yosys/tests/openmsp430/rtl/omsp_clock_module.v

1059 lines
34 KiB
Verilog

//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_clock_module.v
//
// *Module Description:
// Basic clock module implementation.
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 134 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2012-03-22 21:31:06 +0100 (Thu, 22 Mar 2012) $
//----------------------------------------------------------------------------
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_defines.v"
`endif
module omsp_clock_module (
// OUTPUTs
aclk, // ACLK
aclk_en, // ACLK enable
cpu_en_s, // Enable CPU code execution (synchronous)
dbg_clk, // Debug unit clock
dbg_en_s, // Debug interface enable (synchronous)
dbg_rst, // Debug unit reset
dco_enable, // Fast oscillator enable
dco_wkup, // Fast oscillator wake-up (asynchronous)
lfxt_enable, // Low frequency oscillator enable
lfxt_wkup, // Low frequency oscillator wake-up (asynchronous)
mclk, // Main system clock
per_dout, // Peripheral data output
por, // Power-on reset
puc_pnd_set, // PUC pending set for the serial debug interface
puc_rst, // Main system reset
smclk, // SMCLK
smclk_en, // SMCLK enable
// INPUTs
cpu_en, // Enable CPU code execution (asynchronous)
cpuoff, // Turns off the CPU
dbg_cpu_reset, // Reset CPU from debug interface
dbg_en, // Debug interface enable (asynchronous)
dco_clk, // Fast oscillator (fast clock)
lfxt_clk, // Low frequency oscillator (typ 32kHz)
mclk_enable, // Main System Clock enable
mclk_wkup, // Main System Clock wake-up (asynchronous)
oscoff, // Turns off LFXT1 clock input
per_addr, // Peripheral address
per_din, // Peripheral data input
per_en, // Peripheral enable (high active)
per_we, // Peripheral write enable (high active)
reset_n, // Reset Pin (low active, asynchronous)
scan_enable, // Scan enable (active during scan shifting)
scan_mode, // Scan mode
scg0, // System clock generator 1. Turns off the DCO
scg1, // System clock generator 1. Turns off the SMCLK
wdt_reset // Watchdog-timer reset
);
// OUTPUTs
//=========
output aclk; // ACLK
output aclk_en; // ACLK enable
output cpu_en_s; // Enable CPU code execution (synchronous)
output dbg_clk; // Debug unit clock
output dbg_en_s; // Debug unit enable (synchronous)
output dbg_rst; // Debug unit reset
output dco_enable; // Fast oscillator enable
output dco_wkup; // Fast oscillator wake-up (asynchronous)
output lfxt_enable; // Low frequency oscillator enable
output lfxt_wkup; // Low frequency oscillator wake-up (asynchronous)
output mclk; // Main system clock
output [15:0] per_dout; // Peripheral data output
output por; // Power-on reset
output puc_pnd_set; // PUC pending set for the serial debug interface
output puc_rst; // Main system reset
output smclk; // SMCLK
output smclk_en; // SMCLK enable
// INPUTs
//=========
input cpu_en; // Enable CPU code execution (asynchronous)
input cpuoff; // Turns off the CPU
input dbg_cpu_reset;// Reset CPU from debug interface
input dbg_en; // Debug interface enable (asynchronous)
input dco_clk; // Fast oscillator (fast clock)
input lfxt_clk; // Low frequency oscillator (typ 32kHz)
input mclk_enable; // Main System Clock enable
input mclk_wkup; // Main System Clock wake-up (asynchronous)
input oscoff; // Turns off LFXT1 clock input
input [13:0] per_addr; // Peripheral address
input [15:0] per_din; // Peripheral data input
input per_en; // Peripheral enable (high active)
input [1:0] per_we; // Peripheral write enable (high active)
input reset_n; // Reset Pin (low active, asynchronous)
input scan_enable; // Scan enable (active during scan shifting)
input scan_mode; // Scan mode
input scg0; // System clock generator 1. Turns off the DCO
input scg1; // System clock generator 1. Turns off the SMCLK
input wdt_reset; // Watchdog-timer reset
