/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2019-2020 whitequark * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/rtlil.h" #include "kernel/register.h" #include "kernel/sigtools.h" #include "kernel/utils.h" #include "kernel/celltypes.h" #include "kernel/log.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN // [[CITE]] // Peter Eades; Xuemin Lin; W. F. Smyth, "A Fast Effective Heuristic For The Feedback Arc Set Problem" // Information Processing Letters, Vol. 47, pp 319-323, 1993 // https://pdfs.semanticscholar.org/c7ed/d9acce96ca357876540e19664eb9d976637f.pdf // A topological sort (on a cell/wire graph) is always possible in a fully flattened RTLIL design without // processes or logic loops where every wire has a single driver. Logic loops are illegal in RTLIL and wires // with multiple drivers can be split by the `splitnets` pass; however, interdependencies between processes // or module instances can create strongly connected components without introducing evaluation nondeterminism. // We wish to support designs with such benign SCCs (as well as designs with multiple drivers per wire), so // we sort the graph in a way that minimizes feedback arcs. If there are no feedback arcs in the sorted graph, // then a more efficient evaluation method is possible, since eval() will always immediately converge. template struct Scheduler { struct Vertex { T *data; Vertex *prev, *next; pool preds, succs; Vertex() : data(NULL), prev(this), next(this) {} Vertex(T *data) : data(data), prev(NULL), next(NULL) {} bool empty() const { log_assert(data == NULL); if (next == this) { log_assert(prev == next); return true; } return false; } void link(Vertex *list) { log_assert(prev == NULL && next == NULL); next = list; prev = list->prev; list->prev->next = this; list->prev = this; } void unlink() { log_assert(prev->next == this && next->prev == this); prev->next = next; next->prev = prev; next = prev = NULL; } int delta() const { return succs.size() - preds.size(); } }; std::vector vertices; Vertex *sources = new Vertex; Vertex *sinks = new Vertex; dict bins; ~Scheduler() { delete sources; delete sinks; for (auto bin : bins) delete bin.second; for (auto vertex : vertices) delete vertex; } Vertex *add(T *data) { Vertex *vertex = new Vertex(data); vertices.push_back(vertex); return vertex; } void relink(Vertex *vertex) { if (vertex->succs.empty()) vertex->link(sinks); else if (vertex->preds.empty()) vertex->link(sources); else { int delta = vertex->delta(); if (!bins.count(delta)) bins[delta] = new Vertex; vertex->link(bins[delta]); } } Vertex *remove(Vertex *vertex) { vertex->unlink(); for (auto pred : vertex->preds) { if (pred == vertex) continue; log_assert(pred->succs[vertex]); pred->unlink(); pred->succs.erase(vertex); relink(pred); } for (auto succ : vertex->succs) { if (succ == vertex) continue; log_assert(succ->preds[vertex]); succ->unlink(); succ->preds.erase(vertex); relink(succ); } vertex->preds.clear(); vertex->succs.clear(); return vertex; } std::vector schedule() { std::vector s1, s2r; for (auto vertex : vertices) relink(vertex); bool bins_empty = false; while (!(sinks->empty() && sources->empty() && bins_empty)) { while (!sinks->empty()) s2r.push_back(remove(sinks->next)); while (!sources->empty()) s1.push_back(remove(sources->next)); // Choosing u in this implementation isn't O(1), but the paper handwaves which data structure they suggest // using to get O(1) relinking *and* find-max-key ("it is clear"... no it isn't), so this code uses a very // naive implementation of find-max-key. bins_empty = true; bins.template sort>(); for (auto bin : bins) { if (!bin.second->empty()) { bins_empty = false; s1.push_back(remove(bin.second->next)); break; } } } s1.insert(s1.end(), s2r.rbegin(), s2r.rend()); return s1; } }; static bool is_unary_cell(RTLIL::IdString type) { return type.in( ID($not), ID($logic_not), ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool), ID($pos), ID($neg)); } static bool is_binary_cell(RTLIL::IdString type) { return type.in( ID($and), ID($or), ID($xor), ID($xnor), ID($logic_and), ID($logic_or), ID($shl), ID($sshl), ID($shr), ID($sshr), ID($shift), ID($shiftx), ID($eq), ID($ne), ID($eqx), ID($nex), ID($gt), ID($ge), ID($lt), ID($le), ID($add), ID($sub), ID($mul), ID($div), ID($mod)); } static bool is_elidable_cell(RTLIL::IdString type) { return is_unary_cell(type) || is_binary_cell(type) || type.in( ID($mux), ID($concat), ID($slice)); } static bool is_sync_ff_cell(RTLIL::IdString type) { return type.in( ID($dff), ID($dffe)); } static bool is_ff_cell(RTLIL::IdString type) { return is_sync_ff_cell(type) || type.in( ID($adff), ID($dffsr), ID($dlatch), ID($dlatchsr), ID($sr)); } static bool is_internal_cell(RTLIL::IdString type) { return type[0] == '$' && !type.begins_with("$paramod\\"); } struct FlowGraph { struct Node { enum class Type { CONNECT, CELL, PROCESS }; Type type; RTLIL::SigSig connect = {}; const RTLIL::Cell *cell = NULL; const RTLIL::Process *process = NULL; }; std::vector nodes; dict> wire_defs, wire_uses; dict wire_def_elidable, wire_use_elidable; ~FlowGraph() { for (auto node : nodes) delete node; } void add_defs(Node *node, const RTLIL::SigSpec &sig, bool elidable) { for (auto chunk : sig.chunks()) if (chunk.wire) wire_defs[chunk.wire].insert(node); // Only defs of an entire wire in the right order can be elided. if (sig.is_wire()) wire_def_elidable[sig.as_wire()] = elidable; } void add_uses(Node *node, const RTLIL::SigSpec &sig) { for (auto chunk : sig.chunks()) if (chunk.wire) { wire_uses[chunk.wire].insert(node); // Only a single use of an entire wire in the right order can be elided. // (But the use can include other chunks.) if (!wire_use_elidable.count(chunk.wire)) wire_use_elidable[chunk.wire] = true; else wire_use_elidable[chunk.wire] = false; } } bool