type.\n", pi.group + 'A', pi.index + 1);
goto skip_bram_wport;
}
if (clock_domains.count(pi.clocks) && clock_domains.at(pi.clocks) != clkdom) {
log(" Bram port %c%d is in a different clock domain.\n", pi.group + 'A', pi.index + 1);
goto skip_bram_wport;
}
if (clock_polarities.count(pi.clkpol) && clock_polarities.at(pi.clkpol) != clkpol) {
log(" Bram port %c%d has incompatible clock polarity.\n", pi.group + 'A', pi.index + 1);
goto skip_bram_wport;
}
} else {
if (pi.clocks != 0) {
log(" Bram port %c%d has incompatible clock type.\n", pi.group + 'A', pi.index + 1);
goto skip_bram_wport;
}
}
SigSpec sig_en;
SigBit last_en_bit = State::S1;
for (int i = 0; i < mem_width; i++) {
if (pi.enable && i % (bram.dbits / pi.enable) == 0) {
last_en_bit = wr_en[i + cell_port_i*mem_width];
sig_en.append(last_en_bit);
}
if (last_en_bit != wr_en[i + cell_port_i*mem_width]) {
log(" Bram port %c%d has incompatible enable structure.\n", pi.group + 'A', pi.index + 1);
goto skip_bram_wport;
}
}
log(" Mapped to bram port %c%d.\n", pi.group + 'A', pi.index + 1);
pi.mapped_port = cell_port_i;
if (clken) {
clock_domains[pi.clocks] = clkdom;
clock_polarities[pi.clkpol] = clkdom.second;
pi.sig_clock = clkdom.first;
pi.effective_clkpol = clkdom.second;
}
pi.sig_en = sig_en;
pi.sig_addr = wr_addr.extract(cell_port_i*mem_abits, mem_abits);
pi.sig_data = wr_data.extract(cell_port_i*mem_width, mem_width);
bram_port_i++;
goto mapped_wr_port;
}
log(" Failed to map write port #%d.\n", cell_port_i);
return false;
mapped_wr_port:;
}
// housekeeping stuff for growing more read ports and restarting read port assignments
int grow_read_ports_cursor = -1;
bool try_growing_more_read_ports = false;
auto backup_clock_domains = clock_domains;
auto backup_clock_polarities = clock_polarities;
if (0) {
grow_read_ports:;
vector<rules_t::portinfo_t> new_portinfos;
for (auto &pi : portinfos) {
if (pi.wrmode == 0) {
pi.mapped_port = -1;
pi.sig_clock = SigBit();
pi.sig_addr = SigSpec();
pi.sig_data = SigSpec();
pi.sig_en = SigSpec();
pi.make_outreg = false;
pi.make_transp = false;
}
new_portinfos.push_back(pi);
if (pi.dupidx == dup_count-1) {
if (pi.clocks && !clocks_wr_ports[pi.clocks])
pi.clocks += clocks_max;
if (pi.clkpol > 1 && !clkpol_wr_ports[pi.clkpol])
pi.clkpol += clkpol_max;
if (pi.transp > 1)
pi.transp += transp_max;
pi.dupidx++;
new_portinfos.push_back(pi);
}
}
try_growing_more_read_ports = false;
portinfos.swap(new_portinfos);
clock_domains = backup_clock_domains;
clock_polarities = backup_clock_polarities;
dup_count++;
}
read_transp.clear();
read_transp[0] = false;
read_transp[1] = true;
// assign read ports
for (int cell_port_i = 0; cell_port_i < rd_ports; cell_port_i++)
{
bool clken = rd_clken[cell_port_i] == State::S1;
bool clkpol = rd_clkpol[cell_port_i] == State::S1;
bool transp = rd_transp[cell_port_i] == State::S1;
SigBit clksig = rd_clk[cell_port_i];
if (wr_ports == 0)
transp = false;
pair<SigBit, bool> clkdom(clksig, clkpol);
if (!clken)
clkdom = pair<SigBit, bool>(State::S1, false);
log(" Read port #%d is in clock domain %s%s.\n",
cell_port_i, clkdom.second ? "" : "!",
clken ? log_signal(clkdom.first) : "~async~");
for (int bram_port_i = 0; bram_port_i < GetSize(portinfos); bram_port_i++)
{
auto &pi = portinfos[bram_port_i];
if (pi.wrmode != 0 || pi.mapped_port >= 0)
skip_bram_rport:
continue;
if (clken) {
if (pi.clocks == 0) {
