yosys/passes/techmap/extract.cc

762 lines
27 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/log.h"
#include "libs/subcircuit/subcircuit.h"
#include <algorithm>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
using RTLIL::id2cstr;
namespace
{
class SubCircuitSolver : public SubCircuit::Solver
{
public:
bool ignore_parameters;
std::set<std::pair<std::string, std::string>> ignored_parameters;
std::set<RTLIL::IdString> cell_attr, wire_attr;
SubCircuitSolver() : ignore_parameters(false)
{
}
bool compareAttributes(const std::set<RTLIL::IdString> &attr, const std::map<RTLIL::IdString, RTLIL::Const> &needleAttr, const std::map<RTLIL::IdString, RTLIL::Const> &haystackAttr)
{
for (auto &it : attr) {
size_t nc = needleAttr.count(it), hc = haystackAttr.count(it);
if (nc != hc || (nc > 0 && needleAttr.at(it) != haystackAttr.at(it)))
return false;
}
return true;
}
RTLIL::Const unified_param(RTLIL::IdString cell_type, RTLIL::IdString param, RTLIL::Const value)
{
if (cell_type.substr(0, 1) != "$" || cell_type.substr(0, 2) == "$_")
return value;
#define param_bool(_n) if (param == _n) return value.as_bool();
param_bool("\\ARST_POLARITY");
param_bool("\\A_SIGNED");
param_bool("\\B_SIGNED");
param_bool("\\CLK_ENABLE");
param_bool("\\CLK_POLARITY");
param_bool("\\CLR_POLARITY");
param_bool("\\EN_POLARITY");
param_bool("\\SET_POLARITY");
param_bool("\\TRANSPARENT");
#undef param_bool
#define param_int(_n) if (param == _n) return value.as_int();
param_int("\\ABITS")
param_int("\\A_WIDTH")
param_int("\\B_WIDTH")
param_int("\\CTRL_IN_WIDTH")
param_int("\\CTRL_OUT_WIDTH")
param_int("\\OFFSET")
param_int("\\PRIORITY")
param_int("\\RD_PORTS")
param_int("\\SIZE")
param_int("\\STATE_BITS")
param_int("\\STATE_NUM")
param_int("\\STATE_NUM_LOG2")
param_int("\\STATE_RST")
param_int("\\S_WIDTH")
param_int("\\TRANS_NUM")
param_int("\\WIDTH")
param_int("\\WR_PORTS")
param_int("\\Y_WIDTH")
#undef param_int
return value;
}
virtual bool userCompareNodes(const std::string &, const std::string &, void *needleUserData,
const std::string &, const std::string &, void *haystackUserData, const std::map<std::string, std::string> &portMapping)
{
RTLIL::Cell *needleCell = (RTLIL::Cell*) needleUserData;
RTLIL::Cell *haystackCell = (RTLIL::Cell*) haystackUserData;
if (!needleCell || !haystackCell) {
log_assert(!needleCell && !haystackCell);
return true;
}
if (!ignore_parameters) {
std::map<RTLIL::IdString, RTLIL::Const> needle_param, haystack_param;
for (auto &it : needleCell->parameters)
if (!ignored_parameters.count(std::pair<std::string, std::string>(needleCell->type, it.first)))
needle_param[it.first] = unified_param(needleCell->type, it.first, it.second);
for (auto &it : haystackCell->parameters)
if (!ignored_parameters.count(std::pair<std::string, std::string>(haystackCell->type, it.first)))
haystack_param[it.first] = unified_param(haystackCell->type, it.first, it.second);
if (needle_param != haystack_param)
return false;
}
if (cell_attr.size() > 0 && !compareAttributes(cell_attr, needleCell->attributes, haystackCell->attributes))
return false;
if (wire_attr.size() > 0)
{
RTLIL::Wire *lastNeedleWire = NULL;
RTLIL::Wire *lastHaystackWire = NULL;
std::map<RTLIL::IdString, RTLIL::Const> emptyAttr;
for (auto &conn : needleCell->connections())
{
RTLIL::SigSpec needleSig = conn.second;
RTLIL::SigSpec haystackSig = haystackCell->get(portMapping.at(conn.first));
