yosys/frontends/ast/genrtlil.cc

1370 lines
49 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* ---
*
* This is the AST frontend library.
*
* The AST frontend library is not a frontend on it's own but provides a
* generic abstract syntax tree (AST) abstraction for HDL code and can be
* used by HDL frontends. See "ast.h" for an overview of the API and the
* Verilog frontend for an usage example.
*
*/
#include "kernel/log.h"
#include "libs/sha1/sha1.h"
#include "ast.h"
#include <sstream>
#include <stdarg.h>
#include <assert.h>
#include <algorithm>
using namespace AST;
using namespace AST_INTERNAL;
// helper function for creating RTLIL code for unary operations
static RTLIL::SigSpec uniop2rtlil(AstNode *that, std::string type, int result_width, const RTLIL::SigSpec &arg, bool gen_attributes = true)
{
std::stringstream sstr;
sstr << type << "$" << that->filename << ":" << that->linenum << "$" << (RTLIL::autoidx++);
RTLIL::Cell *cell = current_module->addCell(sstr.str(), type);
cell->attributes["\\src"] = stringf("%s:%d", that->filename.c_str(), that->linenum);
RTLIL::Wire *wire = current_module->addWire(cell->name + "_Y", result_width);
wire->attributes["\\src"] = stringf("%s:%d", that->filename.c_str(), that->linenum);
if (gen_attributes)
for (auto &attr : that->attributes) {
if (attr.second->type != AST_CONSTANT)
log_error("Attribute `%s' with non-constant value at %s:%d!\n",
attr.first.c_str(), that->filename.c_str(), that->linenum);
cell->attributes[attr.first] = attr.second->asAttrConst();
}
cell->parameters["\\A_SIGNED"] = RTLIL::Const(that->children[0]->is_signed);
cell->parameters["\\A_WIDTH"] = RTLIL::Const(arg.size());
cell->set("\\A", arg);
cell->parameters["\\Y_WIDTH"] = result_width;
cell->set("\\Y", wire);
return wire;
}
// helper function for extending bit width (preferred over SigSpec::extend() because of correct undef propagation in ConstEval)
static void widthExtend(AstNode *that, RTLIL::SigSpec &sig, int width, bool is_signed, std::string celltype)
{
if (width <= sig.size()) {
sig.extend(width, is_signed);
return;
}
std::stringstream sstr;
sstr << "$extend" << "$" << that->filename << ":" << that->linenum << "$" << (RTLIL::autoidx++);
RTLIL::Cell *cell = current_module->addCell(sstr.str(), celltype);
cell->attributes["\\src"] = stringf("%s:%d", that->filename.c_str(), that->linenum);
RTLIL::Wire *wire = current_module->addWire(cell->name + "_Y", width);
wire->attributes["\\src"] = stringf("%s:%d", that->filename.c_str(), that->linenum);
if (that != NULL)
for (auto &attr : that->attributes) {
if (attr.second->type != AST_CONSTANT)
log_error("Attribute `%s' with non-constant value at %s:%d!\n",
attr.first.c_str(), that->filename.c_str(), that->linenum);
cell->attributes[attr.first] = attr.second->asAttrConst();
}
cell->parameters["\\A_SIGNED"] = RTLIL::Const(is_signed);
cell->parameters["\\A_WIDTH"] = RTLIL::Const(sig.size());
cell->set("\\A", sig);
cell->parameters["\\Y_WIDTH"] = width;
cell->set("\\Y", wire);
sig = wire;
}
// helper function for creating RTLIL code for binary operations
static RTLIL::SigSpec binop2rtlil(AstNode *that, std::string type, int result_width, const RTLIL::SigSpec &left, const RTLIL::SigSpec &right)
{
std::stringstream sstr;
sstr << type << "$" << that->filename << ":" << that->linenum << "$" << (RTLIL::autoidx++);
RTLIL::Cell *cell = current_module->addCell(sstr.str(), type);
cell->attributes["\\src"] = stringf("%s:%d", that->filename.c_str(), that->linenum);
RTLIL::Wire *wire = current_module->addWire(cell->name + "_Y", result_width);
wire->attributes["\\src"] = stringf("%s:%d", that->filename.c_str(), that->linenum);
for (auto &attr : that->attributes) {
if (attr.second->type != AST_CONSTANT)
log_error("Attribute `%s' with non-constant value at %s:%d!\n",
attr.first.c_str(), that->filename.c_str(), that->linenum);
cell->attributes[attr.first] = attr.second->asAttrConst();
}
cell->parameters["\\A_SIGNED"] = RTLIL::Const(that->children[0]->is_signed);
cell->parameters["\\B_SIGNED"] = RTLIL::Const(that->children[1]->is_signed);
cell->parameters["\\A_WIDTH"] = RTLIL::Const(left.size());
cell->parameters["\\B_WIDTH"] = RTLIL::Const(right.size());
cell->set("\\A", left);
cell->set("\\B", right);
cell->parameters["\\Y_WIDTH"] = result_width;
cell->set("\\Y", wire);
return wire;
}
// helper function for creating RTLIL code for multiplexers
static RTLIL::SigSpec mux2rtlil(AstNode *that, const RTLIL::SigSpec &cond, const RTLIL::SigSpec &left, const RTLIL::SigSpec &right)
{
assert(cond.size() == 1);
std::stringstream sstr;
sstr << "$ternary$" << that->filename << ":" << that->linenum << "$" << (RTLIL::autoidx++);
RTLIL::Cell *cell = current_module->addCell(sstr.str(), "$mux");
cell->attributes["\\src"] = stringf("%s:%d", that->filename.c_str(), that->linenum);
RTLIL::Wire *wire = current_module->addWire(cell->name + "_Y", left.size());
wire->attributes["\\src"] = stringf("%s:%d", that->filename.c_str(), that->linenum);
for (auto &attr : that->attributes) {
if (attr.second->type != AST_CONSTANT)
log_error("Attribute `%s' with non-constant value at %s:%d!\n",
attr.first.c_str(), that->filename.c_str(), that->linenum);
cell->attributes[attr.first] = attr.second->asAttrConst();
}
cell->parameters["\\WIDTH"] = RTLIL::Const(left.size());
cell->set("\\A", right);
cell->set("\\B", left);
cell->set("\\S", cond);
cell->set("\\Y", wire);
return wire;
}
// helper class for converting AST always nodes to RTLIL processes
struct AST_INTERNAL::ProcessGenerator
{
// input and output structures
AstNode *always;
RTLIL::SigSpec initSyncSignals;
RTLIL::Process *proc;
const RTLIL::SigSpec &outputSignals;
// This always points to the RTLIL::CaseRule beeing filled at the moment
RTLIL::CaseRule *current_case;
// This two variables contain the replacement pattern to be used in the right hand side
// of an assignment. E.g. in the code "foo = bar; foo = func(foo);" the foo in the right
// hand side of the 2nd assignment needs to be replace with the temporary signal holding
// the value assigned in the first assignment. So when the first assignement is processed
// the according information is appended to subst_rvalue_from and subst_rvalue_to.
