yosys/techlibs/intel/cycloneive/cells_sim.v

293 lines
9.6 KiB
Verilog
Executable File

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
module VCC (output V);
assign V = 1'b1;
endmodule // VCC
module GND (output G);
assign G = 1'b0;
endmodule // GND
/* Altera Cyclone IV (E) devices Input Buffer Primitive */
module cycloneive_io_ibuf
(output o, input i, input ibar);
assign ibar = ibar;
assign o = i;
endmodule // fiftyfivenm_io_ibuf
/* Altera Cyclone IV (E) devices Output Buffer Primitive */
module cycloneive_io_obuf
(output o, input i, input oe);
assign o = i;
assign oe = oe;
endmodule // fiftyfivenm_io_obuf
/* Altera Cyclone IV (E) 4-input non-fracturable LUT Primitive */
module cycloneive_lcell_comb
(output combout, cout,
input dataa, datab, datac, datad, cin);
/* Internal parameters which define the behaviour
of the LUT primitive.
lut_mask define the lut function, can be expressed in 16-digit bin or hex.
sum_lutc_input define the type of LUT (combinational | arithmetic).
dont_touch for retiming || carry options.
lpm_type for WYSIWYG */
parameter lut_mask = 16'hFFFF;
parameter dont_touch = "off";
parameter lpm_type = "cycloneive_lcell_comb";
parameter sum_lutc_input = "datac";
reg [1:0] lut_type;
reg cout_rt;
reg combout_rt;
wire dataa_w;
wire datab_w;
wire datac_w;
wire datad_w;
wire cin_w;
assign dataa_w = dataa;
assign datab_w = datab;
assign datac_w = datac;
assign datad_w = datad;
function lut_data;
input [15:0] mask;
input dataa, datab, datac, datad;
reg [7:0] s3;
reg [3:0] s2;
reg [1:0] s1;
begin
s3 = datad ? mask[15:8] : mask[7:0];
s2 = datac ? s3[7:4] : s3[3:0];
s1 = datab ? s2[3:2] : s2[1:0];
lut_data = dataa ? s1[1] : s1[0];
end
endfunction
initial begin
if (sum_lutc_input == "datac") lut_type = 0;
else
if (sum_lutc_input == "cin") lut_type = 1;
else begin
$error("Error in sum_lutc_input. Parameter %s is not a valid value.\n", sum_lutc_input);
$finish();
end
end
always @(dataa_w or datab_w or datac_w or datad_w or cin_w) begin
if (lut_type == 0) begin // logic function
combout_rt = lut_data(lut_mask, dataa_w, datab_w,
datac_w, datad_w);
end
else if (lut_type == 1) begin // arithmetic function
combout_rt = lut_data(lut_mask, dataa_w, datab_w,
cin_w, datad_w);
end
cout_rt = lut_data(lut_mask, dataa_w, datab_w, cin_w, 'b0);
end
assign combout = combout_rt & 1'b1;
assign cout = cout_rt & 1'b1;
endmodule // cycloneive_lcell_comb
/* Altera D Flip-Flop Primitive */
module dffeas
(output q,
input d, clk, clrn, prn, ena,
input asdata, aload, sclr, sload);
// Timing simulation is not covered
parameter power_up="dontcare";
parameter is_wysiwyg="false";
reg q_tmp;
wire reset;
reg [7:0] debug_net;
assign reset = (prn && sclr && ~clrn && ena);
assign q = q_tmp & 1'b1;
always @(posedge clk, posedge aload) begin
if(reset) q_tmp <= 0;
else q_tmp <= d;
end
assign q = q_tmp;
endmodule // dffeas
/* Cyclone IV E altpll clearbox model */
(* blackbox *)
module cycloneive_pll
(inclk,
fbin,
fbout,
clkswitch,
areset,
pfdena,
scanclk,
scandata,
scanclkena,
configupdate,
clk,
phasecounterselect,
phaseupdown,
phasestep,
clkbad,
activeclock,
locked,
scandataout,
scandone,
phasedone,
vcooverrange,
vcounderrange);
parameter operation_mode = "normal";
parameter pll_type = "auto";
parameter compensate_clock = "clock0";
parameter inclk0_input_frequency = 0;
parameter inclk1_input_frequency = 0;