//=============================================================================
// 1) WIRES & PARAMETER DECLARATION
//=============================================================================
// Register base address (must be aligned to decoder bit width)
parameter [14:0] BASE_ADDR = 15'h0050;
// Decoder bit width (defines how many bits are considered for address decoding)
parameter DEC_WD = 4;
// Register addresses offset
parameter [DEC_WD-1:0] BCSCTL1 = 'h7,
BCSCTL2 = 'h8;
// Register one-hot decoder utilities
parameter DEC_SZ = (1 << DEC_WD);
parameter [DEC_SZ-1:0] BASE_REG = {{DEC_SZ-1{1'b0}}, 1'b1};
// Register one-hot decoder
parameter [DEC_SZ-1:0] BCSCTL1_D = (BASE_REG << BCSCTL1),
BCSCTL2_D = (BASE_REG << BCSCTL2);
// Local wire declarations
wire nodiv_mclk;
wire nodiv_mclk_n;
wire nodiv_smclk;
//============================================================================
// 2) REGISTER DECODER
//============================================================================
// Local register selection
wire reg_sel = per_en & (per_addr[13:DEC_WD-1]==BASE_ADDR[14:DEC_WD]);
// Register local address
wire [DEC_WD-1:0] reg_addr = {1'b0, per_addr[DEC_WD-2:0]};
// Register address decode
wire [DEC_SZ-1:0] reg_dec = (BCSCTL1_D & {DEC_SZ{(reg_addr==(BCSCTL1 >>1))}}) |
(BCSCTL2_D & {DEC_SZ{(reg_addr==(BCSCTL2 >>1))}});
// Read/Write probes
wire reg_lo_write = per_we[0] & reg_sel;
wire reg_hi_write = per_we[1] & reg_sel;
wire reg_read = ~|per_we & reg_sel;
// Read/Write vectors
wire [DEC_SZ-1:0] reg_hi_wr = reg_dec & {DEC_SZ{reg_hi_write}};
wire [DEC_SZ-1:0] reg_lo_wr = reg_dec & {DEC_SZ{reg_lo_write}};
wire [DEC_SZ-1:0] reg_rd = reg_dec & {DEC_SZ{reg_read}};
//============================================================================
// 3) REGISTERS
//============================================================================
// BCSCTL1 Register
//--------------
reg [7:0] bcsctl1;
wire bcsctl1_wr = BCSCTL1[0] ? reg_hi_wr[BCSCTL1] : reg_lo_wr[BCSCTL1];
wire [7:0] bcsctl1_nxt = BCSCTL1[0] ? per_din[15:8] : per_din[7:0];
`ifdef ASIC
`ifdef ACLK_DIVIDER
wire [7:0] divax_mask = 8'h30;
`else
wire [7:0] divax_mask = 8'h00;
`endif
`else
wire [7:0] divax_mask = 8'h30;
`endif
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) bcsctl1 <= 8'h00;
else if (bcsctl1_wr) bcsctl1 <= bcsctl1_nxt & divax_mask; // Mask unused bits
// BCSCTL2 Register
//--------------
reg [7:0] bcsctl2;
wire bcsctl2_wr = BCSCTL2[0] ? reg_hi_wr[BCSCTL2] : reg_lo_wr[BCSCTL2];
wire [7:0] bcsctl2_nxt = BCSCTL2[0] ? per_din[15:8] : per_din[7:0];
`ifdef MCLK_MUX
wire [7:0] selmx_mask = 8'h80;
`else
wire [7:0] selmx_mask = 8'h00;
`endif
`ifdef MCLK_DIVIDER
wire [7:0] divmx_mask = 8'h30;
`else
wire [7:0] divmx_mask = 8'h00;
`endif
`ifdef ASIC
`ifdef SMCLK_MUX
wire [7:0] sels_mask = 8'h08;
`else
wire [7:0] sels_mask = 8'h00;
`endif
`ifdef SMCLK_DIVIDER
wire [7:0] divsx_mask = 8'h06;
`else
wire [7:0] divsx_mask = 8'h00;
`endif
`else
wire [7:0] sels_mask = 8'h08;
wire [7:0] divsx_mask = 8'h06;
`endif
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) bcsctl2 <= 8'h00;
else if (bcsctl2_wr) bcsctl2 <= bcsctl2_nxt & ( sels_mask | divsx_mask |
selmx_mask | divmx_mask); // Mask unused bits
//============================================================================
// 4) DATA OUTPUT GENERATION
//============================================================================
// Data output mux
wire [15:0] bcsctl1_rd = {8'h00, (bcsctl1 & {8{reg_rd[BCSCTL1]}})} << (8 & {4{BCSCTL1[0]}});
wire [15:0] bcsctl2_rd = {8'h00, (bcsctl2 & {8{reg_rd[BCSCTL2]}})} << (8 & {4{BCSCTL2[0]}});
wire [15:0] per_dout = bcsctl1_rd |
bcsctl2_rd;
//=============================================================================
// 5) DCO_CLK / LFXT_CLK INTERFACES (WAKEUP, ENABLE, ...)
