mirror of https://github.com/YosysHQ/yosys.git
1689 lines
52 KiB
C++
1689 lines
52 KiB
C++
/*
|
|
* yosys -- Yosys Open SYnthesis Suite
|
|
*
|
|
* Copyright (C) 2019-2020 whitequark <whitequark@whitequark.org>
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include "kernel/rtlil.h"
|
|
#include "kernel/register.h"
|
|
#include "kernel/sigtools.h"
|
|
#include "kernel/utils.h"
|
|
#include "kernel/celltypes.h"
|
|
#include "kernel/log.h"
|
|
|
|
USING_YOSYS_NAMESPACE
|
|
PRIVATE_NAMESPACE_BEGIN
|
|
|
|
// [[CITE]]
|
|
// Peter Eades; Xuemin Lin; W. F. Smyth, "A Fast Effective Heuristic For The Feedback Arc Set Problem"
|
|
// Information Processing Letters, Vol. 47, pp 319-323, 1993
|
|
// https://pdfs.semanticscholar.org/c7ed/d9acce96ca357876540e19664eb9d976637f.pdf
|
|
|
|
// A topological sort (on a cell/wire graph) is always possible in a fully flattened RTLIL design without
|
|
// processes or logic loops where every wire has a single driver. Logic loops are illegal in RTLIL and wires
|
|
// with multiple drivers can be split by the `splitnets` pass; however, interdependencies between processes
|
|
// or module instances can create strongly connected components without introducing evaluation nondeterminism.
|
|
// We wish to support designs with such benign SCCs (as well as designs with multiple drivers per wire), so
|
|
// we sort the graph in a way that minimizes feedback arcs. If there are no feedback arcs in the sorted graph,
|
|
// then a more efficient evaluation method is possible, since eval() will always immediately converge.
|
|
template<class T>
|
|
struct Scheduler {
|
|
struct Vertex {
|
|
T *data;
|
|
Vertex *prev, *next;
|
|
pool<Vertex*, hash_ptr_ops> preds, succs;
|
|
|
|
Vertex() : data(NULL), prev(this), next(this) {}
|
|
Vertex(T *data) : data(data), prev(NULL), next(NULL) {}
|
|
|
|
bool empty() const
|
|
{
|
|
log_assert(data == NULL);
|
|
if (next == this) {
|
|
log_assert(prev == next);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void link(Vertex *list)
|
|
{
|
|
log_assert(prev == NULL && next == NULL);
|
|
next = list;
|
|
prev = list->prev;
|
|
list->prev->next = this;
|
|
list->prev = this;
|
|
}
|
|
|
|
void unlink()
|
|
{
|
|
log_assert(prev->next == this && next->prev == this);
|
|
prev->next = next;
|
|
next->prev = prev;
|
|
next = prev = NULL;
|
|
}
|
|
|
|
int delta() const
|
|
{
|
|
return succs.size() - preds.size();
|
|
}
|
|
};
|
|
|
|
std::vector<Vertex*> vertices;
|
|
Vertex *sources = new Vertex;
|
|
Vertex *sinks = new Vertex;
|
|
dict<int, Vertex*> bins;
|
|
|
|
~Scheduler()
|
|
{
|
|
delete sources;
|
|
delete sinks;
|
|
for (auto bin : bins)
|
|
delete bin.second;
|
|
for (auto vertex : vertices)
|
|
delete vertex;
|
|
}
|
|
|
|
Vertex *add(T *data)
|
|
{
|
|
Vertex *vertex = new Vertex(data);
|
|
vertices.push_back(vertex);
|
|
return vertex;
|
|
}
|
|
|
|
void relink(Vertex *vertex)
|
|
{
|
|
if (vertex->succs.empty())
|
|
vertex->link(sinks);
|
|
else if (vertex->preds.empty())
|
|
vertex->link(sources);
|
|
else {
|
|
int delta = vertex->delta();
|
|
if (!bins.count(delta))
|
|
bins[delta] = new Vertex;
|
|
vertex->link(bins[delta]);
|
|
}
|
|
}
|
|
|
|
Vertex *remove(Vertex *vertex)
|
|
{
|
|
vertex->unlink();
|
|
for (auto pred : vertex->preds) {
|
|
if (pred == vertex)
|
|
continue;
|
|
log_assert(pred->succs[vertex]);
|
|
pred->unlink();
|
|
pred->succs.erase(vertex);
|
|
relink(pred);
|
|
}
|
|
for (auto succ : vertex->succs) {
|
|
if (succ == vertex)
|
|
continue;
|
|
log_assert(succ->preds[vertex]);
|
|
succ->unlink();
|
|
succ->preds.erase(vertex);
|
|
relink(succ);
|
|
}
|
|
vertex->preds.clear();
|
|
vertex->succs.clear();
|
|
return vertex;
|
|
}
|
|
|
|
std::vector<Vertex*> schedule()
|
|
{
|
|
std::vector<Vertex*> s1, s2r;
|
|
for (auto vertex : vertices)
|
|
relink(vertex);
|
|
bool bins_empty = false;
|
|
while (!(sinks->empty() && sources->empty() && bins_empty)) {
|
|
while (!sinks->empty())
|
|
s2r.push_back(remove(sinks->next));
|
|
while (!sources->empty())
|
|
s1.push_back(remove(sources->next));
|
|
// Choosing u in this implementation isn't O(1), but the paper handwaves which data structure they suggest
|
|
// using to get O(1) relinking *and* find-max-key ("it is clear"... no it isn't), so this code uses a very
|
|
// naive implementation of find-max-key.
|
|
bins_empty = true;
|
|
bins.template sort<std::greater<int>>();
|
|
for (auto bin : bins) {
|
|
if (!bin.second->empty()) {
|
|
bins_empty = false;
|
|
s1.push_back(remove(bin.second->next));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
s1.insert(s1.end(), s2r.rbegin(), s2r.rend());
|
|
return s1;
|
|
}
|
|
};
|
|
|
|
static bool is_unary_cell(RTLIL::IdString type)
|
|
{
|
|
return type.in(
|
|
ID($not), ID($logic_not), ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool),
|
|
ID($pos), ID($neg));
|
|
}
|
|
|
|
static bool is_binary_cell(RTLIL::IdString type)
|
|
{
|
|
return type.in(
|
|
ID($and), ID($or), ID($xor), ID($xnor), ID($logic_and), ID($logic_or),
|
|
ID($shl), ID($sshl), ID($shr), ID($sshr), ID($shift), ID($shiftx),
|
|
ID($eq), ID($ne), ID($eqx), ID($nex), ID($gt), ID($ge), ID($lt), ID($le),
|
|
ID($add), ID($sub), ID($mul), ID($div), ID($mod));
|
|
}
|
|
|
|
static bool is_elidable_cell(RTLIL::IdString type)
|
|
{
|
|
return is_unary_cell(type) || is_binary_cell(type) || type.in(
|
|
ID($mux), ID($concat), ID($slice));
|
|
}
|
|
|
|
static bool is_sync_ff_cell(RTLIL::IdString type)
|
|
{
|
|
return type.in(
|
|
ID($dff), ID($dffe));
|
|
}
|
|
|
|
static bool is_ff_cell(RTLIL::IdString type)
|
|
{
|
|
return is_sync_ff_cell(type) || type.in(
|
|
ID($adff), ID($dffsr), ID($dlatch), ID($dlatchsr), ID($sr));
|
|
}
|
|
|
|
static bool is_internal_cell(RTLIL::IdString type)
|
|
{
|
|
return type[0] == '$' && !type.begins_with("$paramod\\");
|
|
}
|
|
|
|
struct FlowGraph {
|
|
struct Node {
|
|
enum class Type {
|
|
CONNECT,
|
|
CELL,
|
|
PROCESS
|
|
};
|
|
|
|
Type type;
|
|
RTLIL::SigSig connect = {};
|
|
const RTLIL::Cell *cell = NULL;
|
|
const RTLIL::Process *process = NULL;
|
|
};
|
|
|
|
std::vector<Node*> nodes;
|
|
dict<const RTLIL::Wire*, pool<Node*, hash_ptr_ops>> wire_defs, wire_uses;
|
|
dict<const RTLIL::Wire*, bool> wire_def_elidable, wire_use_elidable;
|
|
|
|
~FlowGraph()
|
|
{
|
|
for (auto node : nodes)
|
|
delete node;
|
|
}
|
|
|
|
void add_defs(Node *node, const RTLIL::SigSpec &sig, bool elidable)
|
|
{
|
|
for (auto chunk : sig.chunks())
|
|
if (chunk.wire)
|
|
wire_defs[chunk.wire].insert(node);
|
|
// Only defs of an entire wire in the right order can be elided.
|
|
if (sig.is_wire())
|
|
wire_def_elidable[sig.as_wire()] = elidable;
|
|
}
|
|
|
|
void add_uses(Node *node, const RTLIL::SigSpec &sig)
|
|
{
|
|
for (auto chunk : sig.chunks())
|
|
if (chunk.wire) {
|
|
wire_uses[chunk.wire].insert(node);
|
|
// Only a single use of an entire wire in the right order can be elided.
