yosys/passes/memory/memory_map.cc

375 lines
12 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/register.h"
#include "kernel/log.h"
#include <sstream>
#include <set>
#include <stdlib.h>
#include <assert.h>
static std::string genid(std::string name, std::string token1 = "", int i = -1, std::string token2 = "", int j = -1, std::string token3 = "", int k = -1, std::string token4 = "")
{
std::stringstream sstr;
sstr << "$memory" << name << token1;
if (i >= 0)
sstr << "[" << i << "]";
sstr << token2;
if (j >= 0)
sstr << "[" << j << "]";
sstr << token3;
if (k >= 0)
sstr << "[" << k << "]";
sstr << token4 << "$" << (RTLIL::autoidx++);
return sstr.str();
}
static void handle_cell(RTLIL::Module *module, RTLIL::Cell *cell)
{
std::set<int> static_ports;
std::map<int, RTLIL::SigSpec> static_cells_map;
int mem_size = cell->parameters["\\SIZE"].as_int();
int mem_width = cell->parameters["\\WIDTH"].as_int();
int mem_offset = cell->parameters["\\OFFSET"].as_int();
int mem_abits = cell->parameters["\\ABITS"].as_int();
// delete unused memory cell
if (cell->parameters["\\RD_PORTS"].as_int() == 0 && cell->parameters["\\WR_PORTS"].as_int() == 0) {
module->cells.erase(cell->name);
delete cell;
return;
}
// all write ports must share the same clock
RTLIL::SigSpec clocks = cell->connections["\\WR_CLK"];
RTLIL::Const clocks_pol = cell->parameters["\\WR_CLK_POLARITY"];
RTLIL::Const clocks_en = cell->parameters["\\WR_CLK_ENABLE"];
RTLIL::SigSpec refclock;
RTLIL::State refclock_pol = RTLIL::State::Sx;
for (int i = 0; i < clocks.width; i++) {
RTLIL::SigSpec wr_en = cell->connections["\\WR_EN"].extract(i * mem_width, mem_width);
if (wr_en.is_fully_const() && !wr_en.as_bool()) {
static_ports.insert(i);
continue;
}
if (clocks_en.bits[i] != RTLIL::State::S1) {
RTLIL::SigSpec wr_addr = cell->connections["\\WR_ADDR"].extract(i*mem_abits, mem_abits);
RTLIL::SigSpec wr_data = cell->connections["\\WR_DATA"].extract(i*mem_width, mem_width);
if (wr_addr.is_fully_const()) {
// FIXME: Actually we should check for wr_en.is_fully_const() also and
// create a $adff cell with this ports wr_en input as reset pin when wr_en
// is not a simple static 1.
static_cells_map[wr_addr.as_int()] = wr_data;
static_ports.insert(i);
continue;
}
log("Not mapping memory cell %s in module %s (write port %d has no clock).\n",
cell->name.c_str(), module->name.c_str(), i);
return;
}
if (refclock.width == 0) {
refclock = clocks.extract(i, 1);
refclock_pol = clocks_pol.bits[i];
}
if (clocks.extract(i, 1) != refclock || clocks_pol.bits[i] != refclock_pol) {
log("Not mapping memory cell %s in module %s (write clock %d is incompatible with other clocks).\n",
cell->name.c_str(), module->name.c_str(), i);
return;
}
}
log("Mapping memory cell %s in module %s:\n", cell->name.c_str(), module->name.c_str());
std::vector<RTLIL::SigSpec> data_reg_in;
std::vector<RTLIL::SigSpec> data_reg_out;
int count_static = 0;
for (int i = 0; i < mem_size; i++)
{
if (static_cells_map.count(i) > 0)
{
data_reg_in.push_back(RTLIL::SigSpec(RTLIL::State::Sz, mem_width));
data_reg_out.push_back(static_cells_map[i]);
count_static++;
}
else
{
RTLIL::Cell *c = new RTLIL::Cell;
c->name = genid(cell->name, "", i);
c->type = "$dff";
c->parameters["\\WIDTH"] = cell->parameters["\\WIDTH"];
if (clocks_pol.bits.size() > 0) {
c->parameters["\\CLK_POLARITY"] = RTLIL::Const(clocks_pol.bits[0]);
c->connections["\\CLK"] = clocks.extract(0, 1);
} else {
c->parameters["\\CLK_POLARITY"] = RTLIL::Const(RTLIL::State::S1);
c->connections["\\CLK"] = RTLIL::SigSpec(RTLIL::State::S0);
}
module->cells[c->name] = c;
RTLIL::Wire *w_in = new RTLIL::Wire;
w_in->name = genid(cell->name, "", i, "$d");
w_in->width = mem_width;