//=============================================================================
`ifdef ASIC
wire cpuoff_and_mclk_enable;
omsp_and_gate and_cpuoff_mclk_en (.y(cpuoff_and_mclk_enable), .a(cpuoff), .b(mclk_enable));
`endif
//-----------------------------------------------------------
// 5.1) HIGH SPEED SYSTEM CLOCK GENERATOR (DCO_CLK)
//-----------------------------------------------------------
// Note1: switching off the DCO osillator is only
// supported in ASIC mode with SCG0 low power mode
//
// Note2: unlike the original MSP430 specification,
// we allow to switch off the DCO even
// if it is selected by MCLK or SMCLK.
wire por_a;
wire dco_wkup;
wire cpu_en_wkup;
`ifdef SCG0_EN
// The DCO oscillator is synchronously disabled if:
// - the cpu pin is disabled (in that case, wait for mclk_enable==0)
// - the debug interface is disabled
// - SCG0 is set (in that case, wait for the mclk_enable==0 if selected by SELMx)
//
// Note that we make extensive use of the AND gate module in order
// to prevent glitch propagation on the wakeup logic cone.
wire cpu_enabled_with_dco;
wire dco_not_enabled_by_dbg;
wire dco_disable_by_scg0;
wire dco_disable_by_cpu_en;
wire dco_enable_nxt;
omsp_and_gate and_dco_dis1 (.y(cpu_enabled_with_dco), .a(~bcsctl2[`SELMx]), .b(cpuoff_and_mclk_enable));
omsp_and_gate and_dco_dis2 (.y(dco_not_enabled_by_dbg), .a(~dbg_en_s), .b(~cpu_enabled_with_dco));
omsp_and_gate and_dco_dis3 (.y(dco_disable_by_scg0), .a(scg0), .b(dco_not_enabled_by_dbg));
omsp_and_gate and_dco_dis4 (.y(dco_disable_by_cpu_en), .a(~cpu_en_s), .b(~mclk_enable));
omsp_and_gate and_dco_dis5 (.y(dco_enable_nxt), .a(~dco_disable_by_scg0), .b(~dco_disable_by_cpu_en));
// Register to prevent glitch propagation
reg dco_disable;
always @(posedge nodiv_mclk_n or posedge por)
if (por) dco_disable <= 1'b1;
else dco_disable <= ~dco_enable_nxt;
// Note that a synchronizer is required if the MCLK mux is included
wire dco_clk_n = ~dco_clk;
`ifdef MCLK_MUX
omsp_sync_cell sync_cell_dco_disable (
.data_out (dco_enable),
.data_in (~dco_disable),
.clk (dco_clk_n),
.rst (por)
);
`else
assign dco_enable = ~dco_disable;
`endif
// The DCO oscillator will get an asynchronous wakeup if:
// - the MCLK generates a wakeup (only if the MCLK mux selects dco_clk)
// - if the DCO wants to be synchronously enabled (i.e dco_enable_nxt=1)
wire dco_mclk_wkup;
wire dco_en_wkup;
omsp_and_gate and_dco_mclk_wkup (.y(dco_mclk_wkup), .a(mclk_wkup), .b(~bcsctl2[`SELMx]));
omsp_and_gate and_dco_en_wkup (.y(dco_en_wkup), .a(~dco_enable), .b(dco_enable_nxt));
wire dco_wkup_set = dco_mclk_wkup | dco_en_wkup | cpu_en_wkup;
// Scan MUX for the asynchronous SET
wire dco_wkup_set_scan;
omsp_scan_mux scan_mux_dco_wkup (
.scan_mode (scan_mode),
.data_in_scan (por_a),
.data_in_func (dco_wkup_set | por),
.data_out (dco_wkup_set_scan)
);
// Scan MUX to increase coverage
wire dco_wkup_clear;
omsp_scan_mux scan_mux_dco_wkup_clear (
.scan_mode (scan_mode),
.data_in_scan (dco_wkup_set),
.data_in_func (1'b1),
.data_out (dco_wkup_clear)
);
// The wakeup is asynchronously set, synchronously released
wire dco_wkup_n;
omsp_sync_cell sync_cell_dco_wkup (
.data_out (dco_wkup_n),
.data_in (dco_wkup_clear),
.clk (dco_clk_n),
.rst (dco_wkup_set_scan)
);
omsp_and_gate and_dco_wkup (.y(dco_wkup), .a(~dco_wkup_n), .b(cpu_en));
`else
assign dco_enable = 1'b1;
assign dco_wkup = 1'b1;
`endif
//-----------------------------------------------------------
// 5.2) LOW FREQUENCY CRYSTAL CLOCK GENERATOR (LFXT_CLK)
//-----------------------------------------------------------
// ASIC MODE
//------------------------------------------------
// Note: unlike the original MSP430 specification,
// we allow to switch off the LFXT even
// if it is selected by MCLK or SMCLK.