|
|
// (But the use can include other chunks.)
|
|
if (!wire_use_elidable.count(chunk.wire))
|
|
wire_use_elidable[chunk.wire] = true;
|
|
else
|
|
wire_use_elidable[chunk.wire] = false;
|
|
}
|
|
}
|
|
|
|
bool is_elidable(const RTLIL::Wire *wire) const
|
|
{
|
|
if (wire_def_elidable.count(wire) && wire_use_elidable.count(wire))
|
|
return wire_def_elidable.at(wire) && wire_use_elidable.at(wire);
|
|
return false;
|
|
}
|
|
|
|
// Connections
|
|
void add_connect_defs_uses(Node *node, const RTLIL::SigSig &conn)
|
|
{
|
|
add_defs(node, conn.first, /*elidable=*/true);
|
|
add_uses(node, conn.second);
|
|
}
|
|
|
|
Node *add_node(const RTLIL::SigSig &conn)
|
|
{
|
|
Node *node = new Node;
|
|
node->type = Node::Type::CONNECT;
|
|
node->connect = conn;
|
|
nodes.push_back(node);
|
|
add_connect_defs_uses(node, conn);
|
|
return node;
|
|
}
|
|
|
|
// Cells
|
|
void add_cell_defs_uses(Node *node, const RTLIL::Cell *cell)
|
|
{
|
|
log_assert(cell->known());
|
|
for (auto conn : cell->connections()) {
|
|
if (cell->output(conn.first)) {
|
|
if (is_sync_ff_cell(cell->type) || (cell->type == ID($memrd) && cell->getParam(ID(CLK_ENABLE)).as_bool()))
|
|
/* non-combinatorial outputs do not introduce defs */;
|
|
else if (is_elidable_cell(cell->type))
|
|
add_defs(node, conn.second, /*elidable=*/true);
|
|
else if (is_internal_cell(cell->type))
|
|
add_defs(node, conn.second, /*elidable=*/false);
|
|
else {
|
|
// Unlike outputs of internal cells (which generate code that depends on the ability to set the output
|
|
// wire bits), outputs of user cells are normal wires, and the wires connected to them can be elided.
|
|
add_defs(node, conn.second, /*elidable=*/true);
|
|
}
|
|
}
|
|
if (cell->input(conn.first))
|
|
add_uses(node, conn.second);
|
|
}
|
|
}
|
|
|
|
Node *add_node(const RTLIL::Cell *cell)
|
|
{
|
|
Node *node = new Node;
|
|
node->type = Node::Type::CELL;
|
|
node->cell = cell;
|
|
nodes.push_back(node);
|
|
add_cell_defs_uses(node, cell);
|
|
return node;
|
|
}
|
|
|
|
// Processes
|
|
void add_case_defs_uses(Node *node, const RTLIL::CaseRule *case_)
|
|
{
|
|
for (auto &action : case_->actions) {
|
|
add_defs(node, action.first, /*elidable=*/false);
|
|
add_uses(node, action.second);
|
|
}
|
|
for (auto sub_switch : case_->switches) {
|
|
add_uses(node, sub_switch->signal);
|
|
for (auto sub_case : sub_switch->cases) {
|
|
for (auto &compare : sub_case->compare)
|
|
add_uses(node, compare);
|
|
add_case_defs_uses(node, sub_case);
|
|
}
|
|
}
|
|
}
|
|
|
|
void add_process_defs_uses(Node *node, const RTLIL::Process *process)
|
|
{
|
|
add_case_defs_uses(node, &process->root_case);
|
|
for (auto sync : process->syncs)
|
|
for (auto action : sync->actions) {
|
|
if (sync->type == RTLIL::STp || sync->type == RTLIL::STn || sync->type == RTLIL::STe)
|
|
/* sync actions do not introduce feedback */;
|
|
else
|
|
add_defs(node, action.first, /*elidable=*/false);
|
|
add_uses(node, action.second);
|
|
}
|
|
}
|
|
|
|
Node *add_node(const RTLIL::Process *process)
|
|
{
|
|
Node *node = new Node;
|
|
node->type = Node::Type::PROCESS;
|
|
node->process = process;
|
|
nodes.push_back(node);
|
|
add_process_defs_uses(node, process);
|
|
return node;
|
|
}
|
|
};
|
|
|
|
struct CxxrtlWorker {
|
|
bool elide_internal = false;
|
|
bool elide_public = false;
|
|
bool localize_internal = false;
|
|
bool localize_public = false;
|
|
bool run_splitnets = false;
|
|
|
|
std::ostream &f;
|
|
std::string indent;
|
|
int temporary = 0;
|
|
|
|
dict<const RTLIL::Module*, SigMap> sigmaps;
|
|
pool<const RTLIL::Wire*> sync_wires;
|
|
dict<RTLIL::SigBit, RTLIL::SyncType> sync_types;
|
|
pool<const RTLIL::Memory*> writable_memories;
|
|
dict<const RTLIL::Cell*, pool<const RTLIL::Cell*>> transparent_for;
|
|
dict<const RTLIL::Cell*, dict<RTLIL::Wire*, RTLIL::IdString>> cell_wire_defs;
|
|
dict<const RTLIL::Wire*, FlowGraph::Node> elided_wires;
|
|
dict<const RTLIL::Module*, std::vector<FlowGraph::Node>> schedule;
|
|
pool<const RTLIL::Wire*> localized_wires;
|
|
|
|
CxxrtlWorker(std::ostream &f) : f(f) {}
|
|
|
|
void inc_indent() {
|
|
indent += "\t";
|
|
}
|
|
void dec_indent() {
|
|
indent.resize(indent.size() - 1);
|
|
}
|
|
|
|
// RTLIL allows any characters in names other than whitespace. This presents an issue for generating C++ code
|
|
// because C++ identifiers may be only alphanumeric, cannot clash with C++ keywords, and cannot clash with cxxrtl
|
|
// identifiers. This issue can be solved with a name mangling scheme. We choose a name mangling scheme that results
|
|
// in readable identifiers, does not depend on an up-to-date list of C++ keywords, and is easy to apply. Its rules:
|
|
// 1. All generated identifiers start with `_`.
|
|
// 1a. Generated identifiers for public names (beginning with `\`) start with `p_`.
|
|
// 1b. Generated identifiers for internal names (beginning with `$`) start with `i_`.
|
|
// 2. An underscore is escaped with another underscore, i.e. `__`.
|
|
// 3. Any other non-alnum character is escaped with underscores around its lowercase hex code, e.g. `@` as `_40_`.
|
|
std::string mangle_name(const RTLIL::IdString &name)
|
|
{
|
|
std::string mangled;
|
|
bool first = true;
|
|
for (char c : name.str()) {
|
|
if (first) {
|
|
first = false;
|
|
if (c == '\\')
|
|
mangled += "p_";
|
|
else if (c == '$')
|
|
mangled += "i_";
|
|
else
|
|
log_assert(false);
|
|
} else {
|
|
if (isalnum(c)) {
|
|
mangled += c;
|
|
} else if (c == '_') {
|
|
mangled += "__";
|
|
} else {
|
|
char l = c & 0xf, h = (c >> 4) & 0xf;
|
|
mangled += '_';
|
|
mangled += (h < 10 ? '0' + h : 'a' + h - 10);
|
|
mangled += (l < 10 ? '0' + l : 'a' + l - 10);
|
|
mangled += '_';
|
|
}
|
|
}
|
|
}
|
|
return mangled;
|
|
}
|
|
|
|
std::string mangle_module_name(const RTLIL::IdString &name)
|
|
{
|
|
// Class namespace.
|
|
return mangle_name(name);
|
|
}
|
|
|
|
std::string mangle_memory_name(const RTLIL::IdString &name)
|
|
{
|
|
// Class member namespace.
|
|
return "memory_" + mangle_name(name);
|
|
}
|
|
|
|
std::string mangle_cell_name(const RTLIL::IdString &name)
|
|
{
|
|
// Class member namespace.
|
|
return "cell_" + mangle_name(name);
|
|
}
|
|
|
|
std::string mangle_wire_name(const RTLIL::IdString &name)
|
|
{
|
|
// Class member namespace.