for (int i = 0; i < std::min(needleSig.size(), haystackSig.size()); i++) {
RTLIL::Wire *needleWire = needleSig[i].wire, *haystackWire = haystackSig[i].wire;
if (needleWire != lastNeedleWire || haystackWire != lastHaystackWire)
if (!compareAttributes(wire_attr, needleWire ? needleWire->attributes : emptyAttr, haystackWire ? haystackWire->attributes : emptyAttr))
return false;
lastNeedleWire = needleWire, lastHaystackWire = haystackWire;
}
}
}
return true;
}
};
struct bit_ref_t {
std::string cell, port;
int bit;
};
bool module2graph(SubCircuit::Graph &graph, RTLIL::Module *mod, bool constports, RTLIL::Design *sel = NULL,
int max_fanout = -1, std::set<std::pair<RTLIL::IdString, RTLIL::IdString>> *split = NULL)
{
SigMap sigmap(mod);
std::map<RTLIL::SigBit, bit_ref_t> sig_bit_ref;
if (sel && !sel->selected(mod)) {
log(" Skipping module %s as it is not selected.\n", id2cstr(mod->name));
return false;
}
if (mod->processes.size() > 0) {
log(" Skipping module %s as it contains unprocessed processes.\n", id2cstr(mod->name));
return false;
}
if (constports) {
graph.createNode("$const$0", "$const$0", NULL, true);
graph.createNode("$const$1", "$const$1", NULL, true);
graph.createNode("$const$x", "$const$x", NULL, true);
graph.createNode("$const$z", "$const$z", NULL, true);
graph.createPort("$const$0", "\\Y", 1);
graph.createPort("$const$1", "\\Y", 1);
graph.createPort("$const$x", "\\Y", 1);
graph.createPort("$const$z", "\\Y", 1);
graph.markExtern("$const$0", "\\Y", 0);
graph.markExtern("$const$1", "\\Y", 0);
graph.markExtern("$const$x", "\\Y", 0);
graph.markExtern("$const$z", "\\Y", 0);
}
std::map<std::pair<RTLIL::Wire*, int>, int> sig_use_count;
if (max_fanout > 0)
for (auto &cell_it : mod->cells_)
{
RTLIL::Cell *cell = cell_it.second;
if (!sel || sel->selected(mod, cell))
for (auto &conn : cell->connections()) {
RTLIL::SigSpec conn_sig = conn.second;
sigmap.apply(conn_sig);
for (auto &bit : conn_sig)
if (bit.wire != NULL)
sig_use_count[std::pair<RTLIL::Wire*, int>(bit.wire, bit.offset)]++;
}
}
// create graph nodes from cells
for (auto &cell_it : mod->cells_)
{
RTLIL::Cell *cell = cell_it.second;
if (sel && !sel->selected(mod, cell))
continue;
std::string type = cell->type;
if (sel == NULL && type.substr(0, 2) == "\\$")
type = type.substr(1);
graph.createNode(cell->name, type, (void*)cell);
for (auto &conn : cell->connections())
{
graph.createPort(cell->name, conn.first, conn.second.size());
if (split && split->count(std::pair<RTLIL::IdString, RTLIL::IdString>(cell->type, conn.first)) > 0)
continue;
RTLIL::SigSpec conn_sig = conn.second;
sigmap.apply(conn_sig);
for (int i = 0; i < conn_sig.size(); i++)
{
auto &bit = conn_sig[i];
if (bit.wire == NULL) {
if (constports) {
std::string node = "$const$x";
if (bit == RTLIL::State::S0) node = "$const$0";
if (bit == RTLIL::State::S1) node = "$const$1";
if (bit == RTLIL::State::Sz) node = "$const$z";
graph.createConnection(cell->name, conn.first, i, node, "\\Y", 0);
} else
graph.createConstant(cell->name, conn.first, i, int(bit.data));
continue;
}
if (max_fanout > 0 && sig_use_count[std::pair<RTLIL::Wire*, int>(bit.wire, bit.offset)] > max_fanout)
continue;
if (sel && !sel->selected(mod, bit.wire))
continue;
if (sig_bit_ref.count(bit) == 0) {
bit_ref_t &bit_ref = sig_bit_ref[bit];
bit_ref.cell = cell->name;
bit_ref.port = conn.first;
bit_ref.bit = i;
}
bit_ref_t &bit_ref = sig_bit_ref[bit];