is_elidable(const RTLIL::Wire *wire) const { if (wire_def_elidable.count(wire) && wire_use_elidable.count(wire)) return wire_def_elidable.at(wire) && wire_use_elidable.at(wire); return false; } // Connections void add_connect_defs_uses(Node *node, const RTLIL::SigSig &conn) { add_defs(node, conn.first, /*elidable=*/true); add_uses(node, conn.second); } Node *add_node(const RTLIL::SigSig &conn) { Node *node = new Node; node->type = Node::Type::CONNECT; node->connect = conn; nodes.push_back(node); add_connect_defs_uses(node, conn); return node; } // Cells void add_cell_defs_uses(Node *node, const RTLIL::Cell *cell) { log_assert(cell->known()); for (auto conn : cell->connections()) { if (cell->output(conn.first)) { if (is_sync_ff_cell(cell->type) || (cell->type == ID($memrd) && cell->getParam(ID(CLK_ENABLE)).as_bool())) /* non-combinatorial outputs do not introduce defs */; else if (is_elidable_cell(cell->type)) add_defs(node, conn.second, /*elidable=*/true); else if (is_internal_cell(cell->type)) add_defs(node, conn.second, /*elidable=*/false); else { // Unlike outputs of internal cells (which generate code that depends on the ability to set the output // wire bits), outputs of user cells are normal wires, and the wires connected to them can be elided. add_defs(node, conn.second, /*elidable=*/true); } } if (cell->input(conn.first)) add_uses(node, conn.second); } } Node *add_node(const RTLIL::Cell *cell) { Node *node = new Node; node->type = Node::Type::CELL; node->cell = cell; nodes.push_back(node); add_cell_defs_uses(node, cell); return node; } // Processes void add_case_defs_uses(Node *node, const RTLIL::CaseRule *case_) { for (auto &action : case_->actions) { add_defs(node, action.first, /*elidable=*/false); add_uses(node, action.second); } for (auto sub_switch : case_->switches) { add_uses(node, sub_switch->signal); for (auto sub_case : sub_switch->cases) { for (auto &compare : sub_case->compare) add_uses(node, compare); add_case_defs_uses(node, sub_case); } } } void add_process_defs_uses(Node *node, const RTLIL::Process *process) { add_case_defs_uses(node, &process->root_case); for (auto sync : process->syncs) for (auto action : sync->actions) { if (sync->type == RTLIL::STp || sync->type == RTLIL::STn || sync->type == RTLIL::STe) /* sync actions do not introduce feedback */; else add_defs(node, action.first, /*elidable=*/false); add_uses(node, action.second); } } Node *add_node(const RTLIL::Process *process) { Node *node = new Node; node->type = Node::Type::PROCESS; node->process = process; nodes.push_back(node); add_process_defs_uses(node, process); return node; } }; struct CxxrtlWorker { bool elide_internal = false; bool elide_public = false; bool localize_internal = false; bool localize_public = false; bool run_splitnets = false; std::ostream &f; std::string indent; int temporary = 0; dict sigmaps; pool sync_wires; dict sync_types; pool writable_memories; dict> transparent_for; dict> cell_wire_defs; dict elided_wires; dict> schedule; pool localized_wires; CxxrtlWorker(std::ostream &f) : f(f) {} void inc_indent() { indent += "\t"; } void dec_indent() { indent.resize(indent.size() - 1); } // RTLIL allows any characters in names other than whitespace. This presents an issue for generating C++ code // because C++ identifiers may be only alphanumeric, cannot clash with C++ keywords, and cannot clash with cxxrtl // identifiers. This issue can be solved with a name mangling scheme. We choose a name mangling scheme that results // in readable identifiers, does not depend on an up-to-date list of C++ keywords, and is easy to apply. Its rules: // 1. All generated identifiers start with `_`. // 1a. Generated identifiers for public names (beginning with `\`) start with `p_`. // 1b. Generated identifiers for internal names (beginning with `$`) start with `i_`. // 2. An underscore is escaped with another underscore, i.e. `__`. // 3. Any other non-alnum character is escaped with underscores around its lowercase hex code, e.g. `@` as `_40_`. std::string mangle_name(const RTLIL::IdString &name) { std::string mangled; bool first = true; for (char c : name.str()) { if (first) { first = false; if (c == '\\') mangled += "p_"; else if (c == '$') mangled += "i_"; else log_assert(false); } else { if (isalnum(c)) { mangled += c; } else if (c == '_') { mangled += "__"; } else { char l = c & 0xf, h = (c >> 4) & 0xf; mangled += '_'; mangled += (h < 10 ? '0' + h : 'a' + h - 10); mangled += (l < 10 ? '0' + l : 'a' + l - 10); mangled += '_'; } } } return mangled; } std::string mangle_module_name(const RTLIL::IdString &name) { // Class namespace. return mangle_name(name); } std::string mangle_memory_name(const RTLIL::IdString &name) { // Class member namespace. return "memory_" + mangle_name(name); } std::string mangle_cell_name(const RTLIL::IdString &name) { // Class member namespace. return "cell_" + mangle_name(name); } std::string mangle_wire_name(const RTLIL::IdString &name) { // Class member namespace. return mangle_name(name); } std::string mangle(const RTLIL::Module *module) { return mangle_module_name(module->name); } std::string mangle(const RTLIL::Memory *memory) { return mangle_memory_name(memory->name); } std::string mangle(const RTLIL::Cell *cell) { return mangle_cell_name(cell->name); } std::string mangle(const RTLIL::Wire *wire) { return mangle_wire_name(wire->name); } std::string mangle(RTLIL::SigBit sigbit) { log_assert(sigbit.wire != NULL); if (sigbit.wire->width == 1) return mangle(sigbit.wire); return mangle(sigbit.wire) + "_" + std::to_string(sigbit.offset); } std::string fresh_temporary() { return stringf("tmp_%d", temporary++); } void dump_attrs(const RTLIL::AttrObject *object) { for (auto attr : object->attributes) { f << indent << "// " << attr.first.str() << ": "; if (attr.second.flags & RTLIL::CONST_FLAG_STRING) { f << attr.second.decode_string(); } else { f << attr.second.as_int(/*is_signed=*/attr.second.flags & RTLIL::CONST_FLAG_SIGNED); } f << "\n"; } } void dump_const_init(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false) { f << "{"; while (width > 0) { const int CHUNK_SIZE = 32; uint32_t chunk = data.extract(offset, width > CHUNK_SIZE ? CHUNK_SIZE : width).as_int(); if (fixed_width) f << stringf("0x%08xu", chunk); else f << stringf("%#xu", chunk); if (width > CHUNK_SIZE) f << ','; offset += CHUNK_SIZE; width -= CHUNK_SIZE; } f << "}"; } void dump_const_init(const RTLIL::Const &data) { dump_const_init(data, data.size()); } void dump_const(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false) { f << "value<" << width << ">"; dump_const_init(data, width, offset, fixed_width); } void dump_const(const RTLIL::Const &data) { dump_const(data, data.size()); } bool dump_sigchunk(const RTLIL::SigChunk &chunk, bool is_lhs) { if (chunk.wire == NULL) { dump_const(chunk.data, chunk.width, chunk.offset); return false; } else { if (!is_lhs && elided_wires.count(chunk.wire)) { const FlowGraph::Node &node = elided_wires[chunk.wire]; switch (node.type) { case FlowGraph::Node::Type::CONNECT: dump_connect_elided(node.connect); break; case FlowGraph::Node::Type::CELL: if (is_elidable_cell(node.cell->type)) { dump_cell_elided(node.cell); } else { f << mangle(node.cell) << "." << mangle_wire_name(cell_wire_defs[node.cell][chunk.wire]) << ".curr"; } break; default: log_assert(false); } } else if (localized_wires[chunk.wire]) { f << mangle(chunk.wire); } else { f << mangle(chunk.wire) << (is_lhs ? ".next" : ".curr"); } if (chunk.width == chunk.wire->width && chunk.offset == 0) return false; else if (chunk.width == 1) f << ".slice<" << chunk.offset << ">()"; else f << ".slice<" << chunk.offset+chunk.width-1 << "," << chunk.offset << ">()"; return true; } } bool dump_sigspec(const RTLIL::SigSpec &sig, bool is_lhs) { if (sig.empty()) { f << "value<0>()"; return false; } else if (sig.is_chunk()) { return dump_sigchunk(sig.as_chunk(), is_lhs); } else { dump_sigchunk(*sig.chunks().rbegin(), is_lhs); for (auto it = sig.chunks().rbegin() + 1; it != sig.chunks().rend(); ++it) { f << ".concat("; dump_sigchunk(*it, is_lhs); f << ")"; } return true; } } void dump_sigspec_lhs(const RTLIL::SigSpec &sig) { dump_sigspec(sig, /*is_lhs=*/true); } void dump_sigspec_rhs(const RTLIL::SigSpec &sig) { // In the contexts where we want template argument deduction to occur for `template ... value`, // it is necessary to have the argument to already be a `value`, since template argument deduction and implicit // type conversion are mutually exclusive. In these contexts, we use dump_sigspec_rhs() to emit an explicit // type conversion, but only if the expression needs it. bool is_complex = dump_sigspec(sig, /*is_lhs=*/false); if (is_complex) f << ".val()"; } void collect_sigspec_rhs(const RTLIL::SigSpec &sig, std::vector &cells) { for (auto chunk : sig.chunks()) { if (!chunk.wire || !elided_wires.count(chunk.wire)) continue; const FlowGraph::Node &node = elided_wires[chunk.wire]; switch (node.type) { case FlowGraph::Node::Type::CONNECT: collect_connect(node.connect, cells); break; case FlowGraph::Node::Type::CELL: collect_cell(node.cell, cells); break; default: log_assert(false); } } } void dump_connect_elided(const RTLIL::SigSig &conn) { dump_sigspec_rhs(conn.second); } bool is_connect_elided(const RTLIL::SigSig &conn) { return conn.first.is_wire() && elided_wires.count(conn.first.as_wire()); } void collect_connect(const RTLIL::SigSig &conn, std::vector &cells) { if (!is_connect_elided(conn)) return; collect_sigspec_rhs(conn.second, cells); } void dump_connect(const RTLIL::SigSig &conn) { if (is_connect_elided(conn)) return; f << indent << "// connection\n"; f << indent; dump_sigspec_lhs(conn.first); f << " = "; dump_connect_elided(conn); f << ";\n"; } void dump_cell_elided(const RTLIL::Cell *cell) { // Unary cells if (is_unary_cell(cell->type)) { f << cell->type.substr(1) << '_' << (cell->getParam(ID(A_SIGNED)).as_bool() ? 's' : 'u') << "<" << cell->getParam(ID(Y_WIDTH)).as_int() << ">("; dump_sigspec_rhs(cell->getPort(ID(A))); f << ")"; // Binary cells } else if (is_binary_cell(cell->type)) { f << cell->type.substr(1) << '_' << (cell->getParam(ID(A_SIGNED)).as_bool() ? 's' : 'u') << (cell->getParam(ID(B_SIGNED)).as_bool() ? 's' : 'u') << "<" << cell->getParam(ID(Y_WIDTH)).as_int() << ">("; dump_sigspec_rhs(cell->getPort(ID(A))); f << ", "; dump_sigspec_rhs(cell->getPort(ID(B))); f << ")"; // Muxes } else if (cell->type == ID($mux)) { f << "("; dump_sigspec_rhs(cell->getPort(ID(S))); f << " ? "; dump_sigspec_rhs(cell->getPort(ID(B))); f << " : "; dump_sigspec_rhs(cell->getPort(ID(A))); f << ")"; // Concats } else if (cell->type == ID($concat)) { dump_sigspec_rhs(cell->getPort(ID(B))); f << ".concat("; dump_sigspec_rhs(cell->getPort(ID(A))); f << ").val()"; // Slices } else if (cell->type == ID($slice)) { dump_sigspec_rhs(cell->getPort(ID(A))); f << ".slice<"; f << cell->getParam(ID(OFFSET)).as_int() + cell->getParam(ID(Y_WIDTH)).as_int() - 1; f << ","; f << cell->getParam(ID(OFFSET)).as_int(); f << ">().val()"; } else { log_assert(false); } } bool is_cell_elided(const RTLIL::Cell *cell) { return is_elidable_cell(cell->type) && cell->hasPort(ID(Y)) && cell->getPort(ID(Y)).is_wire() && elided_wires.count(cell->getPort(ID(Y)).as_wire()); } void collect_cell(const RTLIL::Cell *cell, std::vector &cells) { if (!is_cell_elided(cell)) return; cells.push_back(cell->name); for (auto port : cell->connections()) if (port.first != ID(Y)) collect_sigspec_rhs(port.second, cells); } void dump_cell(const RTLIL::Cell *cell) { if (is_cell_elided(cell)) return; if (cell->type == ID($meminit)) return; // Handled elsewhere. std::vector elided_cells; if (is_elidable_cell(cell->type)) { for (auto port : cell->connections()) if (port.first != ID(Y)) collect_sigspec_rhs(port.second, elided_cells); } if (elided_cells.empty()) { dump_attrs(cell); f << indent << "// cell " << cell->name.str() << "\n"; } else { f << indent << "// cells"; for (auto elided_cell : elided_cells) f << " " << elided_cell.str(); f << "\n"; } // Elidable cells if (is_elidable_cell(cell->type)) { f << indent; dump_sigspec_lhs(cell->getPort(ID(Y))); f << " = "; dump_cell_elided(cell); f << ";\n"; // Parallel (one-hot) muxes } else if (cell->type == ID($pmux)) { int width = cell->getParam(ID(WIDTH)).as_int(); int s_width = cell->getParam(ID(S_WIDTH)).as_int(); bool first = true; for (int part = 0; part < s_width; part++) { f << (first ? indent : " else "); first = false; f << "if ("; dump_sigspec_rhs(cell->getPort(ID(S)).extract(part)); f << ") {\n"; inc_indent(); f << indent; dump_sigspec_lhs(cell->getPort(ID(Y))); f << " = "; dump_sigspec_rhs(cell->getPort(ID(B)).extract(part * width, width)); f << ";\n"; dec_indent(); f << indent << "}"; } f << " else {\n"; inc_indent(); f << indent; dump_sigspec_lhs(cell->getPort(ID(Y))); f << " = "; dump_sigspec_rhs(cell->getPort(ID(A))); f << ";\n"; dec_indent(); f << indent << "}\n"; // Flip-flops } else if (is_ff_cell(cell->type)) { if (cell->hasPort(ID(CLK)) && cell->getPort(ID(CLK)).is_wire()) { // Edge-sensitive logic RTLIL::SigBit clk_bit = cell->getPort(ID(CLK))[0]; clk_bit = sigmaps[clk_bit.wire->module](clk_bit); f << indent << "if (" << (cell->getParam(ID(CLK_POLARITY)).as_bool() ? "posedge_" : "negedge_") << mangle(clk_bit) << ") {\n"; inc_indent(); if (cell->type == ID($dffe)) { f << indent << "if ("; dump_sigspec_rhs(cell->getPort(ID(EN))); f << " == value<1> {" << cell->getParam(ID(EN_POLARITY)).as_bool() << "u}) {\n"; inc_indent(); } f << indent; dump_sigspec_lhs(cell->getPort(ID(Q))); f << " = "; dump_sigspec_rhs(cell->getPort(ID(D))); f << ";\n"; if (cell->type == ID($dffe)) { dec_indent(); f << indent << "}\n"; } dec_indent(); f << indent << "}\n"; } else if (cell->hasPort(ID(EN))) { // Level-sensitive logic f << indent << "if ("; dump_sigspec_rhs(cell->getPort(ID(EN))); f << " == value<1> {" << cell->getParam(ID(EN_POLARITY)).as_bool() << "u}) {\n"; inc_indent(); f << indent; dump_sigspec_lhs(cell->getPort(ID(Q))); f << " = "; dump_sigspec_rhs(cell->getPort(ID(D))); f << ";\n"; dec_indent(); f << indent << "}\n"; } if (cell->hasPort(ID(ARST))) { // Asynchronous reset (entire coarse cell at once) f << indent << "if ("; dump_sigspec_rhs(cell->getPort(ID(ARST))); f << " == value<1> {" << cell->getParam(ID(ARST_POLARITY)).as_bool() << "u}) {\n"; inc_indent(); f << indent; dump_sigspec_lhs(cell->getPort(ID(Q))); f << " = "; dump_const(cell->getParam(ID(ARST_VALUE))); f << ";\n"; dec_indent(); f << indent << "}\n"; } if (cell->hasPort(ID(SET))) { // Asynchronous set (for individual bits) f << indent; dump_sigspec_lhs(cell->getPort(ID(Q))); f << " = "; dump_sigspec_lhs(cell->getPort(ID(Q))); f << ".update("; dump_const(RTLIL::Const(RTLIL::S1, cell->getParam(ID(WIDTH)).as_int())); f << ", "; dump_sigspec_rhs(cell->getPort(ID(SET))); f << (cell->getParam(ID(SET_POLARITY)).as_bool() ? "" : ".bit_not()") << ");\n"; } if (cell->hasPort(ID(CLR))) { // Asynchronous clear (for individual bits; priority over set) f << indent; dump_sigspec_lhs(cell->getPort(ID(Q))); f << " = "; dump_sigspec_lhs(cell->getPort(ID(Q))); f << ".update("; dump_const(RTLIL::Const(RTLIL::S0, cell->getParam(ID(WIDTH)).as_int())); f << ", "; dump_sigspec_rhs(cell->getPort(ID(CLR))); f << (cell->getParam(ID(CLR_POLARITY)).as_bool() ? "" : ".bit_not()") << ");\n"; } // Memory ports } else if (cell->type.in(ID($memrd), ID($memwr))) { if (cell->getParam(ID(CLK_ENABLE)).as_bool()) { RTLIL::SigBit clk_bit = cell->getPort(ID(CLK))[0]; clk_bit = sigmaps[clk_bit.wire->module](clk_bit); f << indent << "if (" << (cell->getParam(ID(CLK_POLARITY)).as_bool() ? "posedge_" : "negedge_") << mangle(clk_bit) << ") {\n"; inc_indent(); } RTLIL::Memory *memory = cell->module->memories[cell->getParam(ID(MEMID)).decode_string()]; std::string valid_index_temp = fresh_temporary(); f << indent << "auto " << valid_index_temp << " = memory_index("; dump_sigspec_rhs(cell->getPort(ID(ADDR))); f << ", " << memory->start_offset << ", " << memory->size << ");\n"; if (cell->type == ID($memrd)) { if (!cell->getPort(ID(EN)).is_fully_ones()) { f << indent << "if ("; dump_sigspec_rhs(cell->getPort(ID(EN))); f << ") {\n"; inc_indent(); } // The generated code has two bounds checks; one in an assertion, and another that guards the read. // This is done so that the code does not invoke undefined behavior under any conditions, but nevertheless // loudly crashes if an illegal condition is encountered. The assert may be turned off with -NDEBUG not // just for release builds, but also to make sure the simulator (which is presumably embedded in some // larger program) will never crash the code that calls into it. // // If assertions are disabled, out of bounds reads are defined to return zero. f << indent << "assert(" << valid_index_temp << ".valid && \"out of bounds read\");\n"; f << indent << "if(" << valid_index_temp << ".valid) {\n"; inc_indent(); if (writable_memories[memory]) { std::string addr_temp = fresh_temporary(); f << indent << "const value<" << cell->getPort(ID(ADDR)).size() << "> &" << addr_temp << " = "; dump_sigspec_rhs(cell->getPort(ID(ADDR))); f << ";\n"; std::string lhs_temp = fresh_temporary(); f << indent << "value<" << memory->width << "> " << lhs_temp << " = " << mangle(memory) << "[" << valid_index_temp << ".index];\n"; std::vector memwr_cells(transparent_for[cell].begin(), transparent_for[cell].end()); std::sort(memwr_cells.begin(), memwr_cells.end(), [](const RTLIL::Cell *a, const RTLIL::Cell *b) { return