RTLIL::SigSpec subst_rvalue_from, subst_rvalue_to;
// This two variables contain the replacement pattern to be used in the left hand side
// of an assignment. E.g. in the code "always @(posedge clk) foo <= bar" the signal bar
// should not be connected to the signal foo. Instead it must be connected to the temporary
// signal that is used as input for the register that drives the signal foo.
RTLIL::SigSpec subst_lvalue_from, subst_lvalue_to;
// The code here generates a number of temprorary signal for each output register. This
// map helps generating nice numbered names for all this temporary signals.
std::map<RTLIL::Wire*, int> new_temp_count;
// Buffer for generating the init action
RTLIL::SigSpec init_lvalue, init_rvalue;
ProcessGenerator(AstNode *always, RTLIL::SigSpec initSyncSignalsArg = RTLIL::SigSpec()) : always(always), initSyncSignals(initSyncSignalsArg), outputSignals(subst_lvalue_from)
{
// generate process and simple root case
proc = new RTLIL::Process;
proc->attributes["\\src"] = stringf("%s:%d", always->filename.c_str(), always->linenum);
proc->name = stringf("$proc$%s:%d$%d", always->filename.c_str(), always->linenum, RTLIL::autoidx++);
for (auto &attr : always->attributes) {
if (attr.second->type != AST_CONSTANT)
log_error("Attribute `%s' with non-constant value at %s:%d!\n",
attr.first.c_str(), always->filename.c_str(), always->linenum);
proc->attributes[attr.first] = attr.second->asAttrConst();
}
current_module->processes[proc->name] = proc;
current_case = &proc->root_case;
// create initial temporary signal for all output registers
collect_lvalues(subst_lvalue_from, always, true, true);
subst_lvalue_to = new_temp_signal(subst_lvalue_from);
bool found_anyedge_syncs = false;
for (auto child : always->children)
if (child->type == AST_EDGE)
found_anyedge_syncs = true;
if (found_anyedge_syncs) {
log("Note: Assuming pure combinatorial block at %s:%d in\n", always->filename.c_str(), always->linenum);
log("compliance with IEC 62142(E):2005 / IEEE Std. 1364.1(E):2002. Recommending\n");
log("use of @* instead of @(...) for better match of synthesis and simulation.\n");
}
// create syncs for the process
bool found_clocked_sync = false;
for (auto child : always->children)
if (child->type == AST_POSEDGE || child->type == AST_NEGEDGE) {
found_clocked_sync = true;
if (found_anyedge_syncs)
log_error("Found non-synthesizable event list at %s:%d!\n", always->filename.c_str(), always->linenum);
RTLIL::SyncRule *syncrule = new RTLIL::SyncRule;
syncrule->type = child->type == AST_POSEDGE ? RTLIL::STp : RTLIL::STn;
syncrule->signal = child->children[0]->genRTLIL();
addChunkActions(syncrule->actions, subst_lvalue_from, subst_lvalue_to, true);
proc->syncs.push_back(syncrule);
}
if (proc->syncs.empty()) {
RTLIL::SyncRule *syncrule = new RTLIL::SyncRule;
syncrule->type = RTLIL::STa;
syncrule->signal = RTLIL::SigSpec();
addChunkActions(syncrule->actions, subst_lvalue_from, subst_lvalue_to, true);
proc->syncs.push_back(syncrule);
}
// create initial assignments for the temporary signals
if ((flag_nolatches || always->get_bool_attribute("\\nolatches") || current_module->get_bool_attribute("\\nolatches")) && !found_clocked_sync) {
subst_rvalue_from = subst_lvalue_from;
subst_rvalue_to = RTLIL::SigSpec(RTLIL::State::Sx, subst_rvalue_from.size());
} else {
addChunkActions(current_case->actions, subst_lvalue_to, subst_lvalue_from);
}
// process the AST
for (auto child : always->children)
if (child->type == AST_BLOCK)
processAst(child);
if (initSyncSignals.size() > 0)
{
RTLIL::SyncRule *sync = new RTLIL::SyncRule;
sync->type = RTLIL::SyncType::STi;
proc->syncs.push_back(sync);
assert(init_lvalue.size() == init_rvalue.size());
int offset = 0;
for (auto &init_lvalue_c : init_lvalue.chunks()) {
RTLIL::SigSpec lhs = init_lvalue_c;
RTLIL::SigSpec rhs = init_rvalue.extract(offset, init_lvalue_c.width);
sync->actions.push_back(RTLIL::SigSig(lhs, rhs));
offset += lhs.size();
}
}
}
// create new temporary signals
RTLIL::SigSpec new_temp_signal(RTLIL::SigSpec sig)
{
std::vector<RTLIL::SigChunk> chunks = sig.chunks();
for (int i = 0; i < SIZE(chunks); i++)
{
RTLIL::SigChunk &chunk = chunks[i];
if (chunk.wire == NULL)
continue;
RTLIL::Wire *wire = new RTLIL::Wire;
wire->attributes["\\src"] = stringf("%s:%d", always->filename.c_str(), always->linenum);
do {
wire->name = stringf("$%d%s[%d:%d]", new_temp_count[chunk.wire]++,
chunk.wire->name.c_str(), chunk.width+chunk.offset-1, chunk.offset);;
if (chunk.wire->name.find('$') != std::string::npos)
wire->name += stringf("$%d", RTLIL::autoidx++);
} while (current_module->wires.count(wire->name) > 0);
wire->width = chunk.width;
current_module->wires[wire->name] = wire;
chunk.wire = wire;
chunk.offset = 0;
}
return chunks;
}
// recursively traverse the AST an collect all assigned signals
void collect_lvalues(RTLIL::SigSpec &reg, AstNode *ast, bool type_eq, bool type_le, bool run_sort_and_unify = true)
{
switch (ast->type)
{
case AST_CASE:
for (auto child : ast->children)
if (child != ast->children[0]) {
assert(child->type == AST_COND);
collect_lvalues(reg, child, type_eq, type_le, false);
}
break;
case AST_COND:
case AST_ALWAYS:
case AST_INITIAL:
for (auto child : ast->children)
if (child->type == AST_BLOCK)
collect_lvalues(reg, child, type_eq, type_le, false);
break;
case AST_BLOCK:
for (auto child : ast->children) {
if (child->type == AST_ASSIGN_EQ && type_eq)
reg.append(child->children[0]->genRTLIL());
if (child->type == AST_ASSIGN_LE && type_le)
reg.append(child->children[0]->genRTLIL());
if (child->type == AST_CASE || child->type == AST_BLOCK)
collect_lvalues(reg, child, type_eq, type_le, false);
}
break;
default:
assert(0);
}
if (run_sort_and_unify)
reg.sort_and_unify();
}
// remove all assignments to the given signal pattern in a case and all its children.