if (match.make_outreg) {
pi.make_outreg = true;
goto skip_bram_rport_clkcheck;
}
log(" Bram port %c%d.%d has incompatible clock type.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
}
if (clock_domains.count(pi.clocks) && clock_domains.at(pi.clocks) != clkdom) {
log(" Bram port %c%d.%d is in a different clock domain.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
}
if (clock_polarities.count(pi.clkpol) && clock_polarities.at(pi.clkpol) != clkpol) {
log(" Bram port %c%d.%d has incompatible clock polarity.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
}
if (rd_en[cell_port_i] != State::S1 && pi.enable == 0) {
log(" Bram port %c%d.%d has no read enable input.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
}
skip_bram_rport_clkcheck:
if (read_transp.count(pi.transp) && read_transp.at(pi.transp) != transp) {
if (match.make_transp && wr_ports <= 1) {
pi.make_transp = true;
if (pi.clocks != 0) {
if (wr_ports == 1 && wr_clkdom != clkdom) {
log(" Bram port %c%d.%d cannot have soft transparency logic added as read and write clock domains differ.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
}
enable_make_transp = true;
}
} else {
log(" Bram port %c%d.%d has incompatible read transparency.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
}
}
} else {
if (pi.clocks != 0) {
log(" Bram port %c%d.%d has incompatible clock type.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
}
}
log(" Mapped to bram port %c%d.%d.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
pi.mapped_port = cell_port_i;
if (clken) {
clock_domains[pi.clocks] = clkdom;
clock_polarities[pi.clkpol] = clkdom.second;
if (!pi.make_transp)
read_transp[pi.transp] = transp;
pi.sig_clock = clkdom.first;
pi.sig_en = rd_en[cell_port_i];
pi.effective_clkpol = clkdom.second;
}
pi.sig_addr = rd_addr.extract(cell_port_i*mem_abits, mem_abits);
pi.sig_data = rd_data.extract(cell_port_i*mem_width, mem_width);
if (grow_read_ports_cursor < cell_port_i) {
grow_read_ports_cursor = cell_port_i;
try_growing_more_read_ports = true;
}
goto mapped_rd_port;
}
log(" Failed to map read port #%d.\n", cell_port_i);
if (try_growing_more_read_ports) {
log(" Growing more read ports by duplicating bram cells.\n");
goto grow_read_ports;
}
return false;
mapped_rd_port:;
}
// update properties and re-check conditions
if (mode <= 1)
{
match_properties["dups"] = dup_count;
match_properties["waste"] = match_properties["dups"] * match_properties["bwaste"];
int cells = ((mem_width + bram.dbits - 1) / bram.dbits) * ((mem_size + (1 << bram.abits) - 1) / (1 << bram.abits));
match_properties["efficiency"] = (100 * match_properties["bits"]) / (dup_count * cells * bram.dbits * (1 << bram.abits));
match_properties["dcells"] = ((mem_width + bram.dbits - 1) / bram.dbits);
match_properties["acells"] = ((mem_size + (1 << bram.abits) - 1) / (1 << bram.abits));
match_properties["cells"] = match_properties["dcells"] * match_properties["acells"] * match_properties["dups"];
log(" Updated properties: dups=%d waste=%d efficiency=%d\n",
match_properties["dups"], match_properties["waste"], match_properties["efficiency"]);
for (auto it : match.min_limits) {
if (!match_properties.count(it.first))
log_error("Unknown property '%s' in match rule for bram type %s.\n",
it.first.c_str(), log_id(match.name));
if (match_properties[it.first] >= it.second)
continue;
