add example memory test

This commit is contained in:
N. Engelhardt 2023-11-30 19:35:43 +01:00 committed by Martin Povišer
parent ede4eaeee2
commit f9c8978128
7 changed files with 1213 additions and 1 deletions

View File

@ -37,4 +37,7 @@ $(eval $(call add_share_file,share/quicklogic/qlf_k6n10f,techlibs/quicklogic/qlf
$(eval $(call add_share_file,share/quicklogic/qlf_k6n10f,techlibs/quicklogic/qlf_k6n10f/ffs_map.v))
$(eval $(call add_share_file,share/quicklogic/qlf_k6n10f,techlibs/quicklogic/qlf_k6n10f/dsp_sim.v))
$(eval $(call add_share_file,share/quicklogic/qlf_k6n10f,techlibs/quicklogic/qlf_k6n10f/dsp_map.v))
$(eval $(call add_share_file,share/quicklogic/qlf_k6n10f,techlibs/quicklogic/qlf_k6n10f/dsp_final_map.v))
$(eval $(call add_share_file,share/quicklogic/qlf_k6n10f,techlibs/quicklogic/qlf_k6n10f/dsp_final_map.v))
$(eval $(call add_share_file,share/quicklogic/qlf_k6n10f,techlibs/quicklogic/qlf_k6n10f/TDP18K_FIFO.v))
$(eval $(call add_share_file,share/quicklogic/qlf_k6n10f,techlibs/quicklogic/qlf_k6n10f/ufifo_ctl.v))
$(eval $(call add_share_file,share/quicklogic/qlf_k6n10f,techlibs/quicklogic/qlf_k6n10f/sram1024x18_mem.v))

View File

@ -0,0 +1,344 @@
// Copyright 2020-2022 F4PGA Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// SPDX-License-Identifier: Apache-2.0
`default_nettype wire
module TDP18K_FIFO (
RMODE_A_i,
RMODE_B_i,
WMODE_A_i,
WMODE_B_i,
WEN_A_i,
WEN_B_i,
REN_A_i,
REN_B_i,
CLK_A_i,
CLK_B_i,
BE_A_i,
BE_B_i,
ADDR_A_i,
ADDR_B_i,
WDATA_A_i,
WDATA_B_i,
RDATA_A_o,
RDATA_B_o,
EMPTY_o,
EPO_o,
EWM_o,
UNDERRUN_o,
FULL_o,
FMO_o,
FWM_o,
OVERRUN_o,
FLUSH_ni,
FMODE_i,
);
parameter SYNC_FIFO_i = 1'b0;
parameter POWERDN_i = 1'b0;
parameter SLEEP_i = 1'b0;
parameter PROTECT_i = 1'b0;
parameter UPAF_i = 11'b0;
parameter UPAE_i = 11'b0;
parameter [18*1024-1:0] INIT_i = 18431'bx;
input wire [2:0] RMODE_A_i;
input wire [2:0] RMODE_B_i;
input wire [2:0] WMODE_A_i;
input wire [2:0] WMODE_B_i;
input wire WEN_A_i;
input wire WEN_B_i;
input wire REN_A_i;
input wire REN_B_i;
(* clkbuf_sink *)
input wire CLK_A_i;
(* clkbuf_sink *)
input wire CLK_B_i;
input wire [1:0] BE_A_i;
input wire [1:0] BE_B_i;
input wire [13:0] ADDR_A_i;
input wire [13:0] ADDR_B_i;
input wire [17:0] WDATA_A_i;
input wire [17:0] WDATA_B_i;
output reg [17:0] RDATA_A_o;
output reg [17:0] RDATA_B_o;
output wire EMPTY_o;
output wire EPO_o;
output wire EWM_o;
output wire UNDERRUN_o;
output wire FULL_o;
output wire FMO_o;
output wire FWM_o;