graph.createConnection(bit_ref.cell, bit_ref.port, bit_ref.bit, cell->name, conn.first, i);
}
}
}
// mark external signals (used in non-selected cells)
for (auto &cell_it : mod->cells_)
{
RTLIL::Cell *cell = cell_it.second;
if (sel && !sel->selected(mod, cell))
for (auto &conn : cell->connections())
{
RTLIL::SigSpec conn_sig = conn.second;
sigmap.apply(conn_sig);
for (auto &bit : conn_sig)
if (sig_bit_ref.count(bit) != 0) {
bit_ref_t &bit_ref = sig_bit_ref[bit];
graph.markExtern(bit_ref.cell, bit_ref.port, bit_ref.bit);
}
}
}
// mark external signals (used in module ports)
for (auto &wire_it : mod->wires_)
{
RTLIL::Wire *wire = wire_it.second;
if (wire->port_id > 0)
{
RTLIL::SigSpec conn_sig(wire);
sigmap.apply(conn_sig);
for (auto &bit : conn_sig)
if (sig_bit_ref.count(bit) != 0) {
bit_ref_t &bit_ref = sig_bit_ref[bit];
graph.markExtern(bit_ref.cell, bit_ref.port, bit_ref.bit);
}
}
}
// graph.print();
return true;
}
RTLIL::Cell *replace(RTLIL::Module *needle, RTLIL::Module *haystack, SubCircuit::Solver::Result &match)
{
SigMap sigmap(needle);
SigSet<std::pair<std::string, int>> sig2port;
// create new cell
RTLIL::Cell *cell = haystack->addCell(stringf("$extract$%s$%d", needle->name.c_str(), RTLIL::autoidx++), needle->name);
// create cell ports
for (auto &it : needle->wires_) {
RTLIL::Wire *wire = it.second;
if (wire->port_id > 0) {
for (int i = 0; i < wire->width; i++)
sig2port.insert(sigmap(RTLIL::SigSpec(wire, i)), std::pair<std::string, int>(wire->name, i));
cell->set(wire->name, RTLIL::SigSpec(RTLIL::State::Sz, wire->width));
}
}
// delete replaced cells and connect new ports
for (auto &it : match.mappings)
{
auto &mapping = it.second;
RTLIL::Cell *needle_cell = (RTLIL::Cell*)mapping.needleUserData;
RTLIL::Cell *haystack_cell = (RTLIL::Cell*)mapping.haystackUserData;
if (needle_cell == NULL)
continue;
for (auto &conn : needle_cell->connections()) {
RTLIL::SigSpec sig = sigmap(conn.second);
if (mapping.portMapping.count(conn.first) > 0 && sig2port.has(sigmap(sig))) {
for (int i = 0; i < sig.size(); i++)
for (auto &port : sig2port.find(sig[i])) {
RTLIL::SigSpec bitsig = haystack_cell->get(mapping.portMapping[conn.first]).extract(i, 1);
RTLIL::SigSpec new_sig = cell->get(port.first);
new_sig.replace(port.second, bitsig);
cell->set(port.first, new_sig);
}
}
}
haystack->remove(haystack_cell);
}
return cell;
}
bool compareSortNeedleList(RTLIL::Module *left, RTLIL::Module *right)
{
int left_idx = 0, right_idx = 0;
if (left->attributes.count("\\extract_order") > 0)
left_idx = left->attributes.at("\\extract_order").as_int();
if (right->attributes.count("\\extract_order") > 0)
right_idx = right->attributes.at("\\extract_order").as_int();
if (left_idx != right_idx)
return left_idx < right_idx;
return left->name < right->name;
}
}
struct ExtractPass : public Pass {
ExtractPass() : Pass("extract", "find subcircuits and replace them with cells") { }
virtual void help()
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" extract -map <map_file> [options] [selection]\n");
log(" extract -mine <out_file> [options] [selection]\n");
log("\n");
log("This pass looks for subcircuits that are isomorphic to any of the modules\n");
log("in the given map file and replaces them with instances of this modules. The\n");
log("map file can be a verilog source file (*.v) or an ilang file (*.il).\n");
log("\n");
log(" -map <map_file>\n");
log(" use the modules in this file as reference. This option can be used\n");