log(" Rule for bram type %s rejected: requirement 'min %s %d' not met.\n",
log_id(match.name), it.first.c_str(), it.second);
return false;
}
for (auto it : match.max_limits) {
if (!match_properties.count(it.first))
log_error("Unknown property '%s' in match rule for bram type %s.\n",
it.first.c_str(), log_id(match.name));
if (match_properties[it.first] <= it.second)
continue;
log(" Rule for bram type %s rejected: requirement 'max %s %d' not met.\n",
log_id(match.name), it.first.c_str(), it.second);
return false;
}
for (const auto &sums : match.attributes) {
bool found = false;
for (const auto &term : sums) {
bool exists = std::get<0>(term);
IdString key = std::get<1>(term);
const Const &value = std::get<2>(term);
auto it = cell->attributes.find(key);
if (it == cell->attributes.end()) {
if (exists)
continue;
found = true;
break;
}
else if (!exists)
continue;
if (it->second != value)
continue;
found = true;
break;
}
if (!found) {
std::stringstream ss;
bool exists = std::get<0>(sums.front());
if (!exists)
ss << "!";
IdString key = std::get<1>(sums.front());
ss << log_id(key);
const Const &value = std::get<2>(sums.front());
if (exists && value != Const(1))
ss << "=\"" << value.decode_string() << "\"";
log(" Rule for bram type %s rejected: requirement 'attribute %s ...' not met.\n",
log_id(match.name), ss.str().c_str());
return false;
}
}
if (mode == 1)
return true;
}
// prepare variant parameters
dict<IdString, Const> variant_params;
for (auto &other_bram : rules.brams.at(bram.name))
bram.find_variant_params(variant_params, other_bram);
// actually replace that memory cell
dict<SigSpec, pair<SigSpec, SigSpec>> dout_cache;
for (int grid_d = 0; grid_d*bram.dbits < mem_width; grid_d++)
{
SigSpec mktr_wraddr, mktr_wrdata, mktr_wrdata_q;
vector<SigSpec> mktr_wren;
if (enable_make_transp) {
mktr_wraddr = module->addWire(NEW_ID, bram.abits);
mktr_wrdata = module->addWire(NEW_ID, bram.dbits);
mktr_wrdata_q = module->addWire(NEW_ID, bram.dbits);
module->addDff(NEW_ID, make_transp_clk.first, mktr_wrdata, mktr_wrdata_q, make_transp_clk.second);
for (int grid_a = 0; grid_a*(1 << bram.abits) < mem_size; grid_a++)
mktr_wren.push_back(module->addWire(NEW_ID, make_transp_enbits));
}
for (int grid_a = 0; grid_a*(1 << bram.abits) < mem_size; grid_a++)
for (int dupidx = 0; dupidx < dup_count; dupidx++)
{
Cell *c = module->addCell(module->uniquify(stringf("%s.%d.%d.%d", cell->name.c_str(), grid_d, grid_a, dupidx)), bram.name);
log(" Creating %s cell at grid position <%d %d %d>: %s\n", log_id(bram.name), grid_d, grid_a, dupidx, log_id(c));
for (auto &vp : variant_params)
c->setParam(vp.first, vp.second);
if (cell_init) {
int init_offset = grid_a*(1 << bram.abits);
int init_shift = grid_d*bram.dbits;
int init_size = (1 << bram.abits);
Const initparam(State::Sx, init_size*bram.dbits);
for (int i = 0; i < init_size; i++) {
State padding = State::Sx;
for (int j = 0; j < bram.dbits; j++)
if (init_offset+i < GetSize(initdata) && init_shift+j < GetSize(initdata[init_offset+i]))
initparam[i*bram.dbits+j] = initdata[init_offset+i][init_shift+j];
else
initparam[i*bram.dbits+j] = padding;
}
c->setParam("\\INIT", initparam);
}
for (auto &pi : portinfos)
{
if (pi.dupidx != dupidx)
continue;
string prefix = stringf("%c%d", pi.group + 'A', pi.index + 1);
const char *pf = prefix.c_str();
if (pi.clocks && (!c->hasPort(stringf("\\CLK%d", (pi.clocks-1) % clocks_max + 1)) || pi.sig_clock.wire)) {