output wire OVERRUN_o;
input wire FLUSH_ni;
input wire FMODE_i;
reg [17:0] wmsk_a;
reg [17:0] wmsk_b;
wire [8:0] addr_a;
wire [8:0] addr_b;
reg [4:0] addr_a_d;
reg [4:0] addr_b_d;
wire [17:0] ram_rdata_a;
wire [17:0] ram_rdata_b;
reg [17:0] aligned_wdata_a;
reg [17:0] aligned_wdata_b;
wire ren_o;
wire [10:0] ff_raddr;
wire [10:0] ff_waddr;
wire [13:0] ram_addr_a;
wire [13:0] ram_addr_b;
wire [3:0] ram_waddr_a;
wire [3:0] ram_waddr_b;
wire initn;
wire smux_rclk;
wire smux_wclk;
wire real_fmode;
wire [3:0] raw_fflags;
reg [1:0] fifo_rmode;
reg [1:0] fifo_wmode;
wire smux_clk_a;
wire smux_clk_b;
wire ram_ren_a;
wire ram_ren_b;
wire ram_wen_a;
wire ram_wen_b;
wire cen_a;
wire cen_b;
wire cen_a_n;
wire cen_b_n;
wire ram_wen_a_n;
wire ram_wen_b_n;
localparam MODE_9 = 3'b001;
always @(*) begin
fifo_rmode = (RMODE_B_i == MODE_9 ? 2'b10 : 2'b01);
fifo_wmode = (WMODE_A_i == MODE_9 ? 2'b10 : 2'b01);
end
assign smux_clk_a = CLK_A_i;
assign smux_clk_b = CLK_B_i;
assign real_fmode = FMODE_i;
assign ram_ren_b = real_fmode ? ren_o : REN_B_i;
assign ram_wen_a = FMODE_i ? ~FULL_o & WEN_A_i : WEN_A_i;
assign ram_ren_a = FMODE_i ? 0 : REN_A_i;
assign ram_wen_b = FMODE_i ? 1'b0 : WEN_B_i;
assign cen_b = ram_ren_b | ram_wen_b;
assign cen_a = ram_ren_a | ram_wen_a;
assign ram_waddr_b = real_fmode ? {ff_raddr[0], 3'b000} : ADDR_B_i[3:0];
assign ram_waddr_a = real_fmode ? {ff_waddr[0], 3'b000} : ADDR_A_i[3:0];
assign ram_addr_b = real_fmode ? {ff_raddr[10:0], 3'h0} : {ADDR_B_i[13:4], addr_b_d[3:0]};
assign ram_addr_a = real_fmode ? {ff_waddr[10:0], 3'h0} : {ADDR_A_i[13:4], addr_a_d[3:0]};
always @(posedge CLK_A_i) addr_a_d[3:0] <= ADDR_A_i[3:0];
always @(posedge CLK_B_i) addr_b_d[3:0] <= ADDR_B_i[3:0];
assign cen_a_n = ~cen_a;
assign ram_wen_a_n = ~ram_wen_a;
assign cen_b_n = ~cen_b;
assign ram_wen_b_n = ~ram_wen_b;
sram1024x18 #(
.init(INIT_i)
) uram(
.clk_a(smux_clk_a),
.cen_a(cen_a_n),
.wen_a(ram_wen_a_n),
.addr_a(ram_addr_a[13:4]),
.wmsk_a(wmsk_a),
.wdata_a(aligned_wdata_a),
.rdata_a(ram_rdata_a),
.clk_b(smux_clk_b),
.cen_b(cen_b_n),
.wen_b(ram_wen_b_n),
.addr_b(ram_addr_b[13:4]),
.wmsk_b(wmsk_b),
.wdata_b(aligned_wdata_b),
.rdata_b(ram_rdata_b)
);
fifo_ctl #(
.ADDR_WIDTH(11),
.FIFO_WIDTH(2),
.DEPTH(6)
) fifo_ctl(
.rclk(smux_clk_b),
.rst_R_n(FLUSH_ni),
.wclk(smux_clk_a),
.rst_W_n(FLUSH_ni),
.ren(REN_B_i),
.wen(ram_wen_a),
.sync(SYNC_FIFO_i),
.rmode(fifo_rmode),
.wmode(fifo_wmode),
.ren_o(ren_o),
.fflags({FULL_o, FMO_o, FWM_o, OVERRUN_o, EMPTY_o, EPO_o, EWM_o, UNDERRUN_o}),