`ifdef ASIC
`ifdef OSCOFF_EN
// The LFXT is synchronously disabled if:
// - the cpu pin is disabled (in that case, wait for mclk_enable==0)
// - the debug interface is disabled
// - OSCOFF is set (in that case, wait for the mclk_enable==0 if selected by SELMx)
wire cpu_enabled_with_lfxt;
wire lfxt_not_enabled_by_dbg;
wire lfxt_disable_by_oscoff;
wire lfxt_disable_by_cpu_en;
wire lfxt_enable_nxt;
omsp_and_gate and_lfxt_dis1 (.y(cpu_enabled_with_lfxt), .a(bcsctl2[`SELMx]), .b(cpuoff_and_mclk_enable));
omsp_and_gate and_lfxt_dis2 (.y(lfxt_not_enabled_by_dbg), .a(~dbg_en_s), .b(~cpu_enabled_with_lfxt));
omsp_and_gate and_lfxt_dis3 (.y(lfxt_disable_by_oscoff), .a(oscoff), .b(lfxt_not_enabled_by_dbg));
omsp_and_gate and_lfxt_dis4 (.y(lfxt_disable_by_cpu_en), .a(~cpu_en_s), .b(~mclk_enable));
omsp_and_gate and_lfxt_dis5 (.y(lfxt_enable_nxt), .a(~lfxt_disable_by_oscoff), .b(~lfxt_disable_by_cpu_en));
// Register to prevent glitch propagation
reg lfxt_disable;
always @(posedge nodiv_mclk_n or posedge por)
if (por) lfxt_disable <= 1'b1;
else lfxt_disable <= ~lfxt_enable_nxt;
// Synchronize the OSCOFF control signal to the LFXT clock domain
wire lfxt_clk_n = ~lfxt_clk;
omsp_sync_cell sync_cell_lfxt_disable (
.data_out (lfxt_enable),
.data_in (~lfxt_disable),
.clk (lfxt_clk_n),
.rst (por)
);
// The LFXT will get an asynchronous wakeup if:
// - the MCLK generates a wakeup (only if the MCLK mux selects lfxt_clk)
// - if the LFXT wants to be synchronously enabled (i.e lfxt_enable_nxt=1)
wire lfxt_mclk_wkup;
wire lfxt_en_wkup;
omsp_and_gate and_lfxt_mclk_wkup (.y(lfxt_mclk_wkup), .a(mclk_wkup), .b(bcsctl2[`SELMx]));
omsp_and_gate and_lfxt_en_wkup (.y(lfxt_en_wkup), .a(~lfxt_enable), .b(lfxt_enable_nxt));
wire lfxt_wkup_set = lfxt_mclk_wkup | lfxt_en_wkup | cpu_en_wkup;
// Scan MUX for the asynchronous SET
wire lfxt_wkup_set_scan;
omsp_scan_mux scan_mux_lfxt_wkup (
.scan_mode (scan_mode),
.data_in_scan (por_a),
.data_in_func (lfxt_wkup_set | por),
.data_out (lfxt_wkup_set_scan)
);
// Scan MUX to increase coverage
wire lfxt_wkup_clear;
omsp_scan_mux scan_mux_lfxt_wkup_clear (
.scan_mode (scan_mode),
.data_in_scan (lfxt_wkup_set),
.data_in_func (1'b1),
.data_out (lfxt_wkup_clear)
);
// The wakeup is asynchronously set, synchronously released
wire lfxt_wkup_n;
omsp_sync_cell sync_cell_lfxt_wkup (
.data_out (lfxt_wkup_n),
.data_in (lfxt_wkup_clear),
.clk (lfxt_clk_n),
.rst (lfxt_wkup_set_scan)
);
omsp_and_gate and_lfxt_wkup (.y(lfxt_wkup), .a(~lfxt_wkup_n), .b(cpu_en));
`else
assign lfxt_enable = 1'b1;
assign lfxt_wkup = 1'b0;
`endif
// FPGA MODE
//---------------------------------------
// Synchronize LFXT_CLK & edge detection
`else
wire lfxt_clk_s;
omsp_sync_cell sync_cell_lfxt_clk (
.data_out (lfxt_clk_s),
.data_in (lfxt_clk),
.clk (mclk),
.rst (por)
);
reg lfxt_clk_dly;
always @ (posedge mclk or posedge por)
if (por) lfxt_clk_dly <= 1'b0;
else lfxt_clk_dly <= lfxt_clk_s;
wire lfxt_clk_en = (lfxt_clk_s & ~lfxt_clk_dly) & ~(oscoff & ~bcsctl2[`SELS]);
assign lfxt_enable = 1'b1;
assign lfxt_wkup = 1'b0;
`endif
//=============================================================================
// 6) CLOCK GENERATION
//=============================================================================
//-----------------------------------------------------------
// 6.1) GLOBAL CPU ENABLE
//-----------------------------------------------------------
// ACLK and SMCLK are directly switched-off
// with the cpu_en pin (after synchronization).