c->setPort(stringf("\\CLK%d", (pi.clocks-1) % clocks_max + 1), pi.sig_clock);
if (pi.clkpol > 1 && pi.sig_clock.wire)
c->setParam(stringf("\\CLKPOL%d", (pi.clkpol-1) % clkpol_max + 1), clock_polarities.at(pi.clkpol));
if (pi.transp > 1 && pi.sig_clock.wire)
c->setParam(stringf("\\TRANSP%d", (pi.transp-1) % transp_max + 1), read_transp.at(pi.transp));
}
SigSpec addr_ok;
if (GetSize(pi.sig_addr) > bram.abits) {
SigSpec extra_addr = pi.sig_addr.extract(bram.abits, GetSize(pi.sig_addr) - bram.abits);
SigSpec extra_addr_sel = SigSpec(grid_a, GetSize(extra_addr));
addr_ok = module->Eq(NEW_ID, extra_addr, extra_addr_sel);
}
if (pi.enable)
{
SigSpec sig_en = pi.sig_en;
if (pi.wrmode == 1) {
sig_en.extend_u0((grid_d+1) * pi.enable);
sig_en = sig_en.extract(grid_d * pi.enable, pi.enable);
}
if (!addr_ok.empty())
sig_en = module->Mux(NEW_ID, SigSpec(0, GetSize(sig_en)), sig_en, addr_ok);
c->setPort(stringf("\\%sEN", pf), sig_en);
if (pi.wrmode == 1 && enable_make_transp)
module->connect(mktr_wren[grid_a], sig_en);
}
SigSpec sig_addr = pi.sig_addr;
sig_addr.extend_u0(bram.abits);
c->setPort(stringf("\\%sADDR", pf), sig_addr);
if (pi.wrmode == 1 && enable_make_transp && grid_a == 0)
module->connect(mktr_wraddr, sig_addr);
SigSpec sig_data = pi.sig_data;
sig_data.extend_u0((grid_d+1) * bram.dbits);
sig_data = sig_data.extract(grid_d * bram.dbits, bram.dbits);
if (pi.wrmode == 1) {
c->setPort(stringf("\\%sDATA", pf), sig_data);
if (enable_make_transp && grid_a == 0)
module->connect(mktr_wrdata, sig_data);
} else {
SigSpec bram_dout = module->addWire(NEW_ID, bram.dbits);
c->setPort(stringf("\\%sDATA", pf), bram_dout);
if (pi.make_outreg && pi.make_transp) {
log(" Moving output register to address for transparent port %c%d.%d.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
SigSpec sig_addr_q = module->addWire(NEW_ID, bram.abits);
module->addDff(NEW_ID, pi.sig_clock, sig_addr, sig_addr_q, pi.effective_clkpol);
c->setPort(stringf("\\%sADDR", pf), sig_addr_q);
} else if (pi.make_outreg) {
SigSpec bram_dout_q = module->addWire(NEW_ID, bram.dbits);
if (!pi.sig_en.empty())
bram_dout = module->Mux(NEW_ID, bram_dout_q, bram_dout, pi.sig_en);
module->addDff(NEW_ID, pi.sig_clock, bram_dout, bram_dout_q, pi.effective_clkpol);
bram_dout = bram_dout_q;
} else if (pi.make_transp) {
log(" Adding extra logic for transparent port %c%d.%d.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
SigSpec transp_en_d = module->Mux(NEW_ID, SigSpec(0, make_transp_enbits),
mktr_wren[grid_a], module->Eq(NEW_ID, mktr_wraddr, sig_addr));
SigSpec transp_en_q = module->addWire(NEW_ID, make_transp_enbits);
module->addDff(NEW_ID, make_transp_clk.first, transp_en_d, transp_en_q, make_transp_clk.second);
for (int i = 0; i < make_transp_enbits; i++) {
int en_width = bram.dbits / make_transp_enbits;
SigSpec orig_bram_dout = bram_dout.extract(i * en_width, en_width);
SigSpec bypass_dout = mktr_wrdata_q.extract(i * en_width, en_width);
bram_dout.replace(i * en_width, module->Mux(NEW_ID, orig_bram_dout, bypass_dout, transp_en_q[i]));
}
}
for (int i = bram.dbits-1; i >= 0; i--)
if (sig_data[i].wire == nullptr) {
sig_data.remove(i);
bram_dout.remove(i);
}
SigSpec addr_ok_q = addr_ok;
if ((pi.clocks || pi.make_outreg) && !addr_ok.empty()) {
addr_ok_q = module->addWire(NEW_ID);
if (!pi.sig_en.empty())
addr_ok = module->Mux(NEW_ID, addr_ok_q, addr_ok, pi.sig_en);