// e.g. when the last statement in the code "a = 23; if (b) a = 42; a = 0;" is processed this
// function is called to clean up the first two assignments as they are overwritten by
// the third assignment.
void removeSignalFromCaseTree(RTLIL::SigSpec pattern, RTLIL::CaseRule *cs)
{
for (auto it = cs->actions.begin(); it != cs->actions.end(); it++)
it->first.remove2(pattern, &it->second);
for (auto it = cs->switches.begin(); it != cs->switches.end(); it++)
for (auto it2 = (*it)->cases.begin(); it2 != (*it)->cases.end(); it2++)
removeSignalFromCaseTree(pattern, *it2);
}
// add an assignment (aka "action") but split it up in chunks. this way huge assignments
// are avoided and the generated $mux cells have a more "natural" size.
void addChunkActions(std::vector<RTLIL::SigSig> &actions, RTLIL::SigSpec lvalue, RTLIL::SigSpec rvalue, bool inSyncRule = false)
{
if (inSyncRule && initSyncSignals.size() > 0) {
init_lvalue.append(lvalue.extract(initSyncSignals));
init_rvalue.append(lvalue.extract(initSyncSignals, &rvalue));
lvalue.remove2(initSyncSignals, &rvalue);
}
assert(lvalue.size() == rvalue.size());
int offset = 0;
for (auto &lvalue_c : lvalue.chunks()) {
RTLIL::SigSpec lhs = lvalue_c;
RTLIL::SigSpec rhs = rvalue.extract(offset, lvalue_c.width);
if (inSyncRule && lvalue_c.wire && lvalue_c.wire->get_bool_attribute("\\nosync"))
rhs = RTLIL::SigSpec(RTLIL::State::Sx, rhs.size());
actions.push_back(RTLIL::SigSig(lhs, rhs));
offset += lhs.size();
}
}
// recursively process the AST and fill the RTLIL::Process
void processAst(AstNode *ast)
{
switch (ast->type)
{
case AST_BLOCK:
for (auto child : ast->children)
processAst(child);
break;
case AST_ASSIGN_EQ:
case AST_ASSIGN_LE:
{
RTLIL::SigSpec unmapped_lvalue = ast->children[0]->genRTLIL(), lvalue = unmapped_lvalue;
RTLIL::SigSpec rvalue = ast->children[1]->genWidthRTLIL(lvalue.size(), &subst_rvalue_from, &subst_rvalue_to);
lvalue.replace(subst_lvalue_from, subst_lvalue_to);
if (ast->type == AST_ASSIGN_EQ) {
subst_rvalue_from.remove2(unmapped_lvalue, &subst_rvalue_to);
subst_rvalue_from.append(unmapped_lvalue);
subst_rvalue_to.append(rvalue);
}
removeSignalFromCaseTree(lvalue, current_case);
current_case->actions.push_back(RTLIL::SigSig(lvalue, rvalue));
}
break;
case AST_CASE:
{
RTLIL::SwitchRule *sw = new RTLIL::SwitchRule;
sw->signal = ast->children[0]->genWidthRTLIL(-1, &subst_rvalue_from, &subst_rvalue_to);
current_case->switches.push_back(sw);
for (auto &attr : ast->attributes) {
if (attr.second->type != AST_CONSTANT)
log_error("Attribute `%s' with non-constant value at %s:%d!\n",
attr.first.c_str(), ast->filename.c_str(), ast->linenum);
sw->attributes[attr.first] = attr.second->asAttrConst();
}
RTLIL::SigSpec this_case_eq_lvalue;
collect_lvalues(this_case_eq_lvalue, ast, true, false);
RTLIL::SigSpec this_case_eq_ltemp = new_temp_signal(this_case_eq_lvalue);
RTLIL::SigSpec this_case_eq_rvalue = this_case_eq_lvalue;
this_case_eq_rvalue.replace(subst_rvalue_from, subst_rvalue_to);
RTLIL::SigSpec backup_subst_lvalue_from = subst_lvalue_from;
RTLIL::SigSpec backup_subst_lvalue_to = subst_lvalue_to;
RTLIL::SigSpec backup_subst_rvalue_from = subst_rvalue_from;
RTLIL::SigSpec backup_subst_rvalue_to = subst_rvalue_to;
RTLIL::CaseRule *default_case = NULL;
RTLIL::CaseRule *last_generated_case = NULL;
for (auto child : ast->children)
{
if (child == ast->children[0])
continue;
assert(child->type == AST_COND);
subst_lvalue_from = backup_subst_lvalue_from;
subst_lvalue_to = backup_subst_lvalue_to;
subst_rvalue_from = backup_subst_rvalue_from;
subst_rvalue_to = backup_subst_rvalue_to;
subst_lvalue_from.remove2(this_case_eq_lvalue, &subst_lvalue_to);
subst_lvalue_from.append(this_case_eq_lvalue);
subst_lvalue_to.append(this_case_eq_ltemp);
RTLIL::CaseRule *backup_case = current_case;
current_case = new RTLIL::CaseRule;
last_generated_case = current_case;
addChunkActions(current_case->actions, this_case_eq_ltemp, this_case_eq_rvalue);
for (auto node : child->children) {
if (node->type == AST_DEFAULT)
default_case = current_case;
else if (node->type == AST_BLOCK)
processAst(node);
else
current_case->compare.push_back(node->genWidthRTLIL(sw->signal.size(), &subst_rvalue_from, &subst_rvalue_to));
}
if (default_case != current_case)
sw->cases.push_back(current_case);
else
log_assert(current_case->compare.size() == 0);
current_case = backup_case;
}
if (last_generated_case != NULL && ast->get_bool_attribute("\\full_case") && default_case == NULL) {
last_generated_case->compare.clear();
} else {
if (default_case == NULL) {
default_case = new RTLIL::CaseRule;
addChunkActions(default_case->actions, this_case_eq_ltemp, this_case_eq_rvalue);
}
sw->cases.push_back(default_case);
}
subst_lvalue_from = backup_subst_lvalue_from;
subst_lvalue_to = backup_subst_lvalue_to;
subst_rvalue_from = backup_subst_rvalue_from;
subst_rvalue_to = backup_subst_rvalue_to;
subst_rvalue_from.remove2(this_case_eq_lvalue, &subst_rvalue_to);
subst_rvalue_from.append(this_case_eq_lvalue);
subst_rvalue_to.append(this_case_eq_ltemp);
this_case_eq_lvalue.replace(subst_lvalue_from, subst_lvalue_to);
removeSignalFromCaseTree(this_case_eq_lvalue, current_case);
addChunkActions(current_case->actions, this_case_eq_lvalue, this_case_eq_ltemp);
}
break;
case AST_WIRE:
log_error("Found wire declaration in block without label at at %s:%d!\n", ast->filename.c_str(), ast->linenum);
break;
case AST_TCALL:
case AST_FOR:
break;
default:
log_abort();
}
}
};
// detect sign and width of an expression
void AstNode::detectSignWidthWorker(int &width_hint, bool &sign_hint, bool *found_real)
{
std::string type_name;
bool sub_sign_hint = true;
int sub_width_hint = -1;
int this_width = 0;
AstNode *range = NULL;
AstNode *id_ast = NULL;
bool local_found_real = false;
if (found_real == NULL)
found_real = &local_found_real;
switch (type)
{
