yosys/passes/pmgen/microchip_dsp.pmg

440 lines
12 KiB
Plaintext

// ISC License
//
// Copyright (C) 2024 Microchip Technology Inc. and its subsidiaries
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// This file describes the main pattern matcher setup (of three total) that
// forms the `microchip_dsp` pass described in microchip_dsp.cc
// At a high level, it works as follows:
// ( 1) Starting from a DSP cell. Capture DSP configurations as states
// ( 2) Match for pre-adder
// ( 3) Match for post-adder
// ( 4) Match register 'A', 'B', 'D', 'P'
// ( 5) If post-adder and PREG both present, check if PREG feeds into post-adder.
// This indicates an accumulator situation like the ASCII diagram below:
// +--------------------------------+
// |_________ |
// | /-------\ +----+ |
// +----+ +-| post- |___|PREG|---+ 'P'
// |MULT|------ | adder | +----+
// +----+ \-------/
pattern microchip_dsp_pack
state <SigBit> clock
state <SigSpec> sigA sigB sigC sigD sigP
state <Cell*> ffA ffB ffD ffP
state <Cell*> preAdderStatic postAdderStatic
state <bool> moveBtoA useFeedBack
// static ports, used to detect dsp configuration
state <SigSpec> bypassA bypassB bypassC bypassD bypassP
state <SigSpec> bypassPASUB
// Variables used for subpatterns
state <SigSpec> argQ argD
udata <bool> allowAsync
udata <SigSpec> dffD dffQ
udata <SigBit> dffclock
udata <Cell*> dff
udata <Cell*> u_preAdderStatic u_postAdderStatic
udata <IdString> u_postAddAB
state <IdString> postAddAB
// (1) Starting from a DSP cell
match dsp
select dsp->type.in(\MACC_PA)
endmatch
// detect existing signals connected to DSP
// detect configuration ports
code sigA sigB sigC sigD clock sigP
//helper function to remove unused bits
auto unextend = [](const SigSpec &sig) {
int i;
for (i = GetSize(sig)-1; i > 0; i--)
if (sig[i] != sig[i-1])
break;
// Do not remove non-const sign bit
if (sig[i].wire)
++i;
return sig.extract(0, i);
};
//unextend to remove unused bits
sigA = unextend(port(dsp, \A));
sigB = unextend(port(dsp, \B));
//update signals
sigC = port(dsp, \C, SigSpec());
sigD = port(dsp, \D, SigSpec());
SigSpec P = port(dsp, \P);
// Only care about bits that are used
int i;
for (i = GetSize(P)-1; i >= 0; i--)
if (nusers(P[i]) > 1)
break;
i++;
log_assert(nusers(P.extract_end(i)) <= 1);
// This sigP could have no users if downstream sinks (e.g. $add) is
// narrower than $mul result, for example
if (i == 0)
reject;
sigP = P.extract(0, i);
clock = port(dsp, \CLK, SigBit());
endcode
// capture static configuration ports
code bypassA bypassB bypassC bypassD bypassPASUB bypassP
bypassA = port(dsp, \A_BYPASS, SigSpec());
bypassB = port(dsp, \B_BYPASS, SigSpec());
bypassC = port(dsp, \C_BYPASS, SigSpec());
bypassD = port(dsp, \D_BYPASS, SigSpec());
bypassPASUB = port(dsp, \PASUB_BYPASS, SigSpec());
bypassP = port(dsp, \P_BYPASS, SigSpec());
endcode
// (2) Match for pre-adder
//
code sigA sigB sigD preAdderStatic moveBtoA
subpattern(preAddMatching);
preAdderStatic = u_preAdderStatic;
moveBtoA = false;
if (preAdderStatic) {
if (port(preAdderStatic, \Y) == sigA)
{
//used for packing
moveBtoA = true;
// sigA should be the input to the multiplier without the preAdd. sigB and sigD should be
//the preAdd inputs. If our "A" input into the multiplier is from the preAdd (not sigA), then
// we basically swap it.