module->addDff(NEW_ID, pi.sig_clock, addr_ok, addr_ok_q, pi.effective_clkpol);
}
dout_cache[sig_data].first.append(addr_ok_q);
dout_cache[sig_data].second.append(bram_dout);
}
}
}
}
for (auto &it : dout_cache)
{
if (it.second.first.empty())
{
log_assert(GetSize(it.first) == GetSize(it.second.second));
module->connect(it.first, it.second.second);
}
else
{
log_assert(GetSize(it.first)*GetSize(it.second.first) == GetSize(it.second.second));
module->addPmux(NEW_ID, SigSpec(State::Sx, GetSize(it.first)), it.second.second, it.second.first, it.first);
}
}
module->remove(cell);
return true;
}
void handle_cell(Cell *cell, const rules_t &rules)
{
log("Processing %s.%s:\n", log_id(cell->module), log_id(cell));
bool cell_init = !SigSpec(cell->getParam("\\INIT")).is_fully_undef();
dict<string, int> match_properties;
match_properties["words"] = cell->getParam("\\SIZE").as_int();
match_properties["abits"] = cell->getParam("\\ABITS").as_int();
match_properties["dbits"] = cell->getParam("\\WIDTH").as_int();
match_properties["wports"] = cell->getParam("\\WR_PORTS").as_int();
match_properties["rports"] = cell->getParam("\\RD_PORTS").as_int();
match_properties["bits"] = match_properties["words"] * match_properties["dbits"];
match_properties["ports"] = match_properties["wports"] + match_properties["rports"];
log(" Properties:");
for (auto &it : match_properties)
log(" %s=%d", it.first.c_str(), it.second);
log("\n");
pool<pair<IdString, int>> failed_brams;
dict<pair<int, int>, tuple<int, int, int>> best_rule_cache;
for (int i = 0; i < GetSize(rules.matches); i++)
{
auto &match = rules.matches.at(i);
if (!rules.brams.count(rules.matches[i].name))
log_error("No bram description for resource %s found!\n", log_id(rules.matches[i].name));
for (int vi = 0; vi < GetSize(rules.brams.at(match.name)); vi++)
{
auto &bram = rules.brams.at(match.name).at(vi);
bool or_next_if_better = match.or_next_if_better || vi+1 < GetSize(rules.brams.at(match.name));
if (failed_brams.count(pair<IdString, int>(bram.name, bram.variant)))
continue;
int avail_rd_ports = 0;
int avail_wr_ports = 0;
for (int j = 0; j < bram.groups; j++) {
if (GetSize(bram.wrmode) < j || bram.wrmode.at(j) == 0)
avail_rd_ports += GetSize(bram.ports) < j ? bram.ports.at(j) : 0;
if (GetSize(bram.wrmode) < j || bram.wrmode.at(j) != 0)
avail_wr_ports += GetSize(bram.ports) < j ? bram.ports.at(j) : 0;
}
log(" Checking rule #%d for bram type %s (variant %d):\n", i+1, log_id(bram.name), bram.variant);
log(" Bram geometry: abits=%d dbits=%d wports=%d rports=%d\n", bram.abits, bram.dbits, avail_wr_ports, avail_rd_ports);
int dups = avail_rd_ports ? (match_properties["rports"] + avail_rd_ports - 1) / avail_rd_ports : 1;
match_properties["dups"] = dups;
log(" Estimated number of duplicates for more read ports: dups=%d\n", match_properties["dups"]);
int aover = match_properties["words"] % (1 << bram.abits);
int awaste = aover ? (1 << bram.abits) - aover : 0;
match_properties["awaste"] = awaste;
int dover = match_properties["dbits"] % bram.dbits;
int dwaste = dover ? bram.dbits - dover : 0;
match_properties["dwaste"] = dwaste;
int bwaste = awaste * bram.dbits + dwaste * (1 << bram.abits) - awaste * dwaste;
match_properties["bwaste"] = bwaste;
int waste = match_properties["dups"] * bwaste;
match_properties["waste"] = waste;