// MCLK will be switched off once the CPU reaches
// its IDLE state (through the mclk_enable signal)
// Synchronize CPU_EN signal to the MCLK domain
//----------------------------------------------
`ifdef SYNC_CPU_EN
omsp_sync_cell sync_cell_cpu_en (
.data_out (cpu_en_s),
.data_in (cpu_en),
.clk (nodiv_mclk),
.rst (por)
);
omsp_and_gate and_cpu_en_wkup (.y(cpu_en_wkup), .a(cpu_en), .b(~cpu_en_s));
`else
assign cpu_en_s = cpu_en;
assign cpu_en_wkup = 1'b0;
`endif
// Synchronize CPU_EN signal to the ACLK domain
//----------------------------------------------
`ifdef LFXT_DOMAIN
wire cpu_en_aux_s;
omsp_sync_cell sync_cell_cpu_aux_en (
.data_out (cpu_en_aux_s),
.data_in (cpu_en),
.clk (lfxt_clk),
.rst (por)
);
`else
wire cpu_en_aux_s = cpu_en_s;
`endif
// Synchronize CPU_EN signal to the SMCLK domain
//----------------------------------------------
// Note: the synchronizer is only required if there is a SMCLK_MUX
`ifdef ASIC
`ifdef SMCLK_MUX
wire cpu_en_sm_s;
omsp_sync_cell sync_cell_cpu_sm_en (
.data_out (cpu_en_sm_s),
.data_in (cpu_en),
.clk (nodiv_smclk),
.rst (por)
);
`else
wire cpu_en_sm_s = cpu_en_s;
`endif
`endif
//-----------------------------------------------------------
// 6.2) MCLK GENERATION
//-----------------------------------------------------------
// Clock MUX
//----------------------------
`ifdef MCLK_MUX
omsp_clock_mux clock_mux_mclk (
.clk_out (nodiv_mclk),
.clk_in0 (dco_clk),
.clk_in1 (lfxt_clk),
.reset (por),
.scan_mode (scan_mode),
.select (bcsctl2[`SELMx])
);
`else
assign nodiv_mclk = dco_clk;
`endif
assign nodiv_mclk_n = ~nodiv_mclk;
// Wakeup synchronizer
//----------------------------
wire mclk_wkup_s;
`ifdef CPUOFF_EN
omsp_sync_cell sync_cell_mclk_wkup (
.data_out (mclk_wkup_s),
.data_in (mclk_wkup),
.clk (nodiv_mclk),
.rst (puc_rst)
);
`else
assign mclk_wkup_s = 1'b0;
`endif
// Clock Divider
//----------------------------
// No need for extra synchronizer as bcsctl2
// comes from the same clock domain.