|
|
return mangle_name(name);
|
|
}
|
|
|
|
std::string mangle(const RTLIL::Module *module)
|
|
{
|
|
return mangle_module_name(module->name);
|
|
}
|
|
|
|
std::string mangle(const RTLIL::Memory *memory)
|
|
{
|
|
return mangle_memory_name(memory->name);
|
|
}
|
|
|
|
std::string mangle(const RTLIL::Cell *cell)
|
|
{
|
|
return mangle_cell_name(cell->name);
|
|
}
|
|
|
|
std::string mangle(const RTLIL::Wire *wire)
|
|
{
|
|
return mangle_wire_name(wire->name);
|
|
}
|
|
|
|
std::string mangle(RTLIL::SigBit sigbit)
|
|
{
|
|
log_assert(sigbit.wire != NULL);
|
|
if (sigbit.wire->width == 1)
|
|
return mangle(sigbit.wire);
|
|
return mangle(sigbit.wire) + "_" + std::to_string(sigbit.offset);
|
|
}
|
|
|
|
std::string fresh_temporary()
|
|
{
|
|
return stringf("tmp_%d", temporary++);
|
|
}
|
|
|
|
void dump_attrs(const RTLIL::AttrObject *object)
|
|
{
|
|
for (auto attr : object->attributes) {
|
|
f << indent << "// " << attr.first.str() << ": ";
|
|
if (attr.second.flags & RTLIL::CONST_FLAG_STRING) {
|
|
f << attr.second.decode_string();
|
|
} else {
|
|
f << attr.second.as_int(/*is_signed=*/attr.second.flags & RTLIL::CONST_FLAG_SIGNED);
|
|
}
|
|
f << "\n";
|
|
}
|
|
}
|
|
|
|
void dump_const_init(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false)
|
|
{
|
|
f << "{";
|
|
while (width > 0) {
|
|
const int CHUNK_SIZE = 32;
|
|
uint32_t chunk = data.extract(offset, width > CHUNK_SIZE ? CHUNK_SIZE : width).as_int();
|
|
if (fixed_width)
|
|
f << stringf("0x%08xu", chunk);
|
|
else
|
|
f << stringf("%#xu", chunk);
|
|
if (width > CHUNK_SIZE)
|
|
f << ',';
|
|
offset += CHUNK_SIZE;
|
|
width -= CHUNK_SIZE;
|
|
}
|
|
f << "}";
|
|
}
|
|
|
|
void dump_const_init(const RTLIL::Const &data)
|
|
{
|
|
dump_const_init(data, data.size());
|
|
}
|
|
|
|
void dump_const(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false)
|
|
{
|
|
f << "value<" << width << ">";
|
|
dump_const_init(data, width, offset, fixed_width);
|
|
}
|
|
|
|
void dump_const(const RTLIL::Const &data)
|
|
{
|
|
dump_const(data, data.size());
|
|
}
|
|
|
|
bool dump_sigchunk(const RTLIL::SigChunk &chunk, bool is_lhs)
|
|
{
|
|
if (chunk.wire == NULL) {
|
|
dump_const(chunk.data, chunk.width, chunk.offset);
|
|
return false;
|
|
} else {
|
|
if (!is_lhs && elided_wires.count(chunk.wire)) {
|
|
const FlowGraph::Node &node = elided_wires[chunk.wire];
|
|
switch (node.type) {
|
|
case FlowGraph::Node::Type::CONNECT:
|
|
dump_connect_elided(node.connect);
|
|
break;
|
|
case FlowGraph::Node::Type::CELL:
|
|
if (is_elidable_cell(node.cell->type)) {
|
|
dump_cell_elided(node.cell);
|
|
} else {
|
|
f << mangle(node.cell) << "." << mangle_wire_name(cell_wire_defs[node.cell][chunk.wire]) << ".curr";
|
|
}
|
|
break;
|
|
default:
|
|
log_assert(false);
|
|
}
|
|
} else if (localized_wires[chunk.wire]) {
|
|
f << mangle(chunk.wire);
|
|
} else {
|
|
f << mangle(chunk.wire) << (is_lhs ? ".next" : ".curr");
|
|
}
|
|
if (chunk.width == chunk.wire->width && chunk.offset == 0)
|
|
return false;
|
|
else if (chunk.width == 1)
|
|
f << ".slice<" << chunk.offset << ">()";
|
|
else
|
|
f << ".slice<" << chunk.offset+chunk.width-1 << "," << chunk.offset << ">()";
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool dump_sigspec(const RTLIL::SigSpec &sig, bool is_lhs)
|
|
{
|
|
if (sig.empty()) {
|
|
f << "value<0>()";
|
|
return false;
|
|
} else if (sig.is_chunk()) {
|
|
return dump_sigchunk(sig.as_chunk(), is_lhs);
|
|
} else {
|
|
dump_sigchunk(*sig.chunks().rbegin(), is_lhs);
|
|
for (auto it = sig.chunks().rbegin() + 1; it != sig.chunks().rend(); ++it) {
|
|
f << ".concat(";
|
|
dump_sigchunk(*it, is_lhs);
|
|
f << ")";
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void dump_sigspec_lhs(const RTLIL::SigSpec &sig)
|
|
{
|
|
dump_sigspec(sig, /*is_lhs=*/true);
|
|
}
|
|
|
|
void dump_sigspec_rhs(const RTLIL::SigSpec &sig)
|
|
{
|
|
// In the contexts where we want template argument deduction to occur for `template<size_t Bits> ... value<Bits>`,
|
|
// it is necessary to have the argument to already be a `value<N>`, since template argument deduction and implicit
|
|
// type conversion are mutually exclusive. In these contexts, we use dump_sigspec_rhs() to emit an explicit
|
|
// type conversion, but only if the expression needs it.
|
|
bool is_complex = dump_sigspec(sig, /*is_lhs=*/false);
|
|
if (is_complex)
|
|
f << ".val()";
|
|
}
|
|
|
|
void collect_sigspec_rhs(const RTLIL::SigSpec &sig, std::vector<RTLIL::IdString> &cells)
|
|
{
|
|
for (auto chunk : sig.chunks()) {
|
|
if (!chunk.wire || !elided_wires.count(chunk.wire))
|
|
continue;
|
|
|
|
const FlowGraph::Node &node = elided_wires[chunk.wire];
|
|
switch (node.type) {
|
|
case FlowGraph::Node::Type::CONNECT:
|
|
collect_connect(node.connect, cells);
|
|
break;
|
|
case FlowGraph::Node::Type::CELL:
|
|
collect_cell(node.cell, cells);
|
|
break;
|
|
default:
|
|
log_assert(false);
|
|
}
|
|
}
|
|
}
|
|
|
|
void dump_connect_elided(const RTLIL::SigSig &conn)
|
|
{
|
|
dump_sigspec_rhs(conn.second);
|
|
}
|
|
|
|
bool is_connect_elided(const RTLIL::SigSig &conn)
|
|
{
|
|
return conn.first.is_wire() && elided_wires.count(conn.first.as_wire());
|
|
}
|
|
|
|
void collect_connect(const RTLIL::SigSig &conn, std::vector<RTLIL::IdString> &cells)
|
|
{
|
|
if (!is_connect_elided(conn))
|
|
return;
|
|
|
|
collect_sigspec_rhs(conn.second, cells);
|
|
}
|
|
|
|
void dump_connect(const RTLIL::SigSig &conn)
|
|
{
|
|
if (is_connect_elided(conn))
|
|
return;
|
|
|
|
f << indent << "// connection\n";
|
|
f << indent;
|
|
dump_sigspec_lhs(conn.first);
|
|
f << " = ";
|
|
dump_connect_elided(conn);
|
|
f << ";\n";
|
|
}
|
|
|
|
void dump_cell_elided(const RTLIL::Cell *cell)
|
|
{
|
|
// Unary cells
|
|
if (is_unary_cell(cell->type)) {
|
|
f << cell->type.substr(1) << '_' <<
|
|
(cell->getParam(ID(A_SIGNED)).as_bool() ? 's' : 'u') <<
|
|
"<" << cell->getParam(ID(Y_WIDTH)).as_int() << ">(";
|
|
dump_sigspec_rhs(cell->getPort(ID(A)));
|
|
f << ")";
|
|
// Binary cells
|
|
} else if (is_binary_cell(cell->type)) {
|
|
f << cell->type.substr(1) << '_' <<
|
|
(cell->getParam(ID(A_SIGNED)).as_bool() ? 's' : 'u') <<
|
|
(cell->getParam(ID(B_SIGNED)).as_bool() ? 's' : 'u') <<
|
|
"<" << cell->getParam(ID(Y_WIDTH)).as_int() << ">(";
|
|
dump_sigspec_rhs(cell->getPort(ID(A)));
|
|
f << ", ";
|
|
dump_sigspec_rhs(cell->getPort(ID(B)));
|
|
f << ")";
|
|
// Muxes
|
|
} else if (cell->type == ID($mux)) {
|
|
f << "(";
|
|
dump_sigspec_rhs(cell->getPort(ID(S)));
|
|
f << " ? ";
|
|
dump_sigspec_rhs(cell->getPort(ID(B)));
|
|
f << " : ";
|
|
dump_sigspec_rhs(cell->getPort(ID(A)));
|
|
f << ")";
|
|
// Concats
|
|
} else if (cell->type == ID($concat)) {
|
|
dump_sigspec_rhs(cell->getPort(ID(B)));
|
|
f << ".concat(";
|
|
dump_sigspec_rhs(cell->getPort(ID(A)));
|
|
f << ").val()";
|
|
// Slices
|
|
} else if (cell->type == ID($slice)) {
|
|
dump_sigspec_rhs(cell->getPort(ID(A)));
|
|
f << ".slice<";
|
|
f << cell->getParam(ID(OFFSET)).as_int() + cell->getParam(ID(Y_WIDTH)).as_int() - 1;
|
|
f << ",";
|
|
f << cell->getParam(ID(OFFSET)).as_int();
|
|
f << ">().val()";
|
|
} else {
|
|
log_assert(false);
|
|
}
|
|
}
|
|
|
|
bool is_cell_elided(const RTLIL::Cell *cell)
|
|
{
|
|
return is_elidable_cell(cell->type) && cell->hasPort(ID(Y)) && cell->getPort(ID(Y)).is_wire() &&
|
|
elided_wires.count(cell->getPort(ID(Y)).as_wire());
|
|
}
|
|
|
|
void collect_cell(const RTLIL::Cell *cell, std::vector<RTLIL::IdString> &cells)
|
|
{
|
|
if (!is_cell_elided(cell))
|
|
return;
|
|
|
|
cells.push_back(cell->name);
|
|
for (auto port : cell->connections())
|
|
if (port.first != ID(Y))
|
|
collect_sigspec_rhs(port.second, cells);
|
|
}
|
|
|
|
void dump_cell(const RTLIL::Cell *cell)
|
|
{
|
|
if (is_cell_elided(cell))
|
|
return;
|
|
if (cell->type == ID($meminit))
|
|
return; // Handled elsewhere.