module->wires[w_in->name] = w_in;
data_reg_in.push_back(RTLIL::SigSpec(w_in));
c->connections["\\D"] = data_reg_in.back();
RTLIL::Wire *w_out = new RTLIL::Wire;
w_out->name = stringf("%s[%d]", cell->parameters["\\MEMID"].decode_string().c_str(), i);
if (module->wires.count(w_out->name) > 0)
w_out->name = genid(cell->name, "", i, "$q");
w_out->width = mem_width;
w_out->start_offset = mem_offset;
module->wires[w_out->name] = w_out;
data_reg_out.push_back(RTLIL::SigSpec(w_out));
c->connections["\\Q"] = data_reg_out.back();
}
}
log(" created %d $dff cells and %d static cells of width %d.\n", mem_size-count_static, count_static, mem_width);
int count_dff = 0, count_mux = 0, count_wrmux = 0;
for (int i = 0; i < cell->parameters["\\RD_PORTS"].as_int(); i++)
{
RTLIL::SigSpec rd_addr = cell->connections["\\RD_ADDR"].extract(i*mem_abits, mem_abits);
std::vector<RTLIL::SigSpec> rd_signals;
rd_signals.push_back(cell->connections["\\RD_DATA"].extract(i*mem_width, mem_width));
if (cell->parameters["\\RD_CLK_ENABLE"].bits[i] == RTLIL::State::S1)
{
if (cell->parameters["\\RD_TRANSPARENT"].bits[i] == RTLIL::State::S1)
{
RTLIL::Cell *c = new RTLIL::Cell;
c->name = genid(cell->name, "$rdreg", i);
c->type = "$dff";
c->parameters["\\WIDTH"] = RTLIL::Const(mem_abits);
c->parameters["\\CLK_POLARITY"] = RTLIL::Const(cell->parameters["\\RD_CLK_POLARITY"].bits[i]);
c->connections["\\CLK"] = cell->connections["\\RD_CLK"].extract(i, 1);
c->connections["\\D"] = rd_addr;
module->cells[c->name] = c;
count_dff++;
RTLIL::Wire *w = new RTLIL::Wire;
w->name = genid(cell->name, "$rdreg", i, "$q");
w->width = mem_abits;
module->wires[w->name] = w;
c->connections["\\Q"] = RTLIL::SigSpec(w);
rd_addr = RTLIL::SigSpec(w);
}
else
{
RTLIL::Cell *c = new RTLIL::Cell;
c->name = genid(cell->name, "$rdreg", i);
c->type = "$dff";
c->parameters["\\WIDTH"] = cell->parameters["\\WIDTH"];
c->parameters["\\CLK_POLARITY"] = RTLIL::Const(cell->parameters["\\RD_CLK_POLARITY"].bits[i]);
c->connections["\\CLK"] = cell->connections["\\RD_CLK"].extract(i, 1);
c->connections["\\Q"] = rd_signals.back();
module->cells[c->name] = c;
count_dff++;
RTLIL::Wire *w = new RTLIL::Wire;
w->name = genid(cell->name, "$rdreg", i, "$d");
w->width = mem_width;
module->wires[w->name] = w;
rd_signals.clear();
rd_signals.push_back(RTLIL::SigSpec(w));
c->connections["\\D"] = rd_signals.back();
}
}
for (int j = 0; j < mem_abits; j++)
{
std::vector<RTLIL::SigSpec> next_rd_signals;
for (size_t k = 0; k < rd_signals.size(); k++)
{
RTLIL::Cell *c = new RTLIL::Cell;
c->name = genid(cell->name, "$rdmux", i, "", j, "", k);
c->type = "$mux";
c->parameters["\\WIDTH"] = cell->parameters["\\WIDTH"];
c->connections["\\Y"] = rd_signals[k];
c->connections["\\S"] = rd_addr.extract(mem_abits-j-1, 1);
module->cells[c->name] = c;
count_mux++;
RTLIL::Wire *w = new RTLIL::Wire;
w->name = genid(cell->name, "$rdmux", i, "", j, "", k, "$a");
w->width = mem_width;
module->wires[w->name] = w;
c->connections["\\A"] = RTLIL::SigSpec(w);
w = new RTLIL::Wire;
w->name = genid(cell->name, "$rdmux", i, "", j, "", k, "$b");
w->width = mem_width;
module->wires[w->name] = w;
c->connections["\\B"] = RTLIL::SigSpec(w);
next_rd_signals.push_back(c->connections["\\A"]);
next_rd_signals.push_back(c->connections["\\B"]);
}
next_rd_signals.swap(rd_signals);
}
for (int j = 0; j < mem_size; j++)
module->connections.push_back(RTLIL::SigSig(rd_signals[j], data_reg_out[j]));
}
log(" read interface: %d $dff and %d $mux cells.\n", count_dff, count_mux);
for (int i = 0; i < mem_size; i++)
{
if (static_cells_map.count(i) > 0)
continue;
RTLIL::SigSpec sig = data_reg_out[i];
for (int j = 0; j < cell->parameters["\\WR_PORTS"].as_int(); j++)