case AST_CONSTANT:
width_hint = std::max(width_hint, int(bits.size()));
if (!is_signed)
sign_hint = false;
break;
case AST_REALVALUE:
*found_real = true;
width_hint = std::max(width_hint, 32);
break;
case AST_IDENTIFIER:
id_ast = id2ast;
if (id_ast == NULL && current_scope.count(str))
id_ast = current_scope.at(str);
if (!id_ast)
log_error("Failed to resolve identifier %s for width detection at %s:%d!\n", str.c_str(), filename.c_str(), linenum);
if (id_ast->type == AST_PARAMETER || id_ast->type == AST_LOCALPARAM) {
if (id_ast->children.size() > 1 && id_ast->children[1]->range_valid) {
this_width = id_ast->children[1]->range_left - id_ast->children[1]->range_right + 1;
} else
if (id_ast->children[0]->type == AST_CONSTANT) {
this_width = id_ast->children[0]->bits.size();
} else
log_error("Failed to detect width for parameter %s at %s:%d!\n", str.c_str(), filename.c_str(), linenum);
if (children.size() != 0)
range = children[0];
} else if (id_ast->type == AST_WIRE || id_ast->type == AST_AUTOWIRE) {
if (!id_ast->range_valid) {
if (id_ast->type == AST_AUTOWIRE)
this_width = 1;
else {
// current_ast_mod->dumpAst(NULL, "mod> ");
// log("---\n");
// id_ast->dumpAst(NULL, "decl> ");
// dumpAst(NULL, "ref> ");
log_error("Failed to detect with of signal access `%s' at %s:%d!\n", str.c_str(), filename.c_str(), linenum);
}
} else {
this_width = id_ast->range_left - id_ast->range_right + 1;
if (children.size() != 0)
range = children[0];
}
} else if (id_ast->type == AST_GENVAR) {
this_width = 32;
} else if (id_ast->type == AST_MEMORY) {
if (!id_ast->children[0]->range_valid)
log_error("Failed to detect with of memory access `%s' at %s:%d!\n", str.c_str(), filename.c_str(), linenum);
this_width = id_ast->children[0]->range_left - id_ast->children[0]->range_right + 1;
} else
log_error("Failed to detect width for identifier %s at %s:%d!\n", str.c_str(), filename.c_str(), linenum);
if (range) {
if (range->children.size() == 1)
this_width = 1;
else if (!range->range_valid) {
AstNode *left_at_zero_ast = children[0]->children[0]->clone();
AstNode *right_at_zero_ast = children[0]->children.size() >= 2 ? children[0]->children[1]->clone() : left_at_zero_ast->clone();
while (left_at_zero_ast->simplify(true, true, false, 1, -1, false, false)) { }
while (right_at_zero_ast->simplify(true, true, false, 1, -1, false, false)) { }
if (left_at_zero_ast->type != AST_CONSTANT || right_at_zero_ast->type != AST_CONSTANT)
log_error("Unsupported expression on dynamic range select on signal `%s' at %s:%d!\n",
str.c_str(), filename.c_str(), linenum);
this_width = left_at_zero_ast->integer - right_at_zero_ast->integer + 1;
delete left_at_zero_ast;
delete right_at_zero_ast;
} else
this_width = range->range_left - range->range_right + 1;
} else
width_hint = std::max(width_hint, this_width);
if (!id_ast->is_signed)
sign_hint = false;
break;
case AST_TO_BITS:
while (children[0]->simplify(true, false, false, 1, -1, false, false) == true) { }
if (children[0]->type != AST_CONSTANT)
log_error("Left operand of tobits expression is not constant at %s:%d!\n", filename.c_str(), linenum);
children[1]->detectSignWidthWorker(sub_width_hint, sign_hint);
width_hint = std::max(width_hint, children[0]->bitsAsConst().as_int());
break;
case AST_TO_SIGNED:
children.at(0)->detectSignWidthWorker(width_hint, sub_sign_hint);
break;
case AST_TO_UNSIGNED:
children.at(0)->detectSignWidthWorker(width_hint, sub_sign_hint);
sign_hint = false;
break;
case AST_CONCAT:
for (auto child : children) {
sub_width_hint = 0;
sub_sign_hint = true;
child->detectSignWidthWorker(sub_width_hint, sub_sign_hint);
this_width += sub_width_hint;
}
width_hint = std::max(width_hint, this_width);
sign_hint = false;
break;
case AST_REPLICATE:
while (children[0]->simplify(true, false, false, 1, -1, false, true) == true) { }
if (children[0]->type != AST_CONSTANT)
log_error("Left operand of replicate expression is not constant at %s:%d!\n", filename.c_str(), linenum);
children[1]->detectSignWidthWorker(sub_width_hint, sub_sign_hint);
width_hint = std::max(width_hint, children[0]->bitsAsConst().as_int() * sub_width_hint);
sign_hint = false;
break;
case AST_NEG:
case AST_BIT_NOT:
case AST_POS:
children[0]->detectSignWidthWorker(width_hint, sign_hint, found_real);
break;
case AST_BIT_AND:
case AST_BIT_OR:
case AST_BIT_XOR:
case AST_BIT_XNOR:
for (auto child : children)
child->detectSignWidthWorker(width_hint, sign_hint, found_real);
break;
case AST_REDUCE_AND:
case AST_REDUCE_OR:
case AST_REDUCE_XOR:
case AST_REDUCE_XNOR:
case AST_REDUCE_BOOL:
width_hint = std::max(width_hint, 1);
sign_hint = false;
break;
case AST_SHIFT_LEFT:
case AST_SHIFT_RIGHT:
case AST_SHIFT_SLEFT:
case AST_SHIFT_SRIGHT:
case AST_POW:
children[0]->detectSignWidthWorker(width_hint, sign_hint, found_real);
break;
case AST_LT:
case AST_LE:
case AST_EQ:
case AST_NE:
case AST_EQX:
case AST_NEX:
case AST_GE:
case AST_GT:
width_hint = std::max(width_hint, 1);
sign_hint = false;
break;
case AST_ADD:
case AST_SUB:
case AST_MUL:
case AST_DIV:
case AST_MOD:
for (auto child : children)
child->detectSignWidthWorker(width_hint, sign_hint, found_real);
break;
case AST_LOGIC_AND:
case AST_LOGIC_OR:
case AST_LOGIC_NOT:
width_hint = std::max(width_hint, 1);
sign_hint = false;
break;
case AST_TERNARY:
children.at(1)->detectSignWidthWorker(width_hint, sign_hint, found_real);
children.at(2)->detectSignWidthWorker(width_hint, sign_hint, found_real);
break;
case AST_MEMRD:
if (!id2ast->is_signed)
sign_hint = false;
if (!id2ast->children[0]->range_valid)
log_error("Failed to detect with of memory access `%s' at %s:%d!\n", str.c_str(), filename.c_str(), linenum);
this_width = id2ast->children[0]->range_left - id2ast->children[0]->range_right + 1;
width_hint = std::max(width_hint, this_width);
break;
// everything should have been handled above -> print error if not.