`ifdef CPUOFF_EN
wire mclk_active = mclk_enable | mclk_wkup_s | (dbg_en_s & cpu_en_s);
`else
wire mclk_active = 1'b1;
`endif
`ifdef MCLK_DIVIDER
reg [2:0] mclk_div;
always @ (posedge nodiv_mclk or posedge puc_rst)
if (puc_rst) mclk_div <= 3'h0;
else if ((bcsctl2[`DIVMx]!=2'b00)) mclk_div <= mclk_div+3'h1;
wire mclk_div_en = mclk_active & ((bcsctl2[`DIVMx]==2'b00) ? 1'b1 :
(bcsctl2[`DIVMx]==2'b01) ? mclk_div[0] :
(bcsctl2[`DIVMx]==2'b10) ? &mclk_div[1:0] :
&mclk_div[2:0]);
`else
wire mclk_div_en = mclk_active;
`endif
// Generate main system clock
//----------------------------
`ifdef MCLK_CGATE
omsp_clock_gate clock_gate_mclk (
.gclk (mclk),
.clk (nodiv_mclk),
.enable (mclk_div_en),
.scan_enable (scan_enable)
);
`else
assign mclk = nodiv_mclk;
`endif
//-----------------------------------------------------------
// 6.3) ACLK GENERATION
//-----------------------------------------------------------
// ASIC MODE
//----------------------------
`ifdef ASIC
`ifdef ACLK_DIVIDER
`ifdef LFXT_DOMAIN
wire nodiv_aclk = lfxt_clk;
// Local Reset synchronizer
wire puc_lfxt_rst;
wire puc_lfxt_noscan_n;
omsp_sync_cell sync_cell_puc_lfxt (
.data_out (puc_lfxt_noscan_n),
.data_in (1'b1),
.clk (nodiv_aclk),
.rst (puc_rst)
);
omsp_scan_mux scan_mux_puc_lfxt (
.scan_mode (scan_mode),
.data_in_scan (por_a),
.data_in_func (~puc_lfxt_noscan_n),
.data_out (puc_lfxt_rst)
);
// Local synchronizer for the bcsctl1.DIVAx configuration
// (note that we can live with a full bus synchronizer as
// it won't hurt if we get a wrong DIVAx value for a single clock cycle)
reg [1:0] divax_s;
reg [1:0] divax_ss;
always @ (posedge nodiv_aclk or posedge puc_lfxt_rst)
if (puc_lfxt_rst)
begin
divax_s <= 2'h0;
divax_ss <= 2'h0;
end
else
begin
divax_s <= bcsctl1[`DIVAx];
divax_ss <= divax_s;
end
// If the OSCOFF mode is enabled synchronize OSCOFF signal
wire oscoff_s;
`ifdef OSCOFF_EN
omsp_sync_cell sync_cell_oscoff (
.data_out (oscoff_s),
.data_in (oscoff),
.clk (nodiv_aclk),
.rst (puc_lfxt_rst)
);
`else
assign oscoff_s = 1'b0;
`endif
`else
wire puc_lfxt_rst = puc_rst;
wire nodiv_aclk = dco_clk;
wire [1:0] divax_ss = bcsctl1[`DIVAx];
wire oscoff_s = oscoff;
`endif
// Divider
reg [2:0] aclk_div;
always @ (posedge nodiv_aclk or posedge puc_lfxt_rst)
if (puc_lfxt_rst) aclk_div <= 3'h0;
else if ((divax_ss!=2'b00)) aclk_div <= aclk_div+3'h1;
wire aclk_div_en = cpu_en_aux_s & ~oscoff_s & ((divax_ss==2'b00) ? 1'b1 :
(divax_ss==2'b01) ? aclk_div[0] :
(divax_ss==2'b10) ? &aclk_div[1:0] :
&aclk_div[2:0]);
// Clock gate
omsp_clock_gate clock_gate_aclk (
.gclk (aclk),
.clk (nodiv_aclk),
.enable (aclk_div_en),
.scan_enable (scan_enable)
);
`else
`ifdef LFXT_DOMAIN
assign aclk = lfxt_clk;
`else
assign aclk = dco_clk;
`endif
`endif
assign aclk_en = 1'b1;
// FPGA MODE
//----------------------------
`else
reg aclk_en;
reg [2:0] aclk_div;
wire aclk_en_nxt = lfxt_clk_en & ((bcsctl1[`DIVAx]==2'b00) ? 1'b1 :
(bcsctl1[`DIVAx]==2'b01) ? aclk_div[0] :
(bcsctl1[`DIVAx]==2'b10) ? &aclk_div[1:0] :
&aclk_div[2:0]);
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) aclk_div <= 3'h0;
else if ((bcsctl1[`DIVAx]!=2'b00) & lfxt_clk_en) aclk_div <= aclk_div+3'h1;
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) aclk_en <= 1'b0;
else aclk_en <= aclk_en_nxt & cpu_en_s;
assign aclk = mclk;
`endif
//-----------------------------------------------------------
// 6.4) SMCLK GENERATION
//-----------------------------------------------------------
// Clock MUX
//----------------------------
`ifdef SMCLK_MUX
omsp_clock_mux clock_mux_smclk (
.clk_out (nodiv_smclk),
.clk_in0 (dco_clk),
.clk_in1 (lfxt_clk),
.reset (por),
.scan_mode (scan_mode),
.select (bcsctl2[`SELS])
);
`else
assign nodiv_smclk = dco_clk;
`endif
// ASIC MODE
//----------------------------
`ifdef ASIC
`ifdef SMCLK_MUX
// Synchronizers
//------------------------------------------------------
// When the SMCLK MUX is enabled, the reset and DIVSx
// and SCG1 signals must be synchronized, otherwise not.