|
|
|
|
std::vector<RTLIL::IdString> elided_cells;
|
|
if (is_elidable_cell(cell->type)) {
|
|
for (auto port : cell->connections())
|
|
if (port.first != ID(Y))
|
|
collect_sigspec_rhs(port.second, elided_cells);
|
|
}
|
|
if (elided_cells.empty()) {
|
|
dump_attrs(cell);
|
|
f << indent << "// cell " << cell->name.str() << "\n";
|
|
} else {
|
|
f << indent << "// cells";
|
|
for (auto elided_cell : elided_cells)
|
|
f << " " << elided_cell.str();
|
|
f << "\n";
|
|
}
|
|
|
|
// Elidable cells
|
|
if (is_elidable_cell(cell->type)) {
|
|
f << indent;
|
|
dump_sigspec_lhs(cell->getPort(ID(Y)));
|
|
f << " = ";
|
|
dump_cell_elided(cell);
|
|
f << ";\n";
|
|
// Parallel (one-hot) muxes
|
|
} else if (cell->type == ID($pmux)) {
|
|
int width = cell->getParam(ID(WIDTH)).as_int();
|
|
int s_width = cell->getParam(ID(S_WIDTH)).as_int();
|
|
bool first = true;
|
|
for (int part = 0; part < s_width; part++) {
|
|
f << (first ? indent : " else ");
|
|
first = false;
|
|
f << "if (";
|
|
dump_sigspec_rhs(cell->getPort(ID(S)).extract(part));
|
|
f << ") {\n";
|
|
inc_indent();
|
|
f << indent;
|
|
dump_sigspec_lhs(cell->getPort(ID(Y)));
|
|
f << " = ";
|
|
dump_sigspec_rhs(cell->getPort(ID(B)).extract(part * width, width));
|
|
f << ";\n";
|
|
dec_indent();
|
|
f << indent << "}";
|
|
}
|
|
f << " else {\n";
|
|
inc_indent();
|
|
f << indent;
|
|
dump_sigspec_lhs(cell->getPort(ID(Y)));
|
|
f << " = ";
|
|
dump_sigspec_rhs(cell->getPort(ID(A)));
|
|
f << ";\n";
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
// Flip-flops
|
|
} else if (is_ff_cell(cell->type)) {
|
|
if (cell->hasPort(ID(CLK)) && cell->getPort(ID(CLK)).is_wire()) {
|
|
// Edge-sensitive logic
|
|
RTLIL::SigBit clk_bit = cell->getPort(ID(CLK))[0];
|
|
clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
|
|
f << indent << "if (" << (cell->getParam(ID(CLK_POLARITY)).as_bool() ? "posedge_" : "negedge_")
|
|
<< mangle(clk_bit) << ") {\n";
|
|
inc_indent();
|
|
if (cell->type == ID($dffe)) {
|
|
f << indent << "if (";
|
|
dump_sigspec_rhs(cell->getPort(ID(EN)));
|
|
f << " == value<1> {" << cell->getParam(ID(EN_POLARITY)).as_bool() << "u}) {\n";
|
|
inc_indent();
|
|
}
|
|
f << indent;
|
|
dump_sigspec_lhs(cell->getPort(ID(Q)));
|
|
f << " = ";
|
|
dump_sigspec_rhs(cell->getPort(ID(D)));
|
|
f << ";\n";
|
|
if (cell->type == ID($dffe)) {
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
} else if (cell->hasPort(ID(EN))) {
|
|
// Level-sensitive logic
|
|
f << indent << "if (";
|
|
dump_sigspec_rhs(cell->getPort(ID(EN)));
|
|
f << " == value<1> {" << cell->getParam(ID(EN_POLARITY)).as_bool() << "u}) {\n";
|
|
inc_indent();
|
|
f << indent;
|
|
dump_sigspec_lhs(cell->getPort(ID(Q)));
|
|
f << " = ";
|
|
dump_sigspec_rhs(cell->getPort(ID(D)));
|
|
f << ";\n";
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
if (cell->hasPort(ID(ARST))) {
|
|
// Asynchronous reset (entire coarse cell at once)
|
|
f << indent << "if (";
|
|
dump_sigspec_rhs(cell->getPort(ID(ARST)));
|
|
f << " == value<1> {" << cell->getParam(ID(ARST_POLARITY)).as_bool() << "u}) {\n";
|
|
inc_indent();
|
|
f << indent;
|
|
dump_sigspec_lhs(cell->getPort(ID(Q)));
|
|
f << " = ";
|
|
dump_const(cell->getParam(ID(ARST_VALUE)));
|
|
f << ";\n";
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
if (cell->hasPort(ID(SET))) {
|
|
// Asynchronous set (for individual bits)
|
|
f << indent;
|
|
dump_sigspec_lhs(cell->getPort(ID(Q)));
|
|
f << " = ";
|
|
dump_sigspec_lhs(cell->getPort(ID(Q)));
|
|
f << ".update(";
|
|
dump_const(RTLIL::Const(RTLIL::S1, cell->getParam(ID(WIDTH)).as_int()));
|
|
f << ", ";
|
|
dump_sigspec_rhs(cell->getPort(ID(SET)));
|
|
f << (cell->getParam(ID(SET_POLARITY)).as_bool() ? "" : ".bit_not()") << ");\n";
|
|
}
|
|
if (cell->hasPort(ID(CLR))) {
|
|
// Asynchronous clear (for individual bits; priority over set)
|
|
f << indent;
|
|
dump_sigspec_lhs(cell->getPort(ID(Q)));
|
|
f << " = ";
|
|
dump_sigspec_lhs(cell->getPort(ID(Q)));
|
|
f << ".update(";
|
|
dump_const(RTLIL::Const(RTLIL::S0, cell->getParam(ID(WIDTH)).as_int()));
|
|
f << ", ";
|
|
dump_sigspec_rhs(cell->getPort(ID(CLR)));
|
|
f << (cell->getParam(ID(CLR_POLARITY)).as_bool() ? "" : ".bit_not()") << ");\n";
|
|
}
|
|
// Memory ports
|
|
} else if (cell->type.in(ID($memrd), ID($memwr))) {
|
|
if (cell->getParam(ID(CLK_ENABLE)).as_bool()) {
|
|
RTLIL::SigBit clk_bit = cell->getPort(ID(CLK))[0];
|
|
clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
|
|
f << indent << "if (" << (cell->getParam(ID(CLK_POLARITY)).as_bool() ? "posedge_" : "negedge_")
|
|
<< mangle(clk_bit) << ") {\n";
|
|
inc_indent();
|
|
}
|
|
RTLIL::Memory *memory = cell->module->memories[cell->getParam(ID(MEMID)).decode_string()];
|
|
std::string valid_index_temp = fresh_temporary();
|
|
f << indent << "auto " << valid_index_temp << " = memory_index(";
|
|
dump_sigspec_rhs(cell->getPort(ID(ADDR)));
|
|
f << ", " << memory->start_offset << ", " << memory->size << ");\n";
|
|
if (cell->type == ID($memrd)) {
|
|
if (!cell->getPort(ID(EN)).is_fully_ones()) {
|
|
f << indent << "if (";
|
|
dump_sigspec_rhs(cell->getPort(ID(EN)));
|
|
f << ") {\n";
|
|
inc_indent();
|
|
}
|
|
// The generated code has two bounds checks; one in an assertion, and another that guards the read.