default:
for (auto f : log_files)
current_ast->dumpAst(f, "verilog-ast> ");
log_error("Don't know how to detect sign and width for %s node at %s:%d!\n",
type2str(type).c_str(), filename.c_str(), linenum);
}
if (*found_real)
sign_hint = true;
}
// detect sign and width of an expression
void AstNode::detectSignWidth(int &width_hint, bool &sign_hint, bool *found_real)
{
width_hint = -1;
sign_hint = true;
if (found_real)
*found_real = false;
detectSignWidthWorker(width_hint, sign_hint, found_real);
}
// create RTLIL from an AST node
// all generated cells, wires and processes are added to the module pointed to by 'current_module'
// when the AST node is an expression (AST_ADD, AST_BIT_XOR, etc.), the result signal is returned.
//
// note that this function is influenced by a number of global variables that might be set when
// called from genWidthRTLIL(). also note that this function recursively calls itself to transform
// larger expressions into a netlist of cells.
RTLIL::SigSpec AstNode::genRTLIL(int width_hint, bool sign_hint)
{
// in the following big switch() statement there are some uses of
// Clifford's Device (http://www.clifford.at/cfun/cliffdev/). In this
// cases this variable is used to hold the type of the cell that should
// be instanciated for this type of AST node.
std::string type_name;
current_filename = filename;
set_line_num(linenum);
switch (type)
{
// simply ignore this nodes.
// they are eighter leftovers from simplify() or are referenced by other nodes
// and are only accessed here thru this references
case AST_TASK:
case AST_FUNCTION:
case AST_AUTOWIRE:
case AST_LOCALPARAM:
case AST_DEFPARAM:
case AST_GENVAR:
case AST_GENFOR:
case AST_GENBLOCK:
case AST_GENIF:
case AST_GENCASE:
break;
// remember the parameter, needed for example in techmap
case AST_PARAMETER:
current_module->avail_parameters.insert(str);
break;
// create an RTLIL::Wire for an AST_WIRE node
case AST_WIRE: {
if (current_module->wires.count(str) != 0)
log_error("Re-definition of signal `%s' at %s:%d!\n",
str.c_str(), filename.c_str(), linenum);
if (!range_valid)
log_error("Signal `%s' with non-constant width at %s:%d!\n",
str.c_str(), filename.c_str(), linenum);
if (range_left < range_right && (range_left != -1 || range_right != 0)) {
int tmp = range_left;
range_left = range_right;
range_right = tmp;
}
RTLIL::Wire *wire = new RTLIL::Wire;
wire->attributes["\\src"] = stringf("%s:%d", filename.c_str(), linenum);
wire->name = str;
wire->width = range_left - range_right + 1;
wire->start_offset = range_right;
wire->port_id = port_id;
wire->port_input = is_input;
wire->port_output = is_output;
current_module->wires[wire->name] = wire;
for (auto &attr : attributes) {
if (attr.second->type != AST_CONSTANT)
log_error("Attribute `%s' with non-constant value at %s:%d!\n",
attr.first.c_str(), filename.c_str(), linenum);
wire->attributes[attr.first] = attr.second->asAttrConst();
}
}
break;
// create an RTLIL::Memory for an AST_MEMORY node
case AST_MEMORY: {
if (current_module->memories.count(str) != 0)
log_error("Re-definition of memory `%s' at %s:%d!\n",
str.c_str(), filename.c_str(), linenum);
assert(children.size() >= 2);
assert(children[0]->type == AST_RANGE);
assert(children[1]->type == AST_RANGE);
if (!children[0]->range_valid || !children[1]->range_valid)
log_error("Memory `%s' with non-constant width or size at %s:%d!\n",
str.c_str(), filename.c_str(), linenum);
RTLIL::Memory *memory = new RTLIL::Memory;
memory->attributes["\\src"] = stringf("%s:%d", filename.c_str(), linenum);
memory->name = str;
memory->width = children[0]->range_left - children[0]->range_right + 1;
memory->start_offset = children[0]->range_right;
memory->size = children[1]->range_left - children[1]->range_right;
current_module->memories[memory->name] = memory;
if (memory->size < 0)
memory->size *= -1;
memory->size += std::min(children[1]->range_left, children[1]->range_right) + 1;
for (auto &attr : attributes) {
if (attr.second->type != AST_CONSTANT)
log_error("Attribute `%s' with non-constant value at %s:%d!\n",
attr.first.c_str(), filename.c_str(), linenum);
memory->attributes[attr.first] = attr.second->asAttrConst();
}
}
break;
// simply return the corresponding RTLIL::SigSpec for an AST_CONSTANT node
case AST_CONSTANT:
{
if (width_hint < 0)
detectSignWidth(width_hint, sign_hint);
is_signed = sign_hint;
return RTLIL::SigSpec(bitsAsConst());
}
case AST_REALVALUE:
{
RTLIL::SigSpec sig = realAsConst(width_hint);
log("Warning: converting real value %e to binary %s at %s:%d.\n",
realvalue, log_signal(sig), filename.c_str(), linenum);
return sig;
}
// simply return the corresponding RTLIL::SigSpec for an AST_IDENTIFIER node
// for identifiers with dynamic bit ranges (e.g. "foo[bar]" or "foo[bar+3:bar]") a
// shifter cell is created and the output signal of this cell is returned
case AST_IDENTIFIER:
{
RTLIL::Wire *wire = NULL;
RTLIL::SigChunk chunk;
if (id2ast && id2ast->type == AST_AUTOWIRE && current_module->wires.count(str) == 0) {
RTLIL::Wire *wire = new RTLIL::Wire;
wire->attributes["\\src"] = stringf("%s:%d", filename.c_str(), linenum);
wire->name = str;
if (flag_autowire)
log("Warning: Identifier `%s' is implicitly declared at %s:%d.\n", str.c_str(), filename.c_str(), linenum);
else
log_error("Identifier `%s' is implicitly declared at %s:%d and `default_nettype is set to none.\n", str.c_str(), filename.c_str(), linenum);
current_module->wires[str] = wire;
}
else if (id2ast->type == AST_PARAMETER || id2ast->type == AST_LOCALPARAM) {
if (id2ast->children[0]->type != AST_CONSTANT)
log_error("Parameter %s does not evaluate to constant value at %s:%d!\n",
str.c_str(), filename.c_str(), linenum);
chunk = RTLIL::Const(id2ast->children[0]->bits);
goto use_const_chunk;
}
else if (!id2ast || (id2ast->type != AST_WIRE && id2ast->type != AST_AUTOWIRE &&
id2ast->type != AST_MEMORY) || current_module->wires.count(str) == 0)
log_error("Identifier `%s' doesn't map to any signal at %s:%d!\n",
str.c_str(), filename.c_str(), linenum);
if (id2ast->type == AST_MEMORY)
log_error("Identifier `%s' does map to an unexpanded memory at %s:%d!\n",
str.c_str(), filename.c_str(), linenum);
wire = current_module->wires[str];
chunk.wire = wire;
chunk.width = wire->width;
chunk.offset = 0;
use_const_chunk:
if (children.size() != 0) {
assert(children[0]->type == AST_RANGE);
if (!children[0]->range_valid) {
AstNode *left_at_zero_ast = children[0]->children[0]->clone();
AstNode *right_at_zero_ast = children[0]->children.size() >= 2 ? children[0]->children[1]->clone() : left_at_zero_ast->clone();
while (left_at_zero_ast->simplify(true, true, false, 1, -1, false, false)) { }
while (right_at_zero_ast->simplify(true, true, false, 1, -1, false, false)) { }
if (left_at_zero_ast->type != AST_CONSTANT || right_at_zero_ast->type != AST_CONSTANT)
log_error("Unsupported expression on dynamic range select on signal `%s' at %s:%d!\n",
str.c_str(), filename.c_str(), linenum);
int width = left_at_zero_ast->integer - right_at_zero_ast->integer + 1;
AstNode *fake_ast = new AstNode(AST_NONE, clone(), children[0]->children.size() >= 2 ?