// Local Reset synchronizer
wire puc_sm_noscan_n;
wire puc_sm_rst;
omsp_sync_cell sync_cell_puc_sm (
.data_out (puc_sm_noscan_n),
.data_in (1'b1),
.clk (nodiv_smclk),
.rst (puc_rst)
);
omsp_scan_mux scan_mux_puc_sm (
.scan_mode (scan_mode),
.data_in_scan (por_a),
.data_in_func (~puc_sm_noscan_n),
.data_out (puc_sm_rst)
);
// SCG1 synchronizer
`ifdef SCG1_EN
wire scg1_s;
omsp_sync_cell sync_cell_scg1 (
.data_out (scg1_s),
.data_in (scg1),
.clk (nodiv_smclk),
.rst (puc_sm_rst)
);
`else
wire scg1_s = 1'b0;
`endif
`ifdef SMCLK_DIVIDER
// Local synchronizer for the bcsctl2.DIVSx configuration
// (note that we can live with a full bus synchronizer as
// it won't hurt if we get a wrong DIVSx value for a single clock cycle)
reg [1:0] divsx_s;
reg [1:0] divsx_ss;
always @ (posedge nodiv_smclk or posedge puc_sm_rst)
if (puc_sm_rst)
begin
divsx_s <= 2'h0;
divsx_ss <= 2'h0;
end
else
begin
divsx_s <= bcsctl2[`DIVSx];
divsx_ss <= divsx_s;
end
`endif
`else
wire puc_sm_rst = puc_rst;
wire [1:0] divsx_ss = bcsctl2[`DIVSx];
wire scg1_s = scg1;
`endif
// Clock Divider
//----------------------------
`ifdef SMCLK_DIVIDER
reg [2:0] smclk_div;
always @ (posedge nodiv_smclk or posedge puc_sm_rst)
if (puc_sm_rst) smclk_div <= 3'h0;
else if ((divsx_ss!=2'b00)) smclk_div <= smclk_div+3'h1;
wire smclk_div_en = cpu_en_sm_s & ~scg1_s & ((divsx_ss==2'b00) ? 1'b1 :
(divsx_ss==2'b01) ? smclk_div[0] :
(divsx_ss==2'b10) ? &smclk_div[1:0] :
&smclk_div[2:0]);
`else
`ifdef SCG1_EN
wire smclk_div_en = cpu_en_sm_s & ~scg1_s;
`else
wire smclk_div_en = cpu_en_sm_s;
`endif
`endif
// Generate sub-system clock
//----------------------------
`ifdef SMCLK_CGATE
omsp_clock_gate clock_gate_smclk (
.gclk (smclk),
.clk (nodiv_smclk),
.enable (smclk_div_en),
.scan_enable (scan_enable)
);
`else
assign smclk = nodiv_smclk;
`endif
assign smclk_en = 1'b1;
// FPGA MODE
//----------------------------
`else
reg smclk_en;
reg [2:0] smclk_div;
wire smclk_in = ~scg1 & (bcsctl2[`SELS] ? lfxt_clk_en : 1'b1);
wire smclk_en_nxt = smclk_in & ((bcsctl2[`DIVSx]==2'b00) ? 1'b1 :
(bcsctl2[`DIVSx]==2'b01) ? smclk_div[0] :
(bcsctl2[`DIVSx]==2'b10) ? &smclk_div[1:0] :
&smclk_div[2:0]);
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) smclk_en <= 1'b0;
else smclk_en <= smclk_en_nxt & cpu_en_s;
always @ (posedge mclk or posedge puc_rst)
if (puc_rst) smclk_div <= 3'h0;
else if ((bcsctl2[`DIVSx]!=2'b00) & smclk_in) smclk_div <= smclk_div+3'h1;
wire smclk = mclk;
`endif
//-----------------------------------------------------------
// 6.5) DEBUG INTERFACE CLOCK GENERATION (DBG_CLK)
//-----------------------------------------------------------
// Synchronize DBG_EN signal to MCLK domain
//------------------------------------------
`ifdef DBG_EN
`ifdef SYNC_DBG_EN
wire dbg_en_n_s;
omsp_sync_cell sync_cell_dbg_en (
.data_out (dbg_en_n_s),
.data_in (~dbg_en),
.clk (mclk),
.rst (por)
);
assign dbg_en_s = ~dbg_en_n_s;
wire dbg_rst_nxt = dbg_en_n_s;
`else
assign dbg_en_s = dbg_en;
wire dbg_rst_nxt = ~dbg_en;
`endif
`else
assign dbg_en_s = 1'b0;
wire dbg_rst_nxt = 1'b0;
`endif