{
RTLIL::SigSpec wr_addr = cell->connections["\\WR_ADDR"].extract(j*mem_abits, mem_abits);
RTLIL::SigSpec wr_data = cell->connections["\\WR_DATA"].extract(j*mem_width, mem_width);
RTLIL::SigSpec wr_en = cell->connections["\\WR_EN"].extract(j*mem_width, mem_width);
RTLIL::Cell *c = new RTLIL::Cell;
c->name = genid(cell->name, "$wreq", i, "", j);
c->type = "$eq";
c->parameters["\\A_SIGNED"] = RTLIL::Const(0);
c->parameters["\\B_SIGNED"] = RTLIL::Const(0);
c->parameters["\\A_WIDTH"] = cell->parameters["\\ABITS"];
c->parameters["\\B_WIDTH"] = cell->parameters["\\ABITS"];
c->parameters["\\Y_WIDTH"] = RTLIL::Const(1);
c->connections["\\A"] = RTLIL::SigSpec(i, mem_abits);
c->connections["\\B"] = wr_addr;
module->cells[c->name] = c;
count_wrmux++;
RTLIL::Wire *w_seladdr = new RTLIL::Wire;
w_seladdr->name = genid(cell->name, "$wreq", i, "", j, "$y");
module->wires[w_seladdr->name] = w_seladdr;
c->connections["\\Y"] = w_seladdr;
int wr_offset = 0;
while (wr_offset < wr_en.width)
{
int wr_width = 1;
RTLIL::SigSpec wr_bit = wr_en.extract(wr_offset, 1);
while (wr_offset + wr_width < wr_en.width) {
RTLIL::SigSpec next_wr_bit = wr_en.extract(wr_offset + wr_width, 1);
if (next_wr_bit != wr_bit)
break;
wr_width++;
}
RTLIL::Wire *w = w_seladdr;
if (wr_bit != RTLIL::SigSpec(1, 1))
{
c = new RTLIL::Cell;
c->name = genid(cell->name, "$wren", i, "", j, "", wr_offset);
c->type = "$and";
c->parameters["\\A_SIGNED"] = RTLIL::Const(0);
c->parameters["\\B_SIGNED"] = RTLIL::Const(0);
c->parameters["\\A_WIDTH"] = RTLIL::Const(1);
c->parameters["\\B_WIDTH"] = RTLIL::Const(1);
c->parameters["\\Y_WIDTH"] = RTLIL::Const(1);
c->connections["\\A"] = w;
c->connections["\\B"] = wr_bit;
module->cells[c->name] = c;
w = new RTLIL::Wire;
w->name = genid(cell->name, "$wren", i, "", j, "", wr_offset, "$y");
module->wires[w->name] = w;
c->connections["\\Y"] = RTLIL::SigSpec(w);
}
c = new RTLIL::Cell;
c->name = genid(cell->name, "$wrmux", i, "", j, "", wr_offset);
c->type = "$mux";
c->parameters["\\WIDTH"] = wr_width;
c->connections["\\A"] = sig.extract(wr_offset, wr_width);
c->connections["\\B"] = wr_data.extract(wr_offset, wr_width);
c->connections["\\S"] = RTLIL::SigSpec(w);
module->cells[c->name] = c;
w = new RTLIL::Wire;
w->name = genid(cell->name, "$wrmux", i, "", j, "", wr_offset, "$y");
w->width = wr_width;
module->wires[w->name] = w;
c->connections["\\Y"] = w;
sig.replace(wr_offset, w);
wr_offset += wr_width;
}
}
module->connections.push_back(RTLIL::SigSig(data_reg_in[i], sig));
}
log(" write interface: %d blocks of $eq, $and and $mux cells.\n", count_wrmux);
module->cells.erase(cell->name);
delete cell;
return;
}
static void handle_module(RTLIL::Design *design, RTLIL::Module *module)
{
std::vector<RTLIL::Cell*> cells;
for (auto &it : module->cells)
if (it.second->type == "$mem" && design->selected(module, it.second))
cells.push_back(it.second);
for (auto cell : cells)
handle_cell(module, cell);
}
struct MemoryMapPass : public Pass {
MemoryMapPass() : Pass("memory_map", "translate multiport memories to basic cells") { }
virtual void help()
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" memory_map [selection]\n");
log("\n");
log("This pass converts multiport memory cells as generated by the memory_collect\n");
log("pass to word-wide DFFs and address decoders.\n");
log("\n");
}
virtual void execute(std::vector<std::string> args, RTLIL::Design *design) {
log_header("Executing MEMORY_MAP pass (converting $mem cells to logic and flip-flops).\n");
extra_args(args, 1, design);
for (auto &mod_it : design->modules)
if (design->selected(mod_it.second))
handle_module(design, mod_it.second);
}
} MemoryMapPass;