a->getParam(ID(PRIORITY)).as_int() < b->getParam(ID(PRIORITY)).as_int(); }); for (auto memwr_cell : memwr_cells) { f << indent << "if (" << addr_temp << " == "; dump_sigspec_rhs(memwr_cell->getPort(ID(ADDR))); f << ") {\n"; inc_indent(); f << indent << lhs_temp << " = " << lhs_temp; f << ".update("; dump_sigspec_rhs(memwr_cell->getPort(ID(DATA))); f << ", "; dump_sigspec_rhs(memwr_cell->getPort(ID(EN))); f << ");\n"; dec_indent(); f << indent << "}\n"; } f << indent; dump_sigspec_lhs(cell->getPort(ID(DATA))); f << " = " << lhs_temp << ";\n"; } else { f << indent; dump_sigspec_lhs(cell->getPort(ID(DATA))); f << " = " << mangle(memory) << "[" << valid_index_temp << ".index];\n"; } dec_indent(); f << indent << "} else {\n"; inc_indent(); f << indent; dump_sigspec_lhs(cell->getPort(ID(DATA))); f << " = value<" << memory->width << "> {};\n"; dec_indent(); f << indent << "}\n"; if (!cell->getPort(ID(EN)).is_fully_ones()) { dec_indent(); f << indent << "}\n"; } } else /*if (cell->type == ID($memwr))*/ { log_assert(writable_memories[memory]); // See above for rationale of having both the assert and the condition. // // If assertions are disabled, out of bounds writes are defined to do nothing. f << indent << "assert(" << valid_index_temp << ".valid && \"out of bounds write\");\n"; f << indent << "if (" << valid_index_temp << ".valid) {\n"; inc_indent(); f << indent << mangle(memory) << ".update(" << valid_index_temp << ".index, "; dump_sigspec_rhs(cell->getPort(ID(DATA))); f << ", "; dump_sigspec_rhs(cell->getPort(ID(EN))); f << ", " << cell->getParam(ID(PRIORITY)).as_int() << ");\n"; dec_indent(); f << indent << "}\n"; } if (cell->getParam(ID(CLK_ENABLE)).as_bool()) { dec_indent(); f << indent << "}\n"; } // Internal cells } else if (is_internal_cell(cell->type)) { log_cmd_error("Unsupported internal cell `%s'.\n", cell->type.c_str()); // User cells } else { log_assert(cell->known()); for (auto conn : cell->connections()) if (cell->input(conn.first)) { f << indent << mangle(cell) << "." << mangle_wire_name(conn.first) << ".next = "; dump_sigspec_rhs(conn.second); f << ";\n"; } f << indent << mangle(cell) << ".eval();\n"; for (auto conn : cell->connections()) { if (conn.second.is_wire()) { RTLIL::Wire *wire = conn.second.as_wire(); if (elided_wires.count(wire) && cell_wire_defs[cell].count(wire)) continue; } if (cell->output(conn.first)) { f << indent; dump_sigspec_lhs(conn.second); f << " = " << mangle(cell) << "." << mangle_wire_name(conn.first) << ".curr;\n"; } } } } void dump_assign(const RTLIL::SigSig &sigsig) { f << indent; dump_sigspec_lhs(sigsig.first); f << " = "; dump_sigspec_rhs(sigsig.second); f << ";\n"; } void dump_case_rule(const RTLIL::CaseRule *rule) { for (auto action : rule->actions) dump_assign(action); for (auto switch_ : rule->switches) dump_switch_rule(switch_); } void dump_switch_rule(const RTLIL::SwitchRule *rule) { // The switch attributes are printed before the switch condition is captured. dump_attrs(rule); std::string signal_temp = fresh_temporary(); f << indent << "const value<" << rule->signal.size() << "> &" << signal_temp << " = "; dump_sigspec(rule->signal, /*is_lhs=*/false); f << ";\n"; bool first = true; for (auto case_ : rule->cases) { // The case attributes (for nested cases) are printed before the if/else if/else statement. dump_attrs(rule); f << indent; if (!first) f << "} else "; first = false; if (!case_->compare.empty()) { f << "if ("; bool first = true; for (auto &compare : case_->compare) { if (!first) f << " || "; first = false; if (compare.is_fully_def()) { f << signal_temp << " == "; dump_sigspec(compare, /*is_lhs=*/false); } else if (compare.is_fully_const()) { RTLIL::Const compare_mask, compare_value; for (auto bit : compare.as_const()) { switch (bit) { case RTLIL::S0: case RTLIL::S1: compare_mask.bits.push_back(RTLIL::S1); compare_value.bits.push_back(bit); break; case RTLIL::Sx: case RTLIL::Sz: case RTLIL::Sa: compare_mask.bits.push_back(RTLIL::S0); compare_value.bits.push_back(RTLIL::S0); break; default: log_assert(false); } } f << "and_uu<" << compare.size() << ">(" << signal_temp << ", "; dump_const(compare_mask); f << ") == "; dump_const(compare_value); } else { log_assert(false); } } f << ") "; } f << "{\n"; inc_indent(); dump_case_rule(case_); dec_indent(); } f << indent << "}\n"; } void dump_process(const RTLIL::Process *proc) { dump_attrs(proc); f << indent << "// process " << proc->name.str() << "\n"; // The case attributes (for root case) are always empty. log_assert(proc->root_case.attributes.empty()); dump_case_rule(&proc->root_case); for (auto sync : proc->syncs) { RTLIL::SigBit sync_bit = sync->signal[0]; sync_bit = sigmaps[sync_bit.wire->module](sync_bit); pool events; switch (sync->type) { case RTLIL::STp: events.insert("posedge_" + mangle(sync_bit)); break; case RTLIL::STn: events.insert("negedge_" + mangle(sync_bit)); case RTLIL::STe: events.insert("posedge_" + mangle(sync_bit)); events.insert("negedge_" + mangle(sync_bit)); break; case RTLIL::ST0: case RTLIL::ST1: case RTLIL::STa: case RTLIL::STg: case RTLIL::STi: log_assert(false); } if (!events.empty()) { f << indent << "if ("; bool first = true; for (auto &event : events) { if (!first) f << " || "; first = false; f << event; } f << ") {\n"; inc_indent(); for (auto action : sync->actions) dump_assign(action); dec_indent(); f << indent << "}\n"; } } } void dump_wire(const RTLIL::Wire *wire, bool is_local) { if (elided_wires.count(wire)) return; if (is_local) { if (!localized_wires.count(wire)) return; dump_attrs(wire); f << indent << "value<" << wire->width << "> " << mangle(wire) << ";\n"; } else { if (localized_wires.count(wire)) return; dump_attrs(wire); f << indent << "wire<" << wire->width << "> " << mangle(wire); if (wire->attributes.count(ID(init))) { f << " "; dump_const_init(wire->attributes.at(ID(init))); } f << ";\n"; if (sync_wires[wire]) { for (auto sync_type : sync_types) { if (sync_type.first.wire == wire) { if (sync_type.second != RTLIL::STn) f << indent << "bool posedge_" << mangle(sync_type.first) << " = false;\n"; if (sync_type.second != RTLIL::STp) f << indent << "bool negedge_" << mangle(sync_type.first) << " = false;\n"; } } } } } void dump_memory(RTLIL::Module *module, const RTLIL::Memory *memory) { vector init_cells; for (auto cell : module->cells()) if (cell->type == ID($meminit) && cell->getParam(ID(MEMID)).decode_string() == memory->name.str()) init_cells.push_back(cell); std::sort(init_cells.begin(), init_cells.end(), [](const RTLIL::Cell *a, const RTLIL::Cell *b) { int a_addr = a->getPort(ID(ADDR)).as_int(), b_addr = b->getPort(ID(ADDR)).as_int(); int a_prio = a->getParam(ID(PRIORITY)).as_int(), b_prio = b->getParam(ID(PRIORITY)).as_int(); return a_prio > b_prio || (a_prio == b_prio && a_addr < b_addr); }); dump_attrs(memory); f << indent << (writable_memories[memory] ? "" : "const ") << "memory<" << memory->width << "> " << mangle(memory) << " { " << memory->size << "u"; if (init_cells.empty()) { f << " };\n"; } else { f << ",\n"; inc_indent(); for (auto cell : init_cells) { dump_attrs(cell); RTLIL::Const data = cell->getPort(ID(DATA)).as_const(); size_t width = cell->getParam(ID(WIDTH)).as_int(); size_t words = cell->getParam(ID(WORDS)).as_int(); f << indent << "memory<" << memory->width << ">::init<" << words << "> { " << stringf("%#x", cell->getPort(ID(ADDR)).as_int()) << ", {"; inc_indent(); for (size_t n = 0; n < words; n++) { if (n % 4 == 0) f << "\n" << indent; else f << " "; dump_const(data, width, n * width, /*fixed_width=*/true); f << ","; } dec_indent(); f << "\n" << indent << "}},\n"; } dec_indent(); f << indent << "};\n"; } } void dump_module(RTLIL::Module *module) { dump_attrs(module); f << "struct " << mangle(module) << " : public module {\n"; inc_indent(); for (auto wire : module->wires()) dump_wire(wire, /*is_local=*/false); f << "\n"; bool has_memories = false; for (auto memory : module->memories) { dump_memory(module, memory.second); has_memories = true; } if (has_memories) f << "\n"; bool has_cells = false; for (auto cell : module->cells()) { if (is_internal_cell(cell->type)) continue; f << indent << mangle_module_name(cell->type) << " " << mangle(cell) << ";\n"; has_cells = true; } if (has_cells) f << "\n"; f << indent << "void eval() override;\n"; f << indent << "bool commit() override;\n"; dec_indent(); f << "}; // struct " << mangle(module) << "\n"; f << "\n"; f << "void " << mangle(module) << "::eval() {\n"; inc_indent(); for (auto wire : module->wires()) dump_wire(wire, /*is_local=*/true); for (auto node : schedule[module]) { switch (node.type) { case FlowGraph::Node::Type::CONNECT: dump_connect(node.connect); break; case FlowGraph::Node::Type::CELL: dump_cell(node.cell); break; case FlowGraph::Node::Type::PROCESS: dump_process(node.process); break; } } for (auto sync_type : sync_types) { if (sync_type.first.wire->module == module) { if (sync_type.second != RTLIL::STn) f << indent << "posedge_" << mangle(sync_type.first) << " = false;\n"; if (sync_type.second != RTLIL::STp) f << indent << "negedge_" << mangle(sync_type.first) << " = false;\n"; } } dec_indent(); f << "}\n"; f << "\n"; f << "bool " << mangle(module) << "::commit() {\n"; inc_indent(); f << indent << "bool changed = false;\n"; for (auto wire : module->wires()) { if (elided_wires.count(wire) || localized_wires.count(wire)) continue; if (sync_wires[wire]) { std::string wire_prev = mangle(wire) + "_prev"; std::string wire_curr = mangle(wire) + ".curr"; std::string wire_edge = mangle(wire) + "_edge"; f << indent << "value<" << wire->width << "> " << wire_prev << " = " << wire_curr << ";\n"; f << indent << "if (" << mangle(wire) << ".commit()) {\n"; inc_indent(); f << indent << "value<" << wire->width << "> " << wire_edge << " = " << wire_prev << ".bit_xor(" << wire_curr << ");\n"; for (auto sync_type : sync_types) { if (sync_type.first.wire != wire) continue; if (sync_type.second != RTLIL::STn) { f << indent << "if (" << wire_edge << ".slice<" << sync_type.first.offset << ">().val() && " << wire_curr << ".slice<" << sync_type.first.offset << ">().val())\n"; inc_indent(); f << indent << "posedge_" << mangle(sync_type.first) << " = true;\n"; dec_indent(); } if (sync_type.second != RTLIL::STp) { f << indent << "if (" << wire_edge << ".slice<" << sync_type.first.offset << ">().val() && " << "!" << wire_curr << ".slice<" << sync_type.first.offset << ">().val())\n"; inc_indent(); f << indent << "negedge_" << mangle(sync_type.first) << " = true;\n"; dec_indent(); } f << indent << "changed = true;\n"; } dec_indent(); f << indent << "}\n"; } else { f << indent << "changed |= " << mangle(wire) << ".commit();\n"; } } for (auto memory : module->memories) { if (!writable_memories[memory.second]) continue; f << indent << "changed |= " << mangle(memory.second) << ".commit();\n"; } for (auto cell : module->cells()) { if (is_internal_cell(cell->type)) continue; f << indent << "changed |= " << mangle(cell) << ".commit();\n"; } f << indent << "return changed;\n"; dec_indent(); f << "}\n"; f << "\n"; } void dump_design(RTLIL::Design *design) { TopoSort topo_design; for (auto module : design->modules()) { if (module->get_blackbox_attribute() || !design->selected_module(module)) continue; topo_design.node(module); for (auto cell : module->cells()) { if (is_internal_cell(cell->type)) continue; log_assert(design->has(cell->type)); topo_design.edge(design->module(cell->type), module); } } log_assert(topo_design.sort()); f << "#include \n"; f << "\n"; f << "using namespace cxxrtl_yosys;\n"; f << "\n"; f << "namespace cxxrtl_design {\n"; f << "\n"; for (auto module : topo_design.sorted) { if (!design->selected_module(module)) continue; dump_module(module); } f << "} // namespace cxxrtl_design\n"; } // Edge-type sync rules require us to emit edge detectors, which require coordination between // eval and commit phases. To do this we need to collect them upfront. // // Note that the simulator commit phase operates at wire granularity but edge-type sync rules // operate at wire bit granularity; it is possible to have code similar to: // wire [3:0] clocks; // always @(posedge clocks[0]) ... // To handle this we track edge sensitivity both for wires and wire bits. void register_edge_signal(SigMap &sigmap, RTLIL::SigSpec signal, RTLIL::SyncType type) { signal = sigmap(signal); log_assert(signal.is_wire() && signal.is_bit()); log_assert(type == RTLIL::STp || type == RTLIL::STn || type == RTLIL::STe); RTLIL::SigBit sigbit = signal[0]; if (!sync_types.count(sigbit)) sync_types[sigbit] = type; else if (sync_types[sigbit] != type) sync_types[sigbit] = RTLIL::STe; sync_wires.insert(signal.as_wire()); } void analyze_design(RTLIL::Design *design) { bool has_feedback_arcs = false; for (auto module : design->modules()) { if (!design->selected_module(module)) continue; FlowGraph flow; SigMap &sigmap = sigmaps[module]; sigmap.set(module); for (auto conn : module->connections()) flow.add_node(conn); dict memrw_cell_nodes; dict, pool> memwr_per_domain; for (auto cell : module->cells()) { FlowGraph::Node *node = flow.add_node(cell); // Various DFF cells are treated like posedge/negedge processes, see above for details. if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($dffsr))) { if (cell->getPort(ID(CLK)).is_wire()) register_edge_signal(sigmap, cell->getPort(ID(CLK)), cell->parameters[ID(CLK_POLARITY)].as_bool() ? RTLIL::STp : RTLIL::STn); // The $adff and $dffsr cells are level-sensitive, not edge-sensitive (in spite of the fact that they // are inferred from an edge-sensitive Verilog process) and do not correspond to an edge-type sync rule. } // Similar for memory port cells. if (cell->type.in(ID($memrd), ID($memwr))) { if (cell->getParam(ID(CLK_ENABLE)).as_bool()) { if (cell->getPort(ID(CLK)).is_wire()) register_edge_signal(sigmap, cell->getPort(ID(CLK)), cell->parameters[ID(CLK_POLARITY)].as_bool() ? RTLIL::STp : RTLIL::STn); } memrw_cell_nodes[cell] = node; } // Optimize access to read-only memories. if (cell->type == ID($memwr)) writable_memories.insert(module->memories[cell->getParam(ID(MEMID)).decode_string()]); // Collect groups of memory write ports in the same domain. if (cell->type == ID($memwr) && cell->getParam(ID(CLK_ENABLE)).as_bool() && cell->getPort(ID(CLK)).is_wire()) { RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID(CLK)))[0]; const RTLIL::Memory *memory = module->memories[cell->getParam(ID(MEMID)).decode_string()]; memwr_per_domain[{clk_bit, memory}].insert(cell); } // Handling of packed memories is delegated to the `memory_unpack` pass, so we can rely on the presence // of RTLIL memory objects and $memrd/$memwr/$meminit cells. if (cell->type.in(ID($mem))) log_assert(false); } for (auto cell : module->cells()) { // Collect groups of memory write ports read by every transparent read port. if (cell->type == ID($memrd) && cell->getParam(ID(CLK_ENABLE)).as_bool() && cell->getPort(ID(CLK)).is_wire() && cell->getParam(ID(TRANSPARENT)).as_bool()) { RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID(CLK)))[0]; const RTLIL::Memory *memory = module->memories[cell->getParam(ID(MEMID)).decode_string()]; for (auto memwr_cell : memwr_per_domain[{clk_bit, memory}]) { transparent_for[cell].insert(memwr_cell); // Our implementation of transparent $memrd cells reads \EN, \ADDR and \DATA from every $memwr cell // in the same domain, which isn't directly visible in the netlist. Add these uses explicitly. flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID(EN))); flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID(ADDR))); flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID(DATA))); } } } for (auto proc : module->processes) { flow.add_node(proc.second); for (auto sync : proc.second->syncs) switch (sync->type) { // Edge-type sync rules require pre-registration. case RTLIL::STp: case RTLIL::STn: case RTLIL::STe: register_edge_signal(sigmap, sync->signal, sync->type); break; // Level-type sync rules require no special handling. case RTLIL::ST0: case RTLIL::ST1: case RTLIL::STa: break; // Handling of init-type sync rules is delegated to the `proc_init` pass, so we can use the wire // attribute regardless of input. case RTLIL::STi: log_assert(false); case RTLIL::STg: log_cmd_error("Global clock is not supported.\n"); } } for (auto wire : module->wires()) { if (!flow.is_elidable(wire)) continue; if (wire->port_id != 0) continue; if (wire->get_bool_attribute(ID(keep))) continue; if (wire->name.begins_with("$") && !elide_internal) continue; if (wire->name.begins_with("\\") && !elide_public) continue; if (sync_wires[wire]) continue; log_assert(flow.wire_defs[wire].size() == 1); elided_wires[wire] = **flow.wire_defs[wire].begin(); } // Elided wires that are outputs of internal cells are always connected to a well known port (Y). // For user cells, there could be multiple of them, and we need a way to look up the port name // knowing only the wire. for (auto cell : module->cells()) for (auto conn : cell->connections()) if (conn.second.is_wire() && elided_wires.count(conn.second.as_wire())) cell_wire_defs[cell][conn.second.as_wire()] = conn.first; dict, hash_ptr_ops> node_defs; for (auto wire_def : flow.wire_defs) for (auto node : wire_def.second) node_defs[node].insert(wire_def.first); Scheduler scheduler; dict::Vertex*, hash_ptr_ops> node_map; for (auto node : flow.nodes) node_map[node] = scheduler.add(node); for (auto node_def : node_defs) { auto vertex = node_map[node_def.first]; for (auto wire : node_def.second) for (auto succ_node : flow.wire_uses[wire]) { auto succ_vertex = node_map[succ_node]; vertex->succs.insert(succ_vertex); succ_vertex->preds.insert(vertex); } } auto eval_order = scheduler.schedule(); pool evaluated; pool feedback_wires; for (auto vertex : eval_order) { auto node = vertex->data; schedule[module].push_back(*node); // Any wire that is an output of node vo and input of node vi where vo is scheduled later than vi // is a feedback wire. Feedback wires indicate apparent logic loops in the design, which may be // caused by a true logic loop, but usually are a benign result of dependency tracking that works // on wire, not bit, level. Nevertheless, feedback wires cannot be localized. evaluated.insert(node); for (auto wire : node_defs[node]) for (auto succ_node : flow.wire_uses[wire]) if (evaluated[succ_node]) { feedback_wires.insert(wire); // Feedback wires may never be elided because feedback requires state, but the point of elision // (and localization) is to eliminate state. elided_wires.erase(wire); } } if (!feedback_wires.empty()) { has_feedback_arcs = true; log("Module `%s` contains feedback arcs through wires:\n", module->name.c_str()); for (auto wire : feedback_wires) { log(" %s\n", wire->name.c_str()); } } for (auto wire : module->wires()) { if (feedback_wires[wire]) continue; if (wire->port_id != 0) continue; if (wire->get_bool_attribute(ID(keep))) continue; if (wire->name.begins_with("$") && !localize_internal) continue; if (wire->name.begins_with("\\") && !localize_public) continue; if (sync_wires[wire]) continue; // Outputs of FF/$memrd cells and LHS of sync actions do not end up in defs. if (flow.wire_defs[wire].size() != 1) continue; localized_wires.insert(wire); } } if (has_feedback_arcs) { log("Feedback arcs require delta cycles during evaluation.\n"); } } void check_design(RTLIL::Design *design, bool &has_sync_init, bool &has_packed_mem) { has_sync_init = has_packed_mem = false; for (auto module : design->modules()) { if (module->get_blackbox_attribute()) continue; if (!design->selected_whole_module(module)) if (design->selected_module(module)) log_cmd_error("Can't handle partially selected module `%s`!\n", id2cstr(module->name)); if (!design->selected_module(module)) continue; for (auto proc : module->processes) for (auto sync : proc.second->syncs) if (sync->type == RTLIL::STi) has_sync_init = true; for (auto cell : module->cells()) if (cell->type == ID($mem)) has_packed_mem = true; } } void prepare_design(RTLIL::Design *design) { bool has_sync_init, has_packed_mem; check_design(design, has_sync_init, has_packed_mem); if (has_sync_init) { // We're only interested in proc_init, but it depends on proc_prune and proc_clean, so call those // in case they weren't already. (This allows `yosys foo.v -o foo.cc` to work.) Pass::call(design, "proc_prune"); Pass::call(design, "proc_clean"); Pass::call(design, "proc_init"); } if (has_packed_mem) Pass::call(design, "memory_unpack"); // Recheck the design if it was modified. if (has_sync_init || has_packed_mem) check_design(design, has_sync_init, has_packed_mem); log_assert(!(has_sync_init || has_packed_mem)); if (run_splitnets) { Pass::call(design, "splitnets -driver"); Pass::call(design, "opt_clean -purge"); } log("\n"); analyze_design(design); } }; struct CxxrtlBackend : public Backend { static const int DEFAULT_OPT_LEVEL = 5; CxxrtlBackend() : Backend("cxxrtl", "convert design to C++ RTL simulation") { } void help() YS_OVERRIDE { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" write_cxxrtl [options] [filename]\n"); log("\n"); log("Write C++ code for simulating the design. The generated code requires a driver;\n"); log("the following simple driver is provided as an example:\n"); log("\n"); log(" #include \"top.cc\"\n"); log("\n"); log(" int main() {\n"); log(" cxxrtl_design::p_top top;\n"); log(" while (1) {\n"); log(" top.p_clk.next = value<1> {1u};\n"); log(" top.step();\n"); log(" top.p_clk.next = value<1> {0u};\n"); log(" top.step();\n"); log(" }\n"); log(" }\n"); log("\n"); log("The following options are supported by this backend:\n"); log("\n"); log(" -O \n"); log(" set the optimization level. the default is -O%d. higher optimization\n", DEFAULT_OPT_LEVEL); log(" levels dramatically decrease compile and run time, and highest level\n"); log(" possible for a design should be used.\n"); log("\n"); log(" -O0\n"); log(" no optimization.\n"); log("\n"); log(" -O1\n"); log(" elide internal wires if possible.\n"); log("\n"); log(" -O2\n"); log(" like -O1, and localize internal wires if possible.\n"); log("\n"); log(" -O3\n"); log(" like -O2, and elide public wires not marked (*keep*) if possible.\n"); log("\n"); log(" -O4\n"); log(" like -O3, and localize public wires not marked (*keep*) if possible.\n"); log("\n"); log(" -O5\n"); log(" like -O4, and run `splitnets -driver; opt_clean -purge` first.\n"); log("\n"); } void execute(std::ostream *&f, std::string filename, std::vector args, RTLIL::Design *design) YS_OVERRIDE { int opt_level = DEFAULT_OPT_LEVEL; log_header(design, "Executing CXXRTL backend.\n"); size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-O" && argidx+1 < args.size()) { opt_level = std::stoi(args[++argidx]); continue; } if (args[argidx].substr(0, 2) == "-O" && args[argidx].size() == 3 && isdigit(args[argidx][2])) { opt_level = std::stoi(args[argidx].substr(2)); continue; } break; } extra_args(f, filename, args, argidx); CxxrtlWorker worker(*f); switch (opt_level) { case 5: worker.run_splitnets = true; case 4: worker.localize_public = true; case 3: worker.elide_public = true; case 2: worker.localize_internal = true; case 1: worker.elide_internal = true; case 0: break; default: log_cmd_error("Invalid optimization level %d.\n", opt_level); } worker.prepare_design(design); worker.dump_design(design); } } CxxrtlBackend; PRIVATE_NAMESPACE_END