.raddr(ff_raddr),
.waddr(ff_waddr),
.upaf(UPAF_i),
.upae(UPAE_i)
);
localparam MODE_1 = 3'b101;
localparam MODE_18 = 3'b010;
localparam MODE_2 = 3'b110;
localparam MODE_4 = 3'b100;
always @(*) begin : WDATA_MODE_SEL
if (ram_wen_a == 1) begin
case (WMODE_A_i)
MODE_18: begin
aligned_wdata_a = WDATA_A_i;
{wmsk_a[17], wmsk_a[15:8]} = (FMODE_i ? 9'h000 : (BE_A_i[1] ? 9'h000 : 9'h1ff));
{wmsk_a[16], wmsk_a[7:0]} = (FMODE_i ? 9'h000 : (BE_A_i[0] ? 9'h000 : 9'h1ff));
end
MODE_9: begin
aligned_wdata_a = {{2 {WDATA_A_i[16]}}, {2 {WDATA_A_i[7:0]}}};
{wmsk_a[17], wmsk_a[15:8]} = (ram_waddr_a[3] ? 9'h000 : 9'h1ff);
{wmsk_a[16], wmsk_a[7:0]} = (ram_waddr_a[3] ? 9'h1ff : 9'h000);
end
MODE_4: begin
aligned_wdata_a = {2'b00, {4 {WDATA_A_i[3:0]}}};
wmsk_a[17:16] = 2'b00;
wmsk_a[15:12] = (ram_waddr_a[3:2] == 2'b11 ? 4'h0 : 4'hf);
wmsk_a[11:8] = (ram_waddr_a[3:2] == 2'b10 ? 4'h0 : 4'hf);
wmsk_a[7:4] = (ram_waddr_a[3:2] == 2'b01 ? 4'h0 : 4'hf);
wmsk_a[3:0] = (ram_waddr_a[3:2] == 2'b00 ? 4'h0 : 4'hf);
end
MODE_2: begin
aligned_wdata_a = {2'b00, {8 {WDATA_A_i[1:0]}}};
wmsk_a[17:16] = 2'b00;
wmsk_a[15:14] = (ram_waddr_a[3:1] == 3'b111 ? 2'h0 : 2'h3);
wmsk_a[13:12] = (ram_waddr_a[3:1] == 3'b110 ? 2'h0 : 2'h3);
wmsk_a[11:10] = (ram_waddr_a[3:1] == 3'b101 ? 2'h0 : 2'h3);
wmsk_a[9:8] = (ram_waddr_a[3:1] == 3'b100 ? 2'h0 : 2'h3);
wmsk_a[7:6] = (ram_waddr_a[3:1] == 3'b011 ? 2'h0 : 2'h3);
wmsk_a[5:4] = (ram_waddr_a[3:1] == 3'b010 ? 2'h0 : 2'h3);
wmsk_a[3:2] = (ram_waddr_a[3:1] == 3'b001 ? 2'h0 : 2'h3);
wmsk_a[1:0] = (ram_waddr_a[3:1] == 3'b000 ? 2'h0 : 2'h3);
end
MODE_1: begin
aligned_wdata_a = {2'b00, {16 {WDATA_A_i[0]}}};
wmsk_a = 18'h0ffff;
wmsk_a[{1'b0, ram_waddr_a[3:0]}] = 0;
end
default: wmsk_a = 18'h3ffff;
endcase
end
else begin
aligned_wdata_a = 18'h00000;
wmsk_a = 18'h3ffff;
end
if (ram_wen_b == 1)
case (WMODE_B_i)
MODE_18: begin
aligned_wdata_b = WDATA_B_i;
{wmsk_b[17], wmsk_b[15:8]} = (BE_B_i[1] ? 9'h000 : 9'h1ff);
{wmsk_b[16], wmsk_b[7:0]} = (BE_B_i[0] ? 9'h000 : 9'h1ff);
end
MODE_9: begin
aligned_wdata_b = {{2 {WDATA_B_i[16]}}, {2 {WDATA_B_i[7:0]}}};
{wmsk_b[17], wmsk_b[15:8]} = (ram_waddr_b[3] ? 9'h000 : 9'h1ff);
{wmsk_b[16], wmsk_b[7:0]} = (ram_waddr_b[3] ? 9'h1ff : 9'h000);
end
MODE_4: begin
aligned_wdata_b = {2'b00, {4 {WDATA_B_i[3:0]}}};
wmsk_b[17:16] = 2'b00;
wmsk_b[15:12] = (ram_waddr_b[3:2] == 2'b11 ? 4'h0 : 4'hf);
wmsk_b[11:8] = (ram_waddr_b[3:2] == 2'b10 ? 4'h0 : 4'hf);