// Serial Debug Interface Clock gate
//------------------------------------------------
`ifdef DBG_EN
`ifdef ASIC
omsp_clock_gate clock_gate_dbg_clk (
.gclk (dbg_clk),
.clk (mclk),
.enable (dbg_en_s),
.scan_enable (scan_enable)
);
`else
assign dbg_clk = dco_clk;
`endif
`else
assign dbg_clk = 1'b0;
`endif
//=============================================================================
// 7) RESET GENERATION
//=============================================================================
//
// Whenever the reset pin (reset_n) is deasserted, the internal resets of the
// openMSP430 will be released in the following order:
// 1- POR
// 2- DBG_RST (if the sdi interface is enabled, i.e. dbg_en=1)
// 3- PUC
//
// Note: releasing the DBG_RST before PUC is particularly important in order
// to allow the sdi interface to halt the cpu immediately after a PUC.
//
// Generate synchronized POR to MCLK domain
//------------------------------------------
// Asynchronous reset source
assign por_a = !reset_n;
wire por_noscan;
// Reset Synchronizer
omsp_sync_reset sync_reset_por (
.rst_s (por_noscan),
.clk (nodiv_mclk),
.rst_a (por_a)
);
// Scan Reset Mux
`ifdef ASIC
omsp_scan_mux scan_mux_por (
.scan_mode (scan_mode),
.data_in_scan (por_a),
.data_in_func (por_noscan),
.data_out (por)
);
`else
assign por = por_noscan;
`endif
// Generate synchronized reset for the SDI
//------------------------------------------
`ifdef DBG_EN
// Reset Generation
reg dbg_rst_noscan;
always @ (posedge mclk or posedge por)
if (por) dbg_rst_noscan <= 1'b1;
else dbg_rst_noscan <= dbg_rst_nxt;
// Scan Reset Mux
`ifdef ASIC
omsp_scan_mux scan_mux_dbg_rst (
.scan_mode (scan_mode),
.data_in_scan (por_a),
.data_in_func (dbg_rst_noscan),
.data_out (dbg_rst)
);
`else
assign dbg_rst = dbg_rst_noscan;
`endif
`else
wire dbg_rst_noscan = 1'b1;
assign dbg_rst = 1'b1;
`endif
// Generate main system reset (PUC_RST)
//--------------------------------------
wire puc_noscan_n;
wire puc_a_scan;
// Asynchronous PUC reset
wire puc_a = por | wdt_reset;
// Synchronous PUC reset
wire puc_s = dbg_cpu_reset | // With the debug interface command
(dbg_en_s & dbg_rst_noscan & ~puc_noscan_n); // Sequencing making sure PUC is released
// after DBG_RST if the debug interface is
// enabled at power-on-reset time
// Scan Reset Mux
`ifdef ASIC
omsp_scan_mux scan_mux_puc_rst_a (
.scan_mode (scan_mode),
.data_in_scan (por_a),
.data_in_func (puc_a),
.data_out (puc_a_scan)
);
`else
assign puc_a_scan = puc_a;
`endif
// Reset Synchronizer
// (required because of the asynchronous watchdog reset)
omsp_sync_cell sync_cell_puc (
.data_out (puc_noscan_n),
.data_in (~puc_s),
.clk (mclk),
.rst (puc_a_scan)
);
// Scan Reset Mux
`ifdef ASIC
omsp_scan_mux scan_mux_puc_rst (
.scan_mode (scan_mode),
.data_in_scan (por_a),
.data_in_func (~puc_noscan_n),
.data_out (puc_rst)
);
`else
assign puc_rst = ~puc_noscan_n;
`endif
// PUC pending set the serial debug interface
assign puc_pnd_set = ~puc_noscan_n;
endmodule // omsp_clock_module
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_undefines.v"
`endif