int cells = ((match_properties["dbits"] + bram.dbits - 1) / bram.dbits) * ((match_properties["words"] + (1 << bram.abits) - 1) / (1 << bram.abits));
int efficiency = (100 * match_properties["bits"]) / (dups * cells * bram.dbits * (1 << bram.abits));
match_properties["efficiency"] = efficiency;
log(" Metrics for %s: awaste=%d dwaste=%d bwaste=%d waste=%d efficiency=%d\n",
log_id(match.name), awaste, dwaste, bwaste, waste, efficiency);
if (cell_init && bram.init == 0) {
log(" Rule #%d for bram type %s (variant %d) rejected: cannot be initialized.\n",
i+1, log_id(bram.name), bram.variant);
goto next_match_rule;
}
for (auto it : match.min_limits) {
if (it.first == "waste" || it.first == "dups" || it.first == "acells" || it.first == "dcells" || it.first == "cells")
continue;
if (!match_properties.count(it.first))
log_error("Unknown property '%s' in match rule for bram type %s.\n",
it.first.c_str(), log_id(match.name));
if (match_properties[it.first] >= it.second)
continue;
log(" Rule #%d for bram type %s (variant %d) rejected: requirement 'min %s %d' not met.\n",
i+1, log_id(bram.name), bram.variant, it.first.c_str(), it.second);
goto next_match_rule;
}
for (auto it : match.max_limits) {
if (it.first == "acells" || it.first == "dcells" || it.first == "cells")
continue;
if (!match_properties.count(it.first))
log_error("Unknown property '%s' in match rule for bram type %s.\n",
it.first.c_str(), log_id(match.name));
if (match_properties[it.first] <= it.second)
continue;
log(" Rule #%d for bram type %s (variant %d) rejected: requirement 'max %s %d' not met.\n",
i+1, log_id(bram.name), bram.variant, it.first.c_str(), it.second);
goto next_match_rule;
}
for (const auto &sums : match.attributes) {
bool found = false;
for (const auto &term : sums) {
bool exists = std::get<0>(term);
IdString key = std::get<1>(term);
const Const &value = std::get<2>(term);
auto it = cell->attributes.find(key);
if (it == cell->attributes.end()) {
if (exists)
continue;
found = true;
break;
}
else if (!exists)
continue;
if (it->second != value)
continue;
found = true;
break;
}
if (!found) {
std::stringstream ss;
bool exists = std::get<0>(sums.front());
if (!exists)
ss << "!";
IdString key = std::get<1>(sums.front());
ss << log_id(key);
const Const &value = std::get<2>(sums.front());
if (exists && value != Const(1))
ss << "=\"" << value.decode_string() << "\"";
log(" Rule for bram type %s (variant %d) rejected: requirement 'attribute %s ...' not met.\n",
log_id(bram.name), bram.variant, ss.str().c_str());
goto next_match_rule;
}
}
log(" Rule #%d for bram type %s (variant %d) accepted.\n", i+1, log_id(bram.name), bram.variant);
if (or_next_if_better || !best_rule_cache.empty())
{
if (or_next_if_better && i+1 == GetSize(rules.matches) && vi+1 == GetSize(rules.brams.at(match.name)))
log_error("Found 'or_next_if_better' in last match rule.\n");
if (!replace_cell(cell, rules, bram, match, match_properties, 1)) {
log(" Mapping to bram type %s failed.\n", log_id(match.name));
failed_brams.insert(pair<IdString, int>(bram.name, bram.variant));
goto next_match_rule;
}
log(" Storing for later selection.\n");
best_rule_cache[pair<int, int>(i, vi)] = tuple<int, int, int>(match_properties["efficiency"], -match_properties["cells"], -match_properties["acells"]);
next_match_rule:
if (or_next_if_better || best_rule_cache.empty())
continue;
log(" Selecting best of %d rules:\n", GetSize(best_rule_cache));