log(" multiple times.\n");
log("\n");
log(" -map %%<design-name>\n");
log(" use the modules in this in-memory design as reference. This option can\n");
log(" be used multiple times.\n");
log("\n");
log(" -verbose\n");
log(" print debug output while analyzing\n");
log("\n");
log(" -constports\n");
log(" also find instances with constant drivers. this may be much\n");
log(" slower than the normal operation.\n");
log("\n");
log(" -nodefaultswaps\n");
log(" normally builtin port swapping rules for internal cells are used per\n");
log(" default. This turns that off, so e.g. 'a^b' does not match 'b^a'\n");
log(" when this option is used.\n");
log("\n");
log(" -compat <needle_type> <haystack_type>\n");
log(" Per default, the cells in the map file (needle) must have the\n");
log(" type as the cells in the active design (haystack). This option\n");
log(" can be used to register additional pairs of types that should\n");
log(" match. This option can be used multiple times.\n");
log("\n");
log(" -swap <needle_type> <port1>,<port2>[,...]\n");
log(" Register a set of swapable ports for a needle cell type.\n");
log(" This option can be used multiple times.\n");
log("\n");
log(" -perm <needle_type> <port1>,<port2>[,...] <portA>,<portB>[,...]\n");
log(" Register a valid permutation of swapable ports for a needle\n");
log(" cell type. This option can be used multiple times.\n");
log("\n");
log(" -cell_attr <attribute_name>\n");
log(" Attributes on cells with the given name must match.\n");
log("\n");
log(" -wire_attr <attribute_name>\n");
log(" Attributes on wires with the given name must match.\n");
log("\n");
log(" -ignore_parameters\n");
log(" Do not use parameters when matching cells.\n");
log("\n");
log(" -ignore_param <cell_type> <parameter_name>\n");
log(" Do not use this parameter when matching cells.\n");
log("\n");
log("This pass does not operate on modules with uprocessed processes in it.\n");
log("(I.e. the 'proc' pass should be used first to convert processes to netlists.)\n");
log("\n");
log("This pass can also be used for mining for frequent subcircuits. In this mode\n");
log("the following options are to be used instead of the -map option.\n");
log("\n");
log(" -mine <out_file>\n");
log(" mine for frequent subcircuits and write them to the given ilang file\n");
log("\n");
log(" -mine_cells_span <min> <max>\n");
log(" only mine for subcircuits with the specified number of cells\n");
log(" default value: 3 5\n");
log("\n");
log(" -mine_min_freq <num>\n");
log(" only mine for subcircuits with at least the specified number of matches\n");
log(" default value: 10\n");
log("\n");
log(" -mine_limit_matches_per_module <num>\n");
log(" when calculating the number of matches for a subcircuit, don't count\n");
log(" more than the specified number of matches per module\n");
log("\n");
log(" -mine_max_fanout <num>\n");
log(" don't consider internal signals with more than <num> connections\n");
log("\n");
log("The modules in the map file may have the attribute 'extract_order' set to an\n");
log("integer value. Then this value is used to determine the order in which the pass\n");
log("tries to map the modules to the design (ascending, default value is 0).\n");
log("\n");
log("See 'help techmap' for a pass that does the opposite thing.\n");
log("\n");
}
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{