parameter self_reset_on_loss_lock = "off";
parameter switch_over_type = "auto";
parameter switch_over_counter = 1;
parameter enable_switch_over_counter = "off";
parameter bandwidth = 0;
parameter bandwidth_type = "auto";
parameter use_dc_coupling = "false";
parameter lock_high = 0;
parameter lock_low = 0;
parameter lock_window_ui = "0.05";
parameter test_bypass_lock_detect = "off";
parameter clk0_output_frequency = 0;
parameter clk0_multiply_by = 0;
parameter clk0_divide_by = 0;
parameter clk0_phase_shift = "0";
parameter clk0_duty_cycle = 50;
parameter clk1_output_frequency = 0;
parameter clk1_multiply_by = 0;
parameter clk1_divide_by = 0;
parameter clk1_phase_shift = "0";
parameter clk1_duty_cycle = 50;
parameter clk2_output_frequency = 0;
parameter clk2_multiply_by = 0;
parameter clk2_divide_by = 0;
parameter clk2_phase_shift = "0";
parameter clk2_duty_cycle = 50;
parameter clk3_output_frequency = 0;
parameter clk3_multiply_by = 0;
parameter clk3_divide_by = 0;
parameter clk3_phase_shift = "0";
parameter clk3_duty_cycle = 50;
parameter clk4_output_frequency = 0;
parameter clk4_multiply_by = 0;
parameter clk4_divide_by = 0;
parameter clk4_phase_shift = "0";
parameter clk4_duty_cycle = 50;
parameter pfd_min = 0;
parameter pfd_max = 0;
parameter vco_min = 0;
parameter vco_max = 0;
parameter vco_center = 0;
// Advanced user parameters
parameter m_initial = 1;
parameter m = 0;
parameter n = 1;
parameter c0_high = 1;
parameter c0_low = 1;
parameter c0_initial = 1;
parameter c0_mode = "bypass";
parameter c0_ph = 0;
parameter c1_high = 1;
parameter c1_low = 1;
parameter c1_initial = 1;
parameter c1_mode = "bypass";
parameter c1_ph = 0;
parameter c2_high = 1;
parameter c2_low = 1;
parameter c2_initial = 1;
parameter c2_mode = "bypass";
parameter c2_ph = 0;
parameter c3_high = 1;
parameter c3_low = 1;
parameter c3_initial = 1;
parameter c3_mode = "bypass";
parameter c3_ph = 0;
parameter c4_high = 1;
parameter c4_low = 1;
parameter c4_initial = 1;
parameter c4_mode = "bypass";
parameter c4_ph = 0;
parameter m_ph = 0;
parameter clk0_counter = "unused";
parameter clk1_counter = "unused";
parameter clk2_counter = "unused";
parameter clk3_counter = "unused";
parameter clk4_counter = "unused";
parameter c1_use_casc_in = "off";
parameter c2_use_casc_in = "off";
parameter c3_use_casc_in = "off";
parameter c4_use_casc_in = "off";
parameter m_test_source = -1;
parameter c0_test_source = -1;
parameter c1_test_source = -1;
parameter c2_test_source = -1;
parameter c3_test_source = -1;
parameter c4_test_source = -1;
parameter vco_multiply_by = 0;
parameter vco_divide_by = 0;
parameter vco_post_scale = 1;
parameter vco_frequency_control = "auto";
parameter vco_phase_shift_step = 0;
parameter charge_pump_current = 10;
parameter loop_filter_r = "1.0";
parameter loop_filter_c = 0;
parameter pll_compensation_delay = 0;
parameter lpm_type = "cycloneive_pll";
parameter phase_counter_select_width = 3;
input [1:0] inclk;
input fbin;
input clkswitch;
input areset;
input pfdena;
input [phase_counter_select_width - 1:0] phasecounterselect;
input phaseupdown;
input phasestep;
input scanclk;
input scanclkena;
input scandata;
input configupdate;
output [4:0] clk;
output [1:0] clkbad;
output activeclock;
output locked;
output scandataout;
output scandone;
output fbout;
output phasedone;
output vcooverrange;
output vcounderrange;
endmodule // cycloneive_pll