|
|
// This is done so that the code does not invoke undefined behavior under any conditions, but nevertheless
|
|
// loudly crashes if an illegal condition is encountered. The assert may be turned off with -NDEBUG not
|
|
// just for release builds, but also to make sure the simulator (which is presumably embedded in some
|
|
// larger program) will never crash the code that calls into it.
|
|
//
|
|
// If assertions are disabled, out of bounds reads are defined to return zero.
|
|
f << indent << "assert(" << valid_index_temp << ".valid && \"out of bounds read\");\n";
|
|
f << indent << "if(" << valid_index_temp << ".valid) {\n";
|
|
inc_indent();
|
|
if (writable_memories[memory]) {
|
|
std::string addr_temp = fresh_temporary();
|
|
f << indent << "const value<" << cell->getPort(ID(ADDR)).size() << "> &" << addr_temp << " = ";
|
|
dump_sigspec_rhs(cell->getPort(ID(ADDR)));
|
|
f << ";\n";
|
|
std::string lhs_temp = fresh_temporary();
|
|
f << indent << "value<" << memory->width << "> " << lhs_temp << " = "
|
|
<< mangle(memory) << "[" << valid_index_temp << ".index];\n";
|
|
std::vector<const RTLIL::Cell*> memwr_cells(transparent_for[cell].begin(), transparent_for[cell].end());
|
|
std::sort(memwr_cells.begin(), memwr_cells.end(),
|
|
[](const RTLIL::Cell *a, const RTLIL::Cell *b) {
|
|
return a->getParam(ID(PRIORITY)).as_int() < b->getParam(ID(PRIORITY)).as_int();
|
|
});
|
|
for (auto memwr_cell : memwr_cells) {
|
|
f << indent << "if (" << addr_temp << " == ";
|
|
dump_sigspec_rhs(memwr_cell->getPort(ID(ADDR)));
|
|
f << ") {\n";
|
|
inc_indent();
|
|
f << indent << lhs_temp << " = " << lhs_temp;
|
|
f << ".update(";
|
|
dump_sigspec_rhs(memwr_cell->getPort(ID(DATA)));
|
|
f << ", ";
|
|
dump_sigspec_rhs(memwr_cell->getPort(ID(EN)));
|
|
f << ");\n";
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
f << indent;
|
|
dump_sigspec_lhs(cell->getPort(ID(DATA)));
|
|
f << " = " << lhs_temp << ";\n";
|
|
} else {
|
|
f << indent;
|
|
dump_sigspec_lhs(cell->getPort(ID(DATA)));
|
|
f << " = " << mangle(memory) << "[" << valid_index_temp << ".index];\n";
|
|
}
|
|
dec_indent();
|
|
f << indent << "} else {\n";
|
|
inc_indent();
|
|
f << indent;
|
|
dump_sigspec_lhs(cell->getPort(ID(DATA)));
|
|
f << " = value<" << memory->width << "> {};\n";
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
if (!cell->getPort(ID(EN)).is_fully_ones()) {
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
} else /*if (cell->type == ID($memwr))*/ {
|
|
log_assert(writable_memories[memory]);
|
|
// See above for rationale of having both the assert and the condition.
|
|
//
|
|
// If assertions are disabled, out of bounds writes are defined to do nothing.
|
|
f << indent << "assert(" << valid_index_temp << ".valid && \"out of bounds write\");\n";
|
|
f << indent << "if (" << valid_index_temp << ".valid) {\n";
|
|
inc_indent();
|
|
f << indent << mangle(memory) << ".update(" << valid_index_temp << ".index, ";
|
|
dump_sigspec_rhs(cell->getPort(ID(DATA)));
|
|
f << ", ";
|
|
dump_sigspec_rhs(cell->getPort(ID(EN)));
|
|
f << ", " << cell->getParam(ID(PRIORITY)).as_int() << ");\n";
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
if (cell->getParam(ID(CLK_ENABLE)).as_bool()) {
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
// Internal cells
|
|
} else if (is_internal_cell(cell->type)) {
|
|
log_cmd_error("Unsupported internal cell `%s'.\n", cell->type.c_str());
|
|
// User cells
|
|
} else {
|
|
log_assert(cell->known());
|
|
for (auto conn : cell->connections())
|
|
if (cell->input(conn.first)) {
|
|
f << indent << mangle(cell) << "." << mangle_wire_name(conn.first) << ".next = ";
|
|
dump_sigspec_rhs(conn.second);
|
|
f << ";\n";
|
|
}
|
|
f << indent << mangle(cell) << ".eval();\n";
|
|
for (auto conn : cell->connections()) {
|
|
if (conn.second.is_wire()) {
|
|
RTLIL::Wire *wire = conn.second.as_wire();
|
|
if (elided_wires.count(wire) && cell_wire_defs[cell].count(wire))
|
|
continue;
|
|
}
|
|
if (cell->output(conn.first)) {
|
|
f << indent;
|
|
dump_sigspec_lhs(conn.second);
|
|
f << " = " << mangle(cell) << "." << mangle_wire_name(conn.first) << ".curr;\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void dump_assign(const RTLIL::SigSig &sigsig)
|
|
{
|
|
f << indent;
|
|
dump_sigspec_lhs(sigsig.first);
|
|
f << " = ";
|
|
dump_sigspec_rhs(sigsig.second);
|
|
f << ";\n";
|
|
}
|
|
|
|
void dump_case_rule(const RTLIL::CaseRule *rule)
|
|
{
|
|
for (auto action : rule->actions)
|
|
dump_assign(action);
|
|
for (auto switch_ : rule->switches)
|
|
dump_switch_rule(switch_);
|
|
}
|
|
|
|
void dump_switch_rule(const RTLIL::SwitchRule *rule)
|
|
{
|
|
// The switch attributes are printed before the switch condition is captured.
|
|
dump_attrs(rule);
|
|
std::string signal_temp = fresh_temporary();
|
|
f << indent << "const value<" << rule->signal.size() << "> &" << signal_temp << " = ";
|
|
dump_sigspec(rule->signal, /*is_lhs=*/false);
|
|
f << ";\n";
|
|
|
|
bool first = true;
|
|
for (auto case_ : rule->cases) {
|
|
// The case attributes (for nested cases) are printed before the if/else if/else statement.
|
|
dump_attrs(rule);
|
|
f << indent;
|
|
if (!first)
|
|
f << "} else ";
|
|
first = false;
|
|
if (!case_->compare.empty()) {
|
|
f << "if (";
|
|
bool first = true;
|
|
for (auto &compare : case_->compare) {
|
|
if (!first)
|
|
f << " || ";
|
|
first = false;
|
|
if (compare.is_fully_def()) {
|
|
f << signal_temp << " == ";
|
|
dump_sigspec(compare, /*is_lhs=*/false);
|
|
} else if (compare.is_fully_const()) {
|
|
RTLIL::Const compare_mask, compare_value;
|
|
for (auto bit : compare.as_const()) {
|
|
switch (bit) {
|
|
case RTLIL::S0:
|
|
case RTLIL::S1:
|
|
compare_mask.bits.push_back(RTLIL::S1);
|
|
compare_value.bits.push_back(bit);
|
|
break;
|
|
|
|
case RTLIL::Sx:
|
|
case RTLIL::Sz:
|
|
case RTLIL::Sa:
|
|
compare_mask.bits.push_back(RTLIL::S0);
|
|
compare_value.bits.push_back(RTLIL::S0);
|
|
break;
|
|
|
|
default:
|
|
log_assert(false);
|
|
}
|
|
}
|
|
f << "and_uu<" << compare.size() << ">(" << signal_temp << ", ";
|
|
dump_const(compare_mask);
|
|
f << ") == ";
|
|
dump_const(compare_value);
|
|
} else {
|
|
log_assert(false);
|
|
}
|
|
}
|
|
f << ") ";
|
|
}
|
|
f << "{\n";
|
|
inc_indent();
|
|
dump_case_rule(case_);
|
|
dec_indent();
|
|
}
|
|
f << indent << "}\n";
|
|
}
|
|
|
|
void dump_process(const RTLIL::Process *proc)
|
|
{
|
|
dump_attrs(proc);
|
|
f << indent << "// process " << proc->name.str() << "\n";
|
|
// The case attributes (for root case) are always empty.