log_header("Executing EXTRACT pass (map subcircuits to cells).\n");
log_push();
SubCircuitSolver solver;
std::vector<std::string> map_filenames;
std::string mine_outfile;
bool constports = false;
bool nodefaultswaps = false;
bool mine_mode = false;
int mine_cells_min = 3;
int mine_cells_max = 5;
int mine_min_freq = 10;
int mine_limit_mod = -1;
int mine_max_fanout = -1;
std::set<std::pair<RTLIL::IdString, RTLIL::IdString>> mine_split;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-map" && argidx+1 < args.size()) {
if (mine_mode)
log_cmd_error("You cannot mix -map and -mine.\n");
map_filenames.push_back(args[++argidx]);
continue;
}
if (args[argidx] == "-mine" && argidx+1 < args.size()) {
if (!map_filenames.empty())
log_cmd_error("You cannot mix -map and -mine.\n");
mine_outfile = args[++argidx];
mine_mode = true;
continue;
}
if (args[argidx] == "-mine_cells_span" && argidx+2 < args.size()) {
mine_cells_min = atoi(args[++argidx].c_str());
mine_cells_max = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-mine_min_freq" && argidx+1 < args.size()) {
mine_min_freq = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-mine_limit_matches_per_module" && argidx+1 < args.size()) {
mine_limit_mod = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-mine_split" && argidx+2 < args.size()) {
mine_split.insert(std::pair<RTLIL::IdString, RTLIL::IdString>(RTLIL::escape_id(args[argidx+1]), RTLIL::escape_id(args[argidx+2])));
argidx += 2;
continue;
}
if (args[argidx] == "-mine_max_fanout" && argidx+1 < args.size()) {
mine_max_fanout = atoi(args[++argidx].c_str());
continue;
}
if (args[argidx] == "-verbose") {
solver.setVerbose();
continue;
}
if (args[argidx] == "-constports") {
constports = true;
continue;
}
if (args[argidx] == "-nodefaultswaps") {
nodefaultswaps = true;
continue;
}
if (args[argidx] == "-compat" && argidx+2 < args.size()) {
std::string needle_type = RTLIL::escape_id(args[++argidx]);
std::string haystack_type = RTLIL::escape_id(args[++argidx]);
solver.addCompatibleTypes(needle_type, haystack_type);
continue;
}
if (args[argidx] == "-swap" && argidx+2 < args.size()) {
std::string type = RTLIL::escape_id(args[++argidx]);
std::set<std::string> ports;
char *ports_str = strdup(args[++argidx].c_str());
for (char *sptr, *p = strtok_r(ports_str, ",\t\r\n ", &sptr); p != NULL; p = strtok_r(NULL, ",\t\r\n ", &sptr))
ports.insert(RTLIL::escape_id(p));
free(ports_str);
solver.addSwappablePorts(type, ports);
continue;
}
if (args[argidx] == "-perm" && argidx+3 < args.size()) {
std::string type = RTLIL::escape_id(args[++argidx]);
std::vector<std::string> map_left, map_right;
char *left_str = strdup(args[++argidx].c_str());
char *right_str = strdup(args[++argidx].c_str());
for (char *sptr, *p = strtok_r(left_str, ",\t\r\n ", &sptr); p != NULL; p = strtok_r(NULL, ",\t\r\n ", &sptr))
map_left.push_back(RTLIL::escape_id(p));
for (char *sptr, *p = strtok_r(right_str, ",\t\r\n ", &sptr); p != NULL; p = strtok_r(NULL, ",\t\r\n ", &sptr))
map_right.push_back(RTLIL::escape_id(p));
free(left_str);
free(right_str);
if (map_left.size() != map_right.size())
log_cmd_error("Arguments to -perm are not a valid permutation!\n");
std::map<std::string, std::string> map;
for (size_t i = 0; i < map_left.size(); i++)
map[map_left[i]] = map_right[i];
std::sort(map_left.begin(), map_left.end());
std::sort(map_right.begin(), map_right.end());
if (map_left != map_right)