pair<int, int> best_rule = best_rule_cache.begin()->first;
for (auto &it : best_rule_cache) {
if (it.second > best_rule_cache[best_rule])
best_rule = it.first;
log(" Efficiency for rule %d.%d: efficiency=%d, cells=%d, acells=%d\n", it.first.first+1, it.first.second+1,
std::get<0>(it.second), -std::get<1>(it.second), -std::get<2>(it.second));
}
log(" Selected rule %d.%d with efficiency %d.\n", best_rule.first+1, best_rule.second+1, std::get<0>(best_rule_cache[best_rule]));
best_rule_cache.clear();
auto &best_bram = rules.brams.at(rules.matches.at(best_rule.first).name).at(best_rule.second);
if (!replace_cell(cell, rules, best_bram, rules.matches.at(best_rule.first), match_properties, 2))
log_error("Mapping to bram type %s (variant %d) after pre-selection failed.\n", log_id(best_bram.name), best_bram.variant);
return;
}
if (!replace_cell(cell, rules, bram, match, match_properties, 0)) {
log(" Mapping to bram type %s failed.\n", log_id(match.name));
failed_brams.insert(pair<IdString, int>(bram.name, bram.variant));
goto next_match_rule;
}
return;
}
}
log(" No acceptable bram resources found.\n");
}
struct MemoryBramPass : public Pass {
MemoryBramPass() : Pass("memory_bram", "map memories to block rams") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" memory_bram -rules <rule_file> [selection]\n");
log("\n");
log("This pass converts the multi-port $mem memory cells into block ram instances.\n");
log("The given rules file describes the available resources and how they should be\n");
log("used.\n");
log("\n");
log("The rules file contains a set of block ram description and a sequence of match\n");
log("rules. A block ram description looks like this:\n");
log("\n");
log(" bram RAMB1024X32 # name of BRAM cell\n");
log(" init 1 # set to '1' if BRAM can be initialized\n");
log(" abits 10 # number of address bits\n");
log(" dbits 32 # number of data bits\n");
log(" groups 2 # number of port groups\n");
log(" ports 1 1 # number of ports in each group\n");
log(" wrmode 1 0 # set to '1' if this groups is write ports\n");
log(" enable 4 1 # number of enable bits\n");
log(" transp 0 2 # transparent (for read ports)\n");
log(" clocks 1 2 # clock configuration\n");
log(" clkpol 2 2 # clock polarity configuration\n");
log(" endbram\n");
log("\n");
log("For the option 'transp' the value 0 means non-transparent, 1 means transparent\n");
log("and a value greater than 1 means configurable. All groups with the same\n");
log("value greater than 1 share the same configuration bit.\n");
log("\n");
log("For the option 'clocks' the value 0 means non-clocked, and a value greater\n");
log("than 0 means clocked. All groups with the same value share the same clock\n");
log("signal.\n");
log("\n");
log("For the option 'clkpol' the value 0 means negative edge, 1 means positive edge\n");
log("and a value greater than 1 means configurable. All groups with the same value\n");
log("greater than 1 share the same configuration bit.\n");
log("\n");
log("Using the same bram name in different bram blocks will create different variants\n");
log("of the bram. Verilog configuration parameters for the bram are created as needed.\n");
log("\n");
log("It is also possible to create variants by repeating statements in the bram block\n");
log("and appending '@<label>' to the individual statements.\n");
log("\n");
log("A match rule looks like this:\n");
log("\n");