|
|
log_assert(proc->root_case.attributes.empty());
|
|
dump_case_rule(&proc->root_case);
|
|
for (auto sync : proc->syncs) {
|
|
RTLIL::SigBit sync_bit = sync->signal[0];
|
|
sync_bit = sigmaps[sync_bit.wire->module](sync_bit);
|
|
|
|
pool<std::string> events;
|
|
switch (sync->type) {
|
|
case RTLIL::STp:
|
|
events.insert("posedge_" + mangle(sync_bit));
|
|
break;
|
|
case RTLIL::STn:
|
|
events.insert("negedge_" + mangle(sync_bit));
|
|
case RTLIL::STe:
|
|
events.insert("posedge_" + mangle(sync_bit));
|
|
events.insert("negedge_" + mangle(sync_bit));
|
|
break;
|
|
|
|
case RTLIL::ST0:
|
|
case RTLIL::ST1:
|
|
case RTLIL::STa:
|
|
case RTLIL::STg:
|
|
case RTLIL::STi:
|
|
log_assert(false);
|
|
}
|
|
if (!events.empty()) {
|
|
f << indent << "if (";
|
|
bool first = true;
|
|
for (auto &event : events) {
|
|
if (!first)
|
|
f << " || ";
|
|
first = false;
|
|
f << event;
|
|
}
|
|
f << ") {\n";
|
|
inc_indent();
|
|
for (auto action : sync->actions)
|
|
dump_assign(action);
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
void dump_wire(const RTLIL::Wire *wire, bool is_local)
|
|
{
|
|
if (elided_wires.count(wire))
|
|
return;
|
|
|
|
if (is_local) {
|
|
if (!localized_wires.count(wire))
|
|
return;
|
|
|
|
dump_attrs(wire);
|
|
f << indent << "value<" << wire->width << "> " << mangle(wire) << ";\n";
|
|
} else {
|
|
if (localized_wires.count(wire))
|
|
return;
|
|
|
|
dump_attrs(wire);
|
|
f << indent << "wire<" << wire->width << "> " << mangle(wire);
|
|
if (wire->attributes.count(ID(init))) {
|
|
f << " ";
|
|
dump_const_init(wire->attributes.at(ID(init)));
|
|
}
|
|
f << ";\n";
|
|
if (sync_wires[wire]) {
|
|
for (auto sync_type : sync_types) {
|
|
if (sync_type.first.wire == wire) {
|
|
if (sync_type.second != RTLIL::STn)
|
|
f << indent << "bool posedge_" << mangle(sync_type.first) << " = false;\n";
|
|
if (sync_type.second != RTLIL::STp)
|
|
f << indent << "bool negedge_" << mangle(sync_type.first) << " = false;\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void dump_memory(RTLIL::Module *module, const RTLIL::Memory *memory)
|
|
{
|
|
vector<const RTLIL::Cell*> init_cells;
|
|
for (auto cell : module->cells())
|
|
if (cell->type == ID($meminit) && cell->getParam(ID(MEMID)).decode_string() == memory->name.str())
|
|
init_cells.push_back(cell);
|
|
|
|
std::sort(init_cells.begin(), init_cells.end(), [](const RTLIL::Cell *a, const RTLIL::Cell *b) {
|
|
int a_addr = a->getPort(ID(ADDR)).as_int(), b_addr = b->getPort(ID(ADDR)).as_int();
|
|
int a_prio = a->getParam(ID(PRIORITY)).as_int(), b_prio = b->getParam(ID(PRIORITY)).as_int();
|
|
return a_prio > b_prio || (a_prio == b_prio && a_addr < b_addr);
|
|
});
|
|
|
|
dump_attrs(memory);
|
|
f << indent << (writable_memories[memory] ? "" : "const ")
|
|
<< "memory<" << memory->width << "> " << mangle(memory)
|
|
<< " { " << memory->size << "u";
|
|
if (init_cells.empty()) {
|
|
f << " };\n";
|
|
} else {
|
|
f << ",\n";
|
|
inc_indent();
|
|
for (auto cell : init_cells) {
|
|
dump_attrs(cell);
|
|
RTLIL::Const data = cell->getPort(ID(DATA)).as_const();
|
|
size_t width = cell->getParam(ID(WIDTH)).as_int();
|
|
size_t words = cell->getParam(ID(WORDS)).as_int();
|
|
f << indent << "memory<" << memory->width << ">::init<" << words << "> { "
|
|
<< stringf("%#x", cell->getPort(ID(ADDR)).as_int()) << ", {";
|
|
inc_indent();
|
|
for (size_t n = 0; n < words; n++) {
|
|
if (n % 4 == 0)
|
|
f << "\n" << indent;
|
|
else
|
|
f << " ";
|
|
dump_const(data, width, n * width, /*fixed_width=*/true);
|
|
f << ",";
|
|
}
|
|
dec_indent();
|
|
f << "\n" << indent << "}},\n";
|
|
}
|
|
dec_indent();
|
|
f << indent << "};\n";
|
|
}
|
|
}
|
|
|
|
void dump_module(RTLIL::Module *module)
|
|
{
|
|
dump_attrs(module);
|
|
f << "struct " << mangle(module) << " : public module {\n";
|
|
inc_indent();
|
|
for (auto wire : module->wires())
|
|
dump_wire(wire, /*is_local=*/false);
|
|
f << "\n";
|
|
bool has_memories = false;
|
|
for (auto memory : module->memories) {
|
|
dump_memory(module, memory.second);
|
|
has_memories = true;
|
|
}
|
|
if (has_memories)
|
|
f << "\n";
|
|
bool has_cells = false;
|
|
for (auto cell : module->cells()) {
|
|
if (is_internal_cell(cell->type))
|
|
continue;
|
|
f << indent << mangle_module_name(cell->type) << " " << mangle(cell) << ";\n";
|
|
has_cells = true;
|
|
}
|
|
if (has_cells)
|
|
f << "\n";
|
|
f << indent << "void eval() override;\n";
|
|
f << indent << "bool commit() override;\n";
|
|
dec_indent();
|
|
f << "}; // struct " << mangle(module) << "\n";
|
|
f << "\n";
|
|
|
|
f << "void " << mangle(module) << "::eval() {\n";
|
|
inc_indent();
|
|
for (auto wire : module->wires())
|
|
dump_wire(wire, /*is_local=*/true);
|
|
for (auto node : schedule[module]) {
|
|
switch (node.type) {
|
|
case FlowGraph::Node::Type::CONNECT:
|
|
dump_connect(node.connect);
|
|
break;
|
|
case FlowGraph::Node::Type::CELL:
|
|
dump_cell(node.cell);
|
|
break;
|
|
case FlowGraph::Node::Type::PROCESS:
|
|
dump_process(node.process);
|
|
break;
|
|
}
|
|
}
|
|
for (auto sync_type : sync_types) {
|
|
if (sync_type.first.wire->module == module) {
|
|
if (sync_type.second != RTLIL::STn)
|
|
f << indent << "posedge_" << mangle(sync_type.first) << " = false;\n";
|
|
if (sync_type.second != RTLIL::STp)
|
|
f << indent << "negedge_" << mangle(sync_type.first) << " = false;\n";
|
|
}
|
|
}
|
|
dec_indent();
|
|
f << "}\n";
|
|
f << "\n";
|
|
|
|
f << "bool " << mangle(module) << "::commit() {\n";
|
|
inc_indent();
|
|
f << indent << "bool changed = false;\n";
|
|
for (auto wire : module->wires()) {
|
|
if (elided_wires.count(wire) || localized_wires.count(wire))
|
|
continue;
|
|
if (sync_wires[wire]) {
|
|
std::string wire_prev = mangle(wire) + "_prev";
|
|
std::string wire_curr = mangle(wire) + ".curr";
|
|
std::string wire_edge = mangle(wire) + "_edge";
|
|
f << indent << "value<" << wire->width << "> " << wire_prev << " = " << wire_curr << ";\n";
|
|
f << indent << "if (" << mangle(wire) << ".commit()) {\n";
|
|
inc_indent();
|
|
f << indent << "value<" << wire->width << "> " << wire_edge << " = "
|
|
<< wire_prev << ".bit_xor(" << wire_curr << ");\n";
|
|
for (auto sync_type : sync_types) {
|
|
if (sync_type.first.wire != wire)
|
|
continue;
|
|
if (sync_type.second != RTLIL::STn) {
|
|
f << indent << "if (" << wire_edge << ".slice<" << sync_type.first.offset << ">().val() && "
|
|
<< wire_curr << ".slice<" << sync_type.first.offset << ">().val())\n";
|
|
inc_indent();
|
|
f << indent << "posedge_" << mangle(sync_type.first) << " = true;\n";
|
|
dec_indent();
|
|
}
|
|
if (sync_type.second != RTLIL::STp) {
|
|
f << indent << "if (" << wire_edge << ".slice<" << sync_type.first.offset << ">().val() && "
|
|
<< "!" << wire_curr << ".slice<" << sync_type.first.offset << ">().val())\n";
|
|
inc_indent();
|
|
f << indent << "negedge_" << mangle(sync_type.first) << " = true;\n";
|
|
dec_indent();
|
|
}
|
|
f << indent << "changed = true;\n";
|
|
}
|
|
dec_indent();
|
|
f << indent << "}\n";
|
|
} else {
|
|
f << indent << "changed |= " << mangle(wire) << ".commit();\n";
|
|
}
|
|
}
|
|
for (auto memory : module->memories) {
|
|
if (!writable_memories[memory.second])
|
|
continue;
|
|
f << indent << "changed |= " << mangle(memory.second) << ".commit();\n";
|
|
}
|
|
for (auto cell : module->cells()) {
|
|
if (is_internal_cell(cell->type))
|
|
continue;
|
|
f << indent << "changed |= " << mangle(cell) << ".commit();\n";
|
|
}
|
|
f << indent << "return changed;\n";
|
|
dec_indent();
|
|
f << "}\n";
|
|
f << "\n";
|
|
}
|
|
|
|
void dump_design(RTLIL::Design *design)
|
|
{
|
|
TopoSort<RTLIL::Module*> topo_design;
|
|
for (auto module : design->modules()) {
|
|
if (module->get_blackbox_attribute() || !design->selected_module(module))
|
|
continue;
|
|
topo_design.node(module);
|
|
|
|
for (auto cell : module->cells()) {
|
|
if (is_internal_cell(cell->type))
|
|
continue;
|
|
log_assert(design->has(cell->type));
|
|
topo_design.edge(design->module(cell->type), module);
|
|
}
|
|
}
|
|
log_assert(topo_design.sort());
|
|
|
|
f << "#include <cxxrtl.h>\n";
|
|
f << "\n";
|
|
f << "using namespace cxxrtl_yosys;\n";
|
|
f << "\n";
|
|
f << "namespace cxxrtl_design {\n";
|
|
f << "\n";
|
|
for (auto module : topo_design.sorted) {
|
|
if (!design->selected_module(module))
|
|
continue;
|
|
dump_module(module);
|
|
}
|
|
f << "} // namespace cxxrtl_design\n";
|
|
}
|
|
|
|
// Edge-type sync rules require us to emit edge detectors, which require coordination between
|
|
// eval and commit phases. To do this we need to collect them upfront.