sigA = sigB;
}
// port B of preAdderStatic must be mapped to port D of DSP for subtraction
sigD = port(preAdderStatic, \B);
sigB = port(preAdderStatic, \A);
}
endcode
// (3) Match for post-adder
//
code postAdderStatic sigP sigC
u_postAdderStatic = nullptr;
subpattern(postAddMatching);
postAdderStatic = u_postAdderStatic;
if (postAdderStatic) {
//sigC will be whichever input to the postAdder that is NOT from the multiplier
// u_postAddAB is the input to the postAdder from the multiplier
sigC = port(postAdderStatic, u_postAddAB == \A ? \B : \A);
sigP = port(postAdderStatic, \Y);
}
endcode
// (4) Matching registers
//
// 'A' input for REG_A
code argQ bypassA sigA clock ffA
if (bypassA.is_fully_ones()){
argQ = sigA;
allowAsync = false;
subpattern(in_dffe);
if (dff) {
ffA = dff;
clock = dffclock;
sigA = dffD;
}
}
endcode
// 'B' input for REG_B
code argQ bypassB sigB clock ffB
if (bypassB.is_fully_ones()){
argQ = sigB;
allowAsync = false;
subpattern(in_dffe);
if (dff) {
ffB = dff;
clock = dffclock;
sigB = dffD;
}
}
endcode
// 'D' input for REG_D
code argQ bypassP sigD clock ffD
if (bypassD.is_fully_ones()){
argQ = sigD;
allowAsync = true;
subpattern(in_dffe);
if (dff) {
ffD = dff;
clock = dffclock;
sigD = dffD;
}
}
endcode
// 'P' output for REG_P
code argD ffP sigP clock bypassP
if (bypassP.is_fully_ones() && nusers(sigP) == 2) {
argD = sigP;
allowAsync = false;
subpattern(out_dffe);
if (dff) {
ffP = dff;
clock = dffclock;
sigP = dffQ;
}
}
endcode
// (5) If post-adder and PREG both present, check if PREG feeds into post-adder via port C.
// This indicates an accumulator situation. Port C can be freed
// +--------------------------------+
// |_________ |
// | /-------\ +----+ |
// +----+ +-| post- |___|PREG|---+ 'P'
// |MULT|------ | adder | +----+
// +----+ \-------/
code useFeedBack
useFeedBack = false;
if (postAdderStatic && ffP) {
if (sigC == sigP) {
useFeedBack = true;
}
}
endcode
// if any cells are absorbed, invoke the callback function
code
if (preAdderStatic || postAdderStatic)
accept;
if (ffA || ffB || ffD || ffP)
accept;
endcode
// #######################
// Subpattern for matching against post-adder
// Match 'P' output that exclusively drives one of two inputs to an $add
// cell (post-adder).
// The other input to the adder is assumed to come in from the 'C' input
subpattern postAddMatching
arg sigP
match postAdd
select postAdd->type.in($add, $sub)
select GetSize(port(postAdd, \Y)) <= 48
// AB is the port that connects MUL to ADD
choice <IdString> AB {\A, \B}
select nusers(port(postAdd, AB)) == 2
// has one input coming from multiplier
index <SigBit> port(postAdd, AB)[0] === sigP[0]
filter GetSize(port(postAdd, AB)) >= GetSize(sigP)
filter port(postAdd, AB).extract(0, GetSize(sigP)) == sigP
// Check that remainder of AB is a sign- or zero-extension
filter port(postAdd, AB).extract_end(GetSize(sigP)) == SigSpec(sigP[GetSize(sigP)-1], GetSize(port(postAdd, AB))-GetSize(sigP)) || port(postAdd, AB).extract_end(GetSize(sigP)) == SigSpec(State::S0, GetSize(port(postAdd, AB))-GetSize(sigP))
set postAddAB AB
// optional
endmatch
code
if (postAdd)
{
if (postAdd->type.in(ID($sub)) && postAddAB == \A) {
// if $sub, the multiplier output must match to $sub.B, otherwise no match
} else {
u_postAddAB = postAddAB;
u_postAdderStatic = postAdd;
}
}
endcode
// #######################
// Subpattern for matching against pre-adder
// support static PASUB only
subpattern preAddMatching
arg sigA sigB sigD bypassB bypassD bypassPASUB
code
u_preAdderStatic = nullptr;
// Ensure that preAdder not already used
// Assume we can inspect port D to see if its all zeros.