log_cmd_error("Arguments to -perm are not a valid permutation!\n");
solver.addSwappablePortsPermutation(type, map);
continue;
}
if (args[argidx] == "-cell_attr" && argidx+1 < args.size()) {
solver.cell_attr.insert(RTLIL::escape_id(args[++argidx]));
continue;
}
if (args[argidx] == "-wire_attr" && argidx+1 < args.size()) {
solver.wire_attr.insert(RTLIL::escape_id(args[++argidx]));
continue;
}
if (args[argidx] == "-ignore_parameters") {
solver.ignore_parameters = true;
continue;
}
if (args[argidx] == "-ignore_param" && argidx+2 < args.size()) {
solver.ignored_parameters.insert(std::pair<std::string, std::string>(RTLIL::escape_id(args[argidx+1]), RTLIL::escape_id(args[argidx+2])));
argidx += 2;
continue;
}
break;
}
extra_args(args, argidx, design);
if (!nodefaultswaps) {
solver.addSwappablePorts("$and", "\\A", "\\B");
solver.addSwappablePorts("$or", "\\A", "\\B");
solver.addSwappablePorts("$xor", "\\A", "\\B");
solver.addSwappablePorts("$xnor", "\\A", "\\B");
solver.addSwappablePorts("$eq", "\\A", "\\B");
solver.addSwappablePorts("$ne", "\\A", "\\B");
solver.addSwappablePorts("$eqx", "\\A", "\\B");
solver.addSwappablePorts("$nex", "\\A", "\\B");
solver.addSwappablePorts("$add", "\\A", "\\B");
solver.addSwappablePorts("$mul", "\\A", "\\B");
solver.addSwappablePorts("$logic_and", "\\A", "\\B");
solver.addSwappablePorts("$logic_or", "\\A", "\\B");
solver.addSwappablePorts("$_AND_", "\\A", "\\B");
solver.addSwappablePorts("$_OR_", "\\A", "\\B");
solver.addSwappablePorts("$_XOR_", "\\A", "\\B");
}
if (map_filenames.empty() && mine_outfile.empty())
log_cmd_error("Missing option -map <verilog_or_ilang_file> or -mine <output_ilang_file>.\n");
RTLIL::Design *map = NULL;
if (!mine_mode)
{
map = new RTLIL::Design;
for (auto &filename : map_filenames)
{
if (filename.substr(0, 1) == "%")
{
if (!saved_designs.count(filename.substr(1))) {
delete map;
log_cmd_error("Can't saved design `%s'.\n", filename.c_str()+1);
}
for (auto mod : saved_designs.at(filename.substr(1))->modules())
if (!map->has(mod->name))
map->add(mod->clone());
}
else
{
FILE *f = fopen(filename.c_str(), "rt");
if (f == NULL) {
delete map;
log_cmd_error("Can't open map file `%s'.\n", filename.c_str());
}
Frontend::frontend_call(map, f, filename, (filename.size() > 3 && filename.substr(filename.size()-3) == ".il") ? "ilang" : "verilog");
fclose(f);
if (filename.size() <= 3 || filename.substr(filename.size()-3) != ".il") {
Pass::call(map, "proc");
Pass::call(map, "opt_clean");
}
}
}
}
std::map<std::string, RTLIL::Module*> needle_map, haystack_map;
std::vector<RTLIL::Module*> needle_list;
log_header("Creating graphs for SubCircuit library.\n");
if (!mine_mode)
for (auto &mod_it : map->modules_) {
SubCircuit::Graph mod_graph;
std::string graph_name = "needle_" + RTLIL::unescape_id(mod_it.first);
log("Creating needle graph %s.\n", graph_name.c_str());
if (module2graph(mod_graph, mod_it.second, constports)) {
solver.addGraph(graph_name, mod_graph);
needle_map[graph_name] = mod_it.second;
needle_list.push_back(mod_it.second);
}
}
for (auto &mod_it : design->modules_) {
SubCircuit::Graph mod_graph;
std::string graph_name = "haystack_" + RTLIL::unescape_id(mod_it.first);
log("Creating haystack graph %s.\n", graph_name.c_str());
if (module2graph(mod_graph, mod_it.second, constports, design, mine_mode ? mine_max_fanout : -1, mine_mode ? &mine_split : NULL)) {
solver.addGraph(graph_name, mod_graph);