|
|
//
|
|
// Note that the simulator commit phase operates at wire granularity but edge-type sync rules
|
|
// operate at wire bit granularity; it is possible to have code similar to:
|
|
// wire [3:0] clocks;
|
|
// always @(posedge clocks[0]) ...
|
|
// To handle this we track edge sensitivity both for wires and wire bits.
|
|
void register_edge_signal(SigMap &sigmap, RTLIL::SigSpec signal, RTLIL::SyncType type)
|
|
{
|
|
signal = sigmap(signal);
|
|
log_assert(signal.is_wire() && signal.is_bit());
|
|
log_assert(type == RTLIL::STp || type == RTLIL::STn || type == RTLIL::STe);
|
|
|
|
RTLIL::SigBit sigbit = signal[0];
|
|
if (!sync_types.count(sigbit))
|
|
sync_types[sigbit] = type;
|
|
else if (sync_types[sigbit] != type)
|
|
sync_types[sigbit] = RTLIL::STe;
|
|
sync_wires.insert(signal.as_wire());
|
|
}
|
|
|
|
void analyze_design(RTLIL::Design *design)
|
|
{
|
|
bool has_feedback_arcs = false;
|
|
for (auto module : design->modules()) {
|
|
if (!design->selected_module(module))
|
|
continue;
|
|
|
|
FlowGraph flow;
|
|
SigMap &sigmap = sigmaps[module];
|
|
sigmap.set(module);
|
|
|
|
for (auto conn : module->connections())
|
|
flow.add_node(conn);
|
|
|
|
dict<const RTLIL::Cell*, FlowGraph::Node*> memrw_cell_nodes;
|
|
dict<std::pair<RTLIL::SigBit, const RTLIL::Memory*>,
|
|
pool<const RTLIL::Cell*>> memwr_per_domain;
|
|
for (auto cell : module->cells()) {
|
|
FlowGraph::Node *node = flow.add_node(cell);
|
|
|
|
// Various DFF cells are treated like posedge/negedge processes, see above for details.
|
|
if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($dffsr))) {
|
|
if (cell->getPort(ID(CLK)).is_wire())
|
|
register_edge_signal(sigmap, cell->getPort(ID(CLK)),
|
|
cell->parameters[ID(CLK_POLARITY)].as_bool() ? RTLIL::STp : RTLIL::STn);
|
|
// The $adff and $dffsr cells are level-sensitive, not edge-sensitive (in spite of the fact that they
|
|
// are inferred from an edge-sensitive Verilog process) and do not correspond to an edge-type sync rule.
|
|
}
|
|
// Similar for memory port cells.
|
|
if (cell->type.in(ID($memrd), ID($memwr))) {
|
|
if (cell->getParam(ID(CLK_ENABLE)).as_bool()) {
|
|
if (cell->getPort(ID(CLK)).is_wire())
|
|
register_edge_signal(sigmap, cell->getPort(ID(CLK)),
|
|
cell->parameters[ID(CLK_POLARITY)].as_bool() ? RTLIL::STp : RTLIL::STn);
|
|
}
|
|
memrw_cell_nodes[cell] = node;
|
|
}
|
|
// Optimize access to read-only memories.
|
|
if (cell->type == ID($memwr))
|
|
writable_memories.insert(module->memories[cell->getParam(ID(MEMID)).decode_string()]);
|
|
// Collect groups of memory write ports in the same domain.
|
|
if (cell->type == ID($memwr) && cell->getParam(ID(CLK_ENABLE)).as_bool() && cell->getPort(ID(CLK)).is_wire()) {
|
|
RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID(CLK)))[0];
|
|
const RTLIL::Memory *memory = module->memories[cell->getParam(ID(MEMID)).decode_string()];
|
|
memwr_per_domain[{clk_bit, memory}].insert(cell);
|
|
}
|
|
// Handling of packed memories is delegated to the `memory_unpack` pass, so we can rely on the presence
|
|
// of RTLIL memory objects and $memrd/$memwr/$meminit cells.
|
|
if (cell->type.in(ID($mem)))
|
|
log_assert(false);
|
|
}
|
|
for (auto cell : module->cells()) {
|
|
// Collect groups of memory write ports read by every transparent read port.
|
|
if (cell->type == ID($memrd) && cell->getParam(ID(CLK_ENABLE)).as_bool() && cell->getPort(ID(CLK)).is_wire() &&
|
|
cell->getParam(ID(TRANSPARENT)).as_bool()) {
|
|
RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID(CLK)))[0];
|
|
const RTLIL::Memory *memory = module->memories[cell->getParam(ID(MEMID)).decode_string()];
|
|
for (auto memwr_cell : memwr_per_domain[{clk_bit, memory}]) {
|
|
transparent_for[cell].insert(memwr_cell);
|
|
// Our implementation of transparent $memrd cells reads \EN, \ADDR and \DATA from every $memwr cell
|
|
// in the same domain, which isn't directly visible in the netlist. Add these uses explicitly.
|
|
flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID(EN)));
|
|
flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID(ADDR)));
|
|
flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID(DATA)));
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto proc : module->processes) {
|
|
flow.add_node(proc.second);
|
|
|
|
for (auto sync : proc.second->syncs)
|
|
switch (sync->type) {
|
|
// Edge-type sync rules require pre-registration.
|
|
case RTLIL::STp:
|
|
case RTLIL::STn:
|
|
case RTLIL::STe:
|
|
register_edge_signal(sigmap, sync->signal, sync->type);
|
|
break;
|
|
|
|
// Level-type sync rules require no special handling.
|
|
case RTLIL::ST0:
|
|
case RTLIL::ST1:
|
|
case RTLIL::STa:
|
|
break;
|
|
|
|
// Handling of init-type sync rules is delegated to the `proc_init` pass, so we can use the wire
|
|
// attribute regardless of input.
|
|
case RTLIL::STi:
|
|
log_assert(false);
|
|
|
|
case RTLIL::STg:
|
|
log_cmd_error("Global clock is not supported.\n");
|
|
}
|
|
}
|
|
|
|
for (auto wire : module->wires()) {
|
|
if (!flow.is_elidable(wire)) continue;
|
|
if (wire->port_id != 0) continue;
|
|
if (wire->get_bool_attribute(ID(keep))) continue;
|
|
if (wire->name.begins_with("$") && !elide_internal) continue;
|
|
if (wire->name.begins_with("\\") && !elide_public) continue;
|
|
if (sync_wires[wire]) continue;
|
|
log_assert(flow.wire_defs[wire].size() == 1);
|
|
elided_wires[wire] = **flow.wire_defs[wire].begin();
|
|
}
|
|
|
|
// Elided wires that are outputs of internal cells are always connected to a well known port (Y).
|
|
// For user cells, there could be multiple of them, and we need a way to look up the port name
|
|
// knowing only the wire.