children[0]->children[1]->clone() : children[0]->children[0]->clone());
fake_ast->children[0]->delete_children();
RTLIL::SigSpec sig = binop2rtlil(fake_ast, "$shr", width,
fake_ast->children[0]->genRTLIL(), fake_ast->children[1]->genRTLIL());
delete left_at_zero_ast;
delete right_at_zero_ast;
delete fake_ast;
return sig;
} else {
chunk.offset = children[0]->range_right - id2ast->range_right;
chunk.width = children[0]->range_left - children[0]->range_right + 1;
if (children[0]->range_left > id2ast->range_left || id2ast->range_right > children[0]->range_right)
log_error("Range select out of bounds on signal `%s' at %s:%d!\n",
str.c_str(), filename.c_str(), linenum);
}
}
RTLIL::SigSpec sig(chunk);
if (genRTLIL_subst_from && genRTLIL_subst_to)
sig.replace(*genRTLIL_subst_from, *genRTLIL_subst_to);
is_signed = children.size() > 0 ? false : id2ast->is_signed && sign_hint;
return sig;
}
// just pass thru the signal. the parent will evaluate the is_signed property and interpret the SigSpec accordingly
case AST_TO_SIGNED:
case AST_TO_UNSIGNED: {
RTLIL::SigSpec sig = children[0]->genRTLIL();
if (sig.size() < width_hint)
sig.extend_u0(width_hint, sign_hint);
is_signed = sign_hint;
return sig;
}
// concatenation of signals can be done directly using RTLIL::SigSpec
case AST_CONCAT: {
RTLIL::SigSpec sig;
for (auto it = children.begin(); it != children.end(); it++)
sig.append((*it)->genRTLIL());
if (sig.size() < width_hint)
sig.extend_u0(width_hint, false);
return sig;
}
// replication of signals can be done directly using RTLIL::SigSpec
case AST_REPLICATE: {
RTLIL::SigSpec left = children[0]->genRTLIL();
RTLIL::SigSpec right = children[1]->genRTLIL();
if (!left.is_fully_const())
log_error("Left operand of replicate expression is not constant at %s:%d!\n", filename.c_str(), linenum);
int count = left.as_int();
RTLIL::SigSpec sig;
for (int i = 0; i < count; i++)
sig.append(right);
if (sig.size() < width_hint)
sig.extend_u0(width_hint, false);
is_signed = false;
return sig;
}
// generate cells for unary operations: $not, $pos, $neg
if (0) { case AST_BIT_NOT: type_name = "$not"; }
if (0) { case AST_POS: type_name = "$pos"; }
if (0) { case AST_NEG: type_name = "$neg"; }
{
RTLIL::SigSpec arg = children[0]->genRTLIL(width_hint, sign_hint);
is_signed = children[0]->is_signed;
int width = arg.size();
if (width_hint > 0) {
width = width_hint;
widthExtend(this, arg, width, is_signed, "$pos");
}
return uniop2rtlil(this, type_name, width, arg);
}
// generate cells for binary operations: $and, $or, $xor, $xnor
if (0) { case AST_BIT_AND: type_name = "$and"; }
if (0) { case AST_BIT_OR: type_name = "$or"; }
if (0) { case AST_BIT_XOR: type_name = "$xor"; }
if (0) { case AST_BIT_XNOR: type_name = "$xnor"; }
{
if (width_hint < 0)
detectSignWidth(width_hint, sign_hint);
RTLIL::SigSpec left = children[0]->genRTLIL(width_hint, sign_hint);
RTLIL::SigSpec right = children[1]->genRTLIL(width_hint, sign_hint);
int width = std::max(left.size(), right.size());
if (width_hint > 0)
width = width_hint;
is_signed = children[0]->is_signed && children[1]->is_signed;
return binop2rtlil(this, type_name, width, left, right);
}
// generate cells for unary operations: $reduce_and, $reduce_or, $reduce_xor, $reduce_xnor
if (0) { case AST_REDUCE_AND: type_name = "$reduce_and"; }
if (0) { case AST_REDUCE_OR: type_name = "$reduce_or"; }
if (0) { case AST_REDUCE_XOR: type_name = "$reduce_xor"; }
if (0) { case AST_REDUCE_XNOR: type_name = "$reduce_xnor"; }
{
RTLIL::SigSpec arg = children[0]->genRTLIL();
RTLIL::SigSpec sig = uniop2rtlil(this, type_name, std::max(width_hint, 1), arg);
return sig;
}
// generate cells for unary operations: $reduce_bool
// (this is actually just an $reduce_or, but for clearity a different cell type is used)
if (0) { case AST_REDUCE_BOOL: type_name = "$reduce_bool"; }
{
RTLIL::SigSpec arg = children[0]->genRTLIL();
RTLIL::SigSpec sig = arg.size() > 1 ? uniop2rtlil(this, type_name, std::max(width_hint, 1), arg) : arg;
return sig;
}
// generate cells for binary operations: $shl, $shr, $sshl, $sshr
if (0) { case AST_SHIFT_LEFT: type_name = "$shl"; }
if (0) { case AST_SHIFT_RIGHT: type_name = "$shr"; }
if (0) { case AST_SHIFT_SLEFT: type_name = "$sshl"; }
if (0) { case AST_SHIFT_SRIGHT: type_name = "$sshr"; }
{
if (width_hint < 0)
detectSignWidth(width_hint, sign_hint);
RTLIL::SigSpec left = children[0]->genRTLIL(width_hint, sign_hint);
RTLIL::SigSpec right = children[1]->genRTLIL();
int width = width_hint > 0 ? width_hint : left.size();
is_signed = children[0]->is_signed;
return binop2rtlil(this, type_name, width, left, right);
}
// generate cells for binary operations: $pow
case AST_POW:
{
int right_width;
bool right_signed;
children[1]->detectSignWidth(right_width, right_signed);
if (width_hint < 0)
detectSignWidth(width_hint, sign_hint);
RTLIL::SigSpec left = children[0]->genRTLIL(width_hint, sign_hint);
RTLIL::SigSpec right = children[1]->genRTLIL(right_width, right_signed);
int width = width_hint > 0 ? width_hint : left.size();
is_signed = children[0]->is_signed;