haystack_map[graph_name] = mod_it.second;
}
}
if (!mine_mode)
{
std::vector<SubCircuit::Solver::Result> results;
log_header("Running solver from SubCircuit library.\n");
std::sort(needle_list.begin(), needle_list.end(), compareSortNeedleList);
for (auto needle : needle_list)
for (auto &haystack_it : haystack_map) {
log("Solving for %s in %s.\n", ("needle_" + RTLIL::unescape_id(needle->name)).c_str(), haystack_it.first.c_str());
solver.solve(results, "needle_" + RTLIL::unescape_id(needle->name), haystack_it.first, false);
}
log("Found %zd matches.\n", results.size());
if (results.size() > 0)
{
log_header("Substitute SubCircuits with cells.\n");
for (int i = 0; i < int(results.size()); i++) {
auto &result = results[i];
log("\nMatch #%d: (%s in %s)\n", i, result.needleGraphId.c_str(), result.haystackGraphId.c_str());
for (const auto &it : result.mappings) {
log(" %s -> %s", it.first.c_str(), it.second.haystackNodeId.c_str());
for (const auto & it2 : it.second.portMapping)
log(" %s:%s", it2.first.c_str(), it2.second.c_str());
log("\n");
}
RTLIL::Cell *new_cell = replace(needle_map.at(result.needleGraphId), haystack_map.at(result.haystackGraphId), result);
design->select(haystack_map.at(result.haystackGraphId), new_cell);
log(" new cell: %s\n", id2cstr(new_cell->name));
}
}
}
else
{
std::vector<SubCircuit::Solver::MineResult> results;
log_header("Running miner from SubCircuit library.\n");
solver.mine(results, mine_cells_min, mine_cells_max, mine_min_freq, mine_limit_mod);
map = new RTLIL::Design;
int needleCounter = 0;
for (auto &result: results)
{
log("\nFrequent SubCircuit with %d nodes and %d matches:\n", int(result.nodes.size()), result.totalMatchesAfterLimits);
log(" primary match in %s:", id2cstr(haystack_map.at(result.graphId)->name));
for (auto &node : result.nodes)
log(" %s", id2cstr(node.nodeId));
log("\n");
for (auto &it : result.matchesPerGraph)
log(" matches in %s: %d\n", id2cstr(haystack_map.at(it.first)->name), it.second);
RTLIL::Module *mod = haystack_map.at(result.graphId);
std::set<RTLIL::Cell*> cells;
std::set<RTLIL::Wire*> wires;
SigMap sigmap(mod);
for (auto &node : result.nodes)
cells.insert((RTLIL::Cell*)node.userData);
for (auto cell : cells)
for (auto &conn : cell->connections()) {
RTLIL::SigSpec sig = sigmap(conn.second);
for (auto &chunk : sig.chunks())
if (chunk.wire != NULL)
wires.insert(chunk.wire);
}
RTLIL::Module *newMod = new RTLIL::Module;
newMod->name = stringf("\\needle%05d_%s_%dx", needleCounter++, id2cstr(haystack_map.at(result.graphId)->name), result.totalMatchesAfterLimits);
map->modules_[newMod->name] = newMod;
int portCounter = 1;
for (auto wire : wires) {
RTLIL::Wire *newWire = newMod->addWire(wire->name, wire->width);
newWire->port_id = portCounter++;
newWire->port_input = true;
newWire->port_output = true;
}
for (auto cell : cells) {
RTLIL::Cell *newCell = newMod->addCell(cell->name, cell->type);
newCell->parameters = cell->parameters;
for (auto &conn : cell->connections()) {
std::vector<RTLIL::SigChunk> chunks = sigmap(conn.second);
for (auto &chunk : chunks)
if (chunk.wire != NULL)
chunk.wire = newMod->wires_.at(chunk.wire->name);
newCell->set(conn.first, chunks);
}
}
}
FILE *f = fopen(mine_outfile.c_str(), "wt");
if (f == NULL)
log_error("Can't open output file `%s'.\n", mine_outfile.c_str());
Backend::backend_call(map, f, mine_outfile, "ilang");
fclose(f);
}
delete map;
log_pop();
}
} ExtractPass;