|
|
for (auto cell : module->cells())
|
|
for (auto conn : cell->connections())
|
|
if (conn.second.is_wire() && elided_wires.count(conn.second.as_wire()))
|
|
cell_wire_defs[cell][conn.second.as_wire()] = conn.first;
|
|
|
|
dict<FlowGraph::Node*, pool<const RTLIL::Wire*>, hash_ptr_ops> node_defs;
|
|
for (auto wire_def : flow.wire_defs)
|
|
for (auto node : wire_def.second)
|
|
node_defs[node].insert(wire_def.first);
|
|
|
|
Scheduler<FlowGraph::Node> scheduler;
|
|
dict<FlowGraph::Node*, Scheduler<FlowGraph::Node>::Vertex*, hash_ptr_ops> node_map;
|
|
for (auto node : flow.nodes)
|
|
node_map[node] = scheduler.add(node);
|
|
for (auto node_def : node_defs) {
|
|
auto vertex = node_map[node_def.first];
|
|
for (auto wire : node_def.second)
|
|
for (auto succ_node : flow.wire_uses[wire]) {
|
|
auto succ_vertex = node_map[succ_node];
|
|
vertex->succs.insert(succ_vertex);
|
|
succ_vertex->preds.insert(vertex);
|
|
}
|
|
}
|
|
|
|
auto eval_order = scheduler.schedule();
|
|
pool<FlowGraph::Node*, hash_ptr_ops> evaluated;
|
|
pool<const RTLIL::Wire*> feedback_wires;
|
|
for (auto vertex : eval_order) {
|
|
auto node = vertex->data;
|
|
schedule[module].push_back(*node);
|
|
// Any wire that is an output of node vo and input of node vi where vo is scheduled later than vi
|
|
// is a feedback wire. Feedback wires indicate apparent logic loops in the design, which may be
|
|
// caused by a true logic loop, but usually are a benign result of dependency tracking that works
|
|
// on wire, not bit, level. Nevertheless, feedback wires cannot be localized.
|
|
evaluated.insert(node);
|
|
for (auto wire : node_defs[node])
|
|
for (auto succ_node : flow.wire_uses[wire])
|
|
if (evaluated[succ_node]) {
|
|
feedback_wires.insert(wire);
|
|
// Feedback wires may never be elided because feedback requires state, but the point of elision
|
|
// (and localization) is to eliminate state.
|
|
elided_wires.erase(wire);
|
|
}
|
|
}
|
|
|
|
if (!feedback_wires.empty()) {
|
|
has_feedback_arcs = true;
|
|
log("Module `%s` contains feedback arcs through wires:\n", module->name.c_str());
|
|
for (auto wire : feedback_wires) {
|
|
log(" %s\n", wire->name.c_str());
|
|
}
|
|
}
|
|
|
|
for (auto wire : module->wires()) {
|
|
if (feedback_wires[wire]) continue;
|
|
if (wire->port_id != 0) continue;
|
|
if (wire->get_bool_attribute(ID(keep))) continue;
|
|
if (wire->name.begins_with("$") && !localize_internal) continue;
|
|
if (wire->name.begins_with("\\") && !localize_public) continue;
|
|
if (sync_wires[wire]) continue;
|
|
// Outputs of FF/$memrd cells and LHS of sync actions do not end up in defs.
|
|
if (flow.wire_defs[wire].size() != 1) continue;
|
|
localized_wires.insert(wire);
|
|
}
|
|
}
|
|
if (has_feedback_arcs) {
|
|
log("Feedback arcs require delta cycles during evaluation.\n");
|
|
}
|
|
}
|
|
|
|
void check_design(RTLIL::Design *design, bool &has_sync_init, bool &has_packed_mem)
|
|
{
|
|
has_sync_init = has_packed_mem = false;
|
|
|
|
for (auto module : design->modules()) {
|
|
if (module->get_blackbox_attribute())
|
|
continue;
|
|
|
|
if (!design->selected_whole_module(module))
|
|
if (design->selected_module(module))
|
|
log_cmd_error("Can't handle partially selected module `%s`!\n", id2cstr(module->name));
|
|
if (!design->selected_module(module))
|
|
continue;
|
|
|
|
for (auto proc : module->processes)
|
|
for (auto sync : proc.second->syncs)
|
|
if (sync->type == RTLIL::STi)
|
|
has_sync_init = true;
|
|
|
|
for (auto cell : module->cells())
|
|
if (cell->type == ID($mem))
|
|
has_packed_mem = true;
|
|
}
|
|
}
|
|
|
|
void prepare_design(RTLIL::Design *design)
|
|
{
|
|
bool has_sync_init, has_packed_mem;
|
|
check_design(design, has_sync_init, has_packed_mem);
|
|
if (has_sync_init) {
|
|
// We're only interested in proc_init, but it depends on proc_prune and proc_clean, so call those
|
|
// in case they weren't already. (This allows `yosys foo.v -o foo.cc` to work.)
|
|
Pass::call(design, "proc_prune");
|
|
Pass::call(design, "proc_clean");
|
|
Pass::call(design, "proc_init");
|
|
}
|
|
if (has_packed_mem)
|
|
Pass::call(design, "memory_unpack");
|
|
// Recheck the design if it was modified.
|
|
if (has_sync_init || has_packed_mem)
|
|
check_design(design, has_sync_init, has_packed_mem);
|
|
log_assert(!(has_sync_init || has_packed_mem));
|
|
|
|
if (run_splitnets) {
|
|
Pass::call(design, "splitnets -driver");
|
|
Pass::call(design, "opt_clean -purge");
|
|
}
|
|
log("\n");
|
|
analyze_design(design);
|
|
}
|
|
};
|
|
|
|
struct CxxrtlBackend : public Backend {
|
|
static const int DEFAULT_OPT_LEVEL = 5;
|
|
|
|
CxxrtlBackend() : Backend("cxxrtl", "convert design to C++ RTL simulation") { }
|
|
void help() YS_OVERRIDE
|
|
{
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
log("\n");
|
|
log(" write_cxxrtl [options] [filename]\n");
|
|
log("\n");
|
|
log("Write C++ code for simulating the design. The generated code requires a driver;\n");
|
|
log("the following simple driver is provided as an example:\n");
|
|
log("\n");
|
|
log(" #include \"top.cc\"\n");
|
|
log("\n");
|
|
log(" int main() {\n");
|
|
log(" cxxrtl_design::p_top top;\n");
|
|
log(" while (1) {\n");
|
|
log(" top.p_clk.next = value<1> {1u};\n");
|
|
log(" top.step();\n");
|
|
log(" top.p_clk.next = value<1> {0u};\n");
|
|
log(" top.step();\n");
|
|
log(" }\n");
|
|
log(" }\n");
|
|
log("\n");
|
|
log("The following options are supported by this backend:\n");
|
|
log("\n");
|
|
log(" -O <level>\n");
|
|
log(" set the optimization level. the default is -O%d. higher optimization\n", DEFAULT_OPT_LEVEL);
|
|
log(" levels dramatically decrease compile and run time, and highest level\n");
|
|
log(" possible for a design should be used.\n");
|
|
log("\n");
|
|
log(" -O0\n");
|
|
log(" no optimization.\n");
|
|
log("\n");
|
|
log(" -O1\n");
|
|
log(" elide internal wires if possible.\n");
|
|
log("\n");
|
|
log(" -O2\n");
|
|
log(" like -O1, and localize internal wires if possible.\n");
|
|
log("\n");
|
|
log(" -O3\n");
|
|
log(" like -O2, and elide public wires not marked (*keep*) if possible.\n");
|
|
log("\n");
|
|
log(" -O4\n");
|
|
log(" like -O3, and localize public wires not marked (*keep*) if possible.\n");
|
|
log("\n");
|
|
log(" -O5\n");
|
|
log(" like -O4, and run `splitnets -driver; opt_clean -purge` first.\n");
|
|
log("\n");
|
|
}
|
|
void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
|
|
{
|
|
int opt_level = DEFAULT_OPT_LEVEL;
|
|
|
|
log_header(design, "Executing CXXRTL backend.\n");
|
|
|
|
size_t argidx;
|
|
for (argidx = 1; argidx < args.size(); argidx++)
|
|
{
|
|
if (args[argidx] == "-O" && argidx+1 < args.size()) {
|
|
opt_level = std::stoi(args[++argidx]);
|
|
continue;
|
|
}
|
|
if (args[argidx].substr(0, 2) == "-O" && args[argidx].size() == 3 && isdigit(args[argidx][2])) {
|
|
opt_level = std::stoi(args[argidx].substr(2));
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
extra_args(f, filename, args, argidx);
|
|
|
|
CxxrtlWorker worker(*f);
|
|
switch (opt_level) {
|
|
case 5:
|
|
worker.run_splitnets = true;
|
|
case 4:
|
|
worker.localize_public = true;
|
|
case 3:
|
|
worker.elide_public = true;
|
|
case 2:
|
|
worker.localize_internal = true;
|
|
case 1:
|
|
worker.elide_internal = true;
|
|
case 0:
|
|
break;
|
|
default:
|
|
log_cmd_error("Invalid optimization level %d.\n", opt_level);
|
|
}
|
|
worker.prepare_design(design);
|
|
worker.dump_design(design);
|
|
}
|
|
} CxxrtlBackend;
|
|
|
|
PRIVATE_NAMESPACE_END
|