if (!flag_noopt && left.is_fully_const() && left.as_int() == 2 && !right_signed)
return binop2rtlil(this, "$shl", width, RTLIL::SigSpec(1, left.size()), right);
return binop2rtlil(this, "$pow", width, left, right);
}
// generate cells for binary operations: $lt, $le, $eq, $ne, $ge, $gt
if (0) { case AST_LT: type_name = "$lt"; }
if (0) { case AST_LE: type_name = "$le"; }
if (0) { case AST_EQ: type_name = "$eq"; }
if (0) { case AST_NE: type_name = "$ne"; }
if (0) { case AST_EQX: type_name = "$eqx"; }
if (0) { case AST_NEX: type_name = "$nex"; }
if (0) { case AST_GE: type_name = "$ge"; }
if (0) { case AST_GT: type_name = "$gt"; }
{
int width = std::max(width_hint, 1);
width_hint = -1, sign_hint = true;
children[0]->detectSignWidthWorker(width_hint, sign_hint);
children[1]->detectSignWidthWorker(width_hint, sign_hint);
RTLIL::SigSpec left = children[0]->genRTLIL(width_hint, sign_hint);
RTLIL::SigSpec right = children[1]->genRTLIL(width_hint, sign_hint);
RTLIL::SigSpec sig = binop2rtlil(this, type_name, width, left, right);
return sig;
}
// generate cells for binary operations: $add, $sub, $mul, $div, $mod
if (0) { case AST_ADD: type_name = "$add"; }
if (0) { case AST_SUB: type_name = "$sub"; }
if (0) { case AST_MUL: type_name = "$mul"; }
if (0) { case AST_DIV: type_name = "$div"; }
if (0) { case AST_MOD: type_name = "$mod"; }
{
if (width_hint < 0)
detectSignWidth(width_hint, sign_hint);
RTLIL::SigSpec left = children[0]->genRTLIL(width_hint, sign_hint);
RTLIL::SigSpec right = children[1]->genRTLIL(width_hint, sign_hint);
#if 0
int width = std::max(left.size(), right.size());
if (width > width_hint && width_hint > 0)
width = width_hint;
if (width < width_hint) {
if (type == AST_ADD || type == AST_SUB || type == AST_DIV)
width++;
if (type == AST_SUB && (!children[0]->is_signed || !children[1]->is_signed))
width = width_hint;
if (type == AST_MUL)
width = std::min(left.size() + right.size(), width_hint);
}
#else
int width = std::max(std::max(left.size(), right.size()), width_hint);
#endif
is_signed = children[0]->is_signed && children[1]->is_signed;
return binop2rtlil(this, type_name, width, left, right);
}
// generate cells for binary operations: $logic_and, $logic_or
if (0) { case AST_LOGIC_AND: type_name = "$logic_and"; }
if (0) { case AST_LOGIC_OR: type_name = "$logic_or"; }
{
RTLIL::SigSpec left = children[0]->genRTLIL();
RTLIL::SigSpec right = children[1]->genRTLIL();
return binop2rtlil(this, type_name, std::max(width_hint, 1), left, right);
}
// generate cells for unary operations: $logic_not
case AST_LOGIC_NOT:
{
RTLIL::SigSpec arg = children[0]->genRTLIL();
return uniop2rtlil(this, "$logic_not", std::max(width_hint, 1), arg);
}
// generate multiplexer for ternary operator (aka ?:-operator)
case AST_TERNARY:
{
if (width_hint < 0)
detectSignWidth(width_hint, sign_hint);
RTLIL::SigSpec cond = children[0]->genRTLIL();
RTLIL::SigSpec val1 = children[1]->genRTLIL(width_hint, sign_hint);
RTLIL::SigSpec val2 = children[2]->genRTLIL(width_hint, sign_hint);
if (cond.size() > 1)
cond = uniop2rtlil(this, "$reduce_bool", 1, cond, false);
int width = std::max(val1.size(), val2.size());
is_signed = children[1]->is_signed && children[2]->is_signed;
widthExtend(this, val1, width, is_signed, "$bu0");
widthExtend(this, val2, width, is_signed, "$bu0");
RTLIL::SigSpec sig = mux2rtlil(this, cond, val1, val2);
if (sig.size() < width_hint)
sig.extend_u0(width_hint, sign_hint);
return sig;
}
// generate $memrd cells for memory read ports
case AST_MEMRD:
{
std::stringstream sstr;
sstr << "$memrd$" << str << "$" << filename << ":" << linenum << "$" << (RTLIL::autoidx++);
RTLIL::Cell *cell = current_module->addCell(sstr.str(), "$memrd");
cell->attributes["\\src"] = stringf("%s:%d", filename.c_str(), linenum);
RTLIL::Wire *wire = current_module->addWire(cell->name + "_DATA", current_module->memories[str]->width);
wire->attributes["\\src"] = stringf("%s:%d", filename.c_str(), linenum);
int addr_bits = 1;
while ((1 << addr_bits) < current_module->memories[str]->size)
addr_bits++;
cell->set("\\CLK", RTLIL::SigSpec(RTLIL::State::Sx, 1));
cell->set("\\ADDR", children[0]->genWidthRTLIL(addr_bits));
cell->set("\\DATA", RTLIL::SigSpec(wire));
cell->parameters["\\MEMID"] = RTLIL::Const(str);
cell->parameters["\\ABITS"] = RTLIL::Const(addr_bits);
cell->parameters["\\WIDTH"] = RTLIL::Const(wire->width);
cell->parameters["\\CLK_ENABLE"] = RTLIL::Const(0);
cell->parameters["\\CLK_POLARITY"] = RTLIL::Const(0);
cell->parameters["\\TRANSPARENT"] = RTLIL::Const(0);
return RTLIL::SigSpec(wire);
}
// generate $memwr cells for memory write ports
case AST_MEMWR:
{
std::stringstream sstr;
sstr << "$memwr$" << str << "$" << filename << ":" << linenum << "$" << (RTLIL::autoidx++);
RTLIL::Cell *cell = current_module->addCell(sstr.str(), "$memwr");
cell->attributes["\\src"] = stringf("%s:%d", filename.c_str(), linenum);
int addr_bits = 1;
while ((1 << addr_bits) < current_module->memories[str]->size)
addr_bits++;
cell->set("\\CLK", RTLIL::SigSpec(RTLIL::State::Sx, 1));