if (!(sigD.empty() || sigD.is_fully_zero())) reject;
if (!bypassB.is_fully_ones()) reject;
if (!bypassD.is_fully_ones()) reject;
if (!bypassPASUB.is_fully_ones()) reject;
endcode
match preAdd
// can handle add or sub
select preAdd->type.in($add, $sub)
// Output has to be 18 bits or less, and only has single fanout
select GetSize(port(preAdd, \Y)) <= 18
select nusers(port(preAdd, \Y)) == 2
// Adder inputs must be 18 bits or less
select GetSize(port(preAdd, \A)) <= 18
select GetSize(port(preAdd, \B)) <= 18
// Output feeds into one of multiplier input
filter port(preAdd, \Y) == sigB || port(preAdd, \Y) == sigA
// optional
endmatch
code
if (preAdd)
{
u_preAdderStatic = preAdd;
}
endcode
// #######################
// Subpattern for matching against input registers, based on knowledge of the
// 'Q' input.
subpattern in_dffe
arg argQ clock
code
dff = nullptr;
if (argQ.empty())
reject;
for (const auto &c : argQ.chunks()) {
// Abandon matches when 'Q' is a constant
if (!c.wire)
reject;
// Abandon matches when 'Q' has the keep attribute set
if (c.wire->get_bool_attribute(\keep))
reject;
// Abandon matches when 'Q' has a non-zero init attribute set
Const init = c.wire->attributes.at(\init, Const());
if (!init.empty())
for (auto b : init.extract(c.offset, c.width))
if (b != State::Sx && b != State::S0)
reject;
}
endcode
match ff
// reg D has async rst
// reg A, B has sync rst
select ff->type.in($dff, $dffe, $sdff, $sdffe, $adff, $adffe)
// does not support clock inversion
select param(ff, \CLK_POLARITY).as_bool()
// it is possible that only part of a dff output matches argQ
slice offset GetSize(port(ff, \D))
index <SigBit> port(ff, \Q)[offset] === argQ[0]
// Check that the rest of argQ is present
filter GetSize(port(ff, \Q)) >= offset + GetSize(argQ)
filter port(ff, \Q).extract(offset, GetSize(argQ)) == argQ
// only consider async rst flops when flag is set
filter !ff->type.in($adff, $adffe) || allowAsync
// clock must be consistent
filter clock == SigBit() || port(ff, \CLK)[0] == clock
endmatch
code argQ
// Check that reset value, if present, is fully 0.
bool noResetFlop = ff->type.in($dff, $dffe);
bool srstZero = ff->type.in($sdff, $sdffe) && param(ff, \SRST_VALUE).is_fully_zero();
bool arstZero = ff->type.in($adff, $adffe) && param(ff, \ARST_VALUE).is_fully_zero();
bool resetLegal = noResetFlop || srstZero || arstZero;
if (resetLegal)
{
SigSpec Q = port(ff, \Q);
dff = ff;
dffclock = port(ff, \CLK);
dffD = argQ;
SigSpec D = port(ff, \D);
argQ = Q;
dffD.replace(argQ, D);
}
endcode
// #######################
subpattern out_dffe
arg argD argQ clock
code
dff = nullptr;
for (auto c : argD.chunks())
// Abandon matches when 'D' has the keep attribute set
if (c.wire->get_bool_attribute(\keep))
reject;
endcode
match ff
select ff->type.in($dff, $dffe, $sdff, $sdffe)
// does not support clock inversion
select param(ff, \CLK_POLARITY).as_bool()
slice offset GetSize(port(ff, \D))
index <SigBit> port(ff, \D)[offset] === argD[0]
// Check that the rest of argD is present
filter GetSize(port(ff, \D)) >= offset + GetSize(argD)
filter port(ff, \D).extract(offset, GetSize(argD)) == argD
filter clock == SigBit() || port(ff, \CLK)[0] == clock
endmatch
code argQ
SigSpec D = port(ff, \D);
SigSpec Q = port(ff, \Q);
argQ = argD;
argQ.replace(D, Q);
// Abandon matches when 'Q' has a non-zero init attribute set
for (auto c : argQ.chunks()) {
Const init = c.wire->attributes.at(\init, Const());
if (!init.empty())
for (auto b : init.extract(c.offset, c.width))
if (b != State::Sx && b != State::S0)
reject;
}
dff = ff;
dffQ = argQ;
dffclock = port(ff, \CLK);
endcode