log(" match RAMB1024X32\n");
log(" max waste 16384 # only use this bram if <= 16k ram bits are unused\n");
log(" min efficiency 80 # only use this bram if efficiency is at least 80%%\n");
log(" endmatch\n");
log("\n");
log("It is possible to match against the following values with min/max rules:\n");
log("\n");
log(" words ........ number of words in memory in design\n");
log(" abits ........ number of address bits on memory in design\n");
log(" dbits ........ number of data bits on memory in design\n");
log(" wports ....... number of write ports on memory in design\n");
log(" rports ....... number of read ports on memory in design\n");
log(" ports ........ number of ports on memory in design\n");
log(" bits ......... number of bits in memory in design\n");
log(" dups .......... number of duplications for more read ports\n");
log("\n");
log(" awaste ....... number of unused address slots for this match\n");
log(" dwaste ....... number of unused data bits for this match\n");
log(" bwaste ....... number of unused bram bits for this match\n");
log(" waste ........ total number of unused bram bits (bwaste*dups)\n");
log(" efficiency ... total percentage of used and non-duplicated bits\n");
log("\n");
log(" acells ....... number of cells in 'address-direction'\n");
log(" dcells ....... number of cells in 'data-direction'\n");
log(" cells ........ total number of cells (acells*dcells*dups)\n");
log("\n");
log("A match containing the command 'attribute' followed by a list of space\n");
log("separated 'name[=string_value]' values requires that the memory contains any\n");
log("one of the given attribute name and string values (where specified), or name\n");
log("and integer 1 value (if no string_value given, since Verilog will interpret\n");
log("'(* attr *)' as '(* attr=1 *)').\n");
log("A name prefixed with '!' indicates that the attribute must not exist.\n");
log("\n");
log("The interface for the created bram instances is derived from the bram\n");
log("description. Use 'techmap' to convert the created bram instances into\n");
log("instances of the actual bram cells of your target architecture.\n");
log("\n");
log("A match containing the command 'or_next_if_better' is only used if it\n");
log("has a higher efficiency than the next match (and the one after that if\n");
log("the next also has 'or_next_if_better' set, and so forth).\n");
log("\n");
log("A match containing the command 'make_transp' will add external circuitry\n");
log("to simulate 'transparent read', if necessary.\n");
log("\n");
log("A match containing the command 'make_outreg' will add external flip-flops\n");
log("to implement synchronous read ports, if necessary.\n");
log("\n");
log("A match containing the command 'shuffle_enable A' will re-organize\n");
log("the data bits to accommodate the enable pattern of port A.\n");
log("\n");
}
void execute(vector<string> args, Design *design) YS_OVERRIDE
{
rules_t rules;
log_header(design, "Executing MEMORY_BRAM pass (mapping $mem cells to block memories).\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-rules" && argidx+1 < args.size()) {
rules.parse(args[++argidx]);
continue;
}
break;
}
extra_args(args, argidx, design);
for (auto mod : design->selected_modules())
for (auto cell : mod->selected_cells())
if (cell->type == "$mem")
handle_cell(cell, rules);
}
} MemoryBramPass;
PRIVATE_NAMESPACE_END