cell->set("\\ADDR", children[0]->genWidthRTLIL(addr_bits));
cell->set("\\DATA", children[1]->genWidthRTLIL(current_module->memories[str]->width));
cell->set("\\EN", children[2]->genRTLIL());
cell->parameters["\\MEMID"] = RTLIL::Const(str);
cell->parameters["\\ABITS"] = RTLIL::Const(addr_bits);
cell->parameters["\\WIDTH"] = RTLIL::Const(current_module->memories[str]->width);
cell->parameters["\\CLK_ENABLE"] = RTLIL::Const(0);
cell->parameters["\\CLK_POLARITY"] = RTLIL::Const(0);
cell->parameters["\\PRIORITY"] = RTLIL::Const(RTLIL::autoidx-1);
}
break;
// generate $assert cells
case AST_ASSERT:
{
log_assert(children.size() == 2);
RTLIL::SigSpec check = children[0]->genRTLIL();
log_assert(check.size() == 1);
RTLIL::SigSpec en = children[1]->genRTLIL();
log_assert(en.size() == 1);
std::stringstream sstr;
sstr << "$assert$" << filename << ":" << linenum << "$" << (RTLIL::autoidx++);
RTLIL::Cell *cell = current_module->addCell(sstr.str(), "$assert");
cell->attributes["\\src"] = stringf("%s:%d", filename.c_str(), linenum);
for (auto &attr : attributes) {
if (attr.second->type != AST_CONSTANT)
log_error("Attribute `%s' with non-constant value at %s:%d!\n",
attr.first.c_str(), filename.c_str(), linenum);
cell->attributes[attr.first] = attr.second->asAttrConst();
}
cell->set("\\A", check);
cell->set("\\EN", en);
}
break;
// add entries to current_module->connections for assignments (outside of always blocks)
case AST_ASSIGN:
{
if (children[0]->type == AST_IDENTIFIER && children[0]->id2ast && children[0]->id2ast->type == AST_AUTOWIRE) {
RTLIL::SigSpec right = children[1]->genRTLIL();
RTLIL::SigSpec left = children[0]->genWidthRTLIL(right.size());
current_module->connect(RTLIL::SigSig(left, right));
} else {
RTLIL::SigSpec left = children[0]->genRTLIL();
RTLIL::SigSpec right = children[1]->genWidthRTLIL(left.size());
current_module->connect(RTLIL::SigSig(left, right));
}
}
break;
// create an RTLIL::Cell for an AST_CELL
case AST_CELL:
{
int port_counter = 0, para_counter = 0;
if (current_module->count_id(str) != 0)
log_error("Re-definition of cell `%s' at %s:%d!\n",
str.c_str(), filename.c_str(), linenum);
RTLIL::Cell *cell = current_module->addCell(str, "");
cell->attributes["\\src"] = stringf("%s:%d", filename.c_str(), linenum);
for (auto it = children.begin(); it != children.end(); it++) {
AstNode *child = *it;
if (child->type == AST_CELLTYPE) {
cell->type = child->str;
if (flag_icells && cell->type.substr(0, 2) == "\\$")
cell->type = cell->type.substr(1);
continue;
}
if (child->type == AST_PARASET) {
if (child->children[0]->type != AST_CONSTANT)
log_error("Parameter `%s' with non-constant value at %s:%d!\n",
child->str.c_str(), filename.c_str(), linenum);
if (child->str.size() == 0) {
char buf[100];
snprintf(buf, 100, "$%d", ++para_counter);
cell->parameters[buf] = child->children[0]->asParaConst();
} else {
cell->parameters[child->str] = child->children[0]->asParaConst();
}
continue;
}
if (child->type == AST_ARGUMENT) {
RTLIL::SigSpec sig;
if (child->children.size() > 0)
sig = child->children[0]->genRTLIL();
if (child->str.size() == 0) {
char buf[100];
snprintf(buf, 100, "$%d", ++port_counter);
cell->set(buf, sig);
} else {
cell->set(child->str, sig);
}
continue;
}
assert(0);
}
for (auto &attr : attributes) {
if (attr.second->type != AST_CONSTANT)
log_error("Attribute `%s' with non-constant value at %s:%d!\n",
attr.first.c_str(), filename.c_str(), linenum);
cell->attributes[attr.first] = attr.second->asAttrConst();
}
}
break;
// use ProcessGenerator for always blocks
case AST_ALWAYS: {
AstNode *always = this->clone();
ProcessGenerator generator(always);
ignoreThisSignalsInInitial.append(generator.outputSignals);
delete always;
} break;
case AST_INITIAL: {
AstNode *always = this->clone();
ProcessGenerator generator(always, ignoreThisSignalsInInitial);
delete always;
} break;
// everything should have been handled above -> print error if not.
default:
for (auto f : log_files)
current_ast->dumpAst(f, "verilog-ast> ");
type_name = type2str(type);
log_error("Don't know how to generate RTLIL code for %s node at %s:%d!\n",
type_name.c_str(), filename.c_str(), linenum);
}
return RTLIL::SigSpec();
}
// this is a wrapper for AstNode::genRTLIL() when a specific signal width is requested and/or
// signals must be substituted before beeing used as input values (used by ProcessGenerator)
// note that this is using some global variables to communicate this special settings to AstNode::genRTLIL().
RTLIL::SigSpec AstNode::genWidthRTLIL(int width, RTLIL::SigSpec *subst_from, RTLIL::SigSpec *subst_to)
{
RTLIL::SigSpec *backup_subst_from = genRTLIL_subst_from;
RTLIL::SigSpec *backup_subst_to = genRTLIL_subst_to;
if (subst_from)
genRTLIL_subst_from = subst_from;
if (subst_to)
genRTLIL_subst_to = subst_to;
bool sign_hint = true;
int width_hint = width;
detectSignWidthWorker(width_hint, sign_hint);
RTLIL::SigSpec sig = genRTLIL(width_hint, sign_hint);
genRTLIL_subst_from = backup_subst_from;
genRTLIL_subst_to = backup_subst_to;
if (width >= 0)
sig.extend_u0(width, is_signed);
return sig;
}