wmsk_b[7:4] = (ram_waddr_b[3:2] == 2'b01 ? 4'h0 : 4'hf);
wmsk_b[3:0] = (ram_waddr_b[3:2] == 2'b00 ? 4'h0 : 4'hf);
end
MODE_2: begin
aligned_wdata_b = {2'b00, {8 {WDATA_B_i[1:0]}}};
wmsk_b[17:16] = 2'b00;
wmsk_b[15:14] = (ram_waddr_b[3:1] == 3'b111 ? 2'h0 : 2'h3);
wmsk_b[13:12] = (ram_waddr_b[3:1] == 3'b110 ? 2'h0 : 2'h3);
wmsk_b[11:10] = (ram_waddr_b[3:1] == 3'b101 ? 2'h0 : 2'h3);
wmsk_b[9:8] = (ram_waddr_b[3:1] == 3'b100 ? 2'h0 : 2'h3);
wmsk_b[7:6] = (ram_waddr_b[3:1] == 3'b011 ? 2'h0 : 2'h3);
wmsk_b[5:4] = (ram_waddr_b[3:1] == 3'b010 ? 2'h0 : 2'h3);
wmsk_b[3:2] = (ram_waddr_b[3:1] == 3'b001 ? 2'h0 : 2'h3);
wmsk_b[1:0] = (ram_waddr_b[3:1] == 3'b000 ? 2'h0 : 2'h3);
end
MODE_1: begin
aligned_wdata_b = {2'b00, {16 {WDATA_B_i[0]}}};
wmsk_b = 18'h0ffff;
wmsk_b[{1'b0, ram_waddr_b[3:0]}] = 0;
end
default: wmsk_b = 18'h3ffff;
endcase
else begin
aligned_wdata_b = 18'b000000000000000000;
wmsk_b = 18'h3ffff;
end
end
always @(*) begin : RDATA_A_MODE_SEL
case (RMODE_A_i)
default: RDATA_A_o = 18'h00000;
MODE_18: RDATA_A_o = ram_rdata_a;
MODE_9: begin
{RDATA_A_o[17], RDATA_A_o[15:8]} = 9'h000;
{RDATA_A_o[16], RDATA_A_o[7:0]} = (ram_addr_a[3] ? {ram_rdata_a[17], ram_rdata_a[15:8]} : {ram_rdata_a[16], ram_rdata_a[7:0]});
end
MODE_4: begin
RDATA_A_o[17:4] = 14'h0000;
case (ram_addr_a[3:2])
3: RDATA_A_o[3:0] = ram_rdata_a[15:12];
2: RDATA_A_o[3:0] = ram_rdata_a[11:8];
1: RDATA_A_o[3:0] = ram_rdata_a[7:4];
0: RDATA_A_o[3:0] = ram_rdata_a[3:0];
endcase
end
MODE_2: begin
RDATA_A_o[17:2] = 16'h0000;
case (ram_addr_a[3:1])
7: RDATA_A_o[1:0] = ram_rdata_a[15:14];
6: RDATA_A_o[1:0] = ram_rdata_a[13:12];
5: RDATA_A_o[1:0] = ram_rdata_a[11:10];
4: RDATA_A_o[1:0] = ram_rdata_a[9:8];
3: RDATA_A_o[1:0] = ram_rdata_a[7:6];
2: RDATA_A_o[1:0] = ram_rdata_a[5:4];
1: RDATA_A_o[1:0] = ram_rdata_a[3:2];
0: RDATA_A_o[1:0] = ram_rdata_a[1:0];
endcase
end
MODE_1: begin
RDATA_A_o[17:1] = 17'h00000;
RDATA_A_o[0] = ram_rdata_a[ram_addr_a[3:0]];
end
endcase
end
always @(*)
case (RMODE_B_i)
default: RDATA_B_o = 18'h15566;
MODE_18: RDATA_B_o = ram_rdata_b;
MODE_9: begin
{RDATA_B_o[17], RDATA_B_o[15:8]} = 9'b000000000;
{RDATA_B_o[16], RDATA_B_o[7:0]} = (ram_addr_b[3] ? {ram_rdata_b[17], ram_rdata_b[15:8]} : {ram_rdata_b[16], ram_rdata_b[7:0]});
end
MODE_4:
case (ram_addr_b[3:2])
3: RDATA_B_o[3:0] = ram_rdata_b[15:12];
2: RDATA_B_o[3:0] = ram_rdata_b[11:8];
1: RDATA_B_o[3:0] = ram_rdata_b[7:4];
0: RDATA_B_o[3:0] = ram_rdata_b[3:0];
endcase
MODE_2:
case (ram_addr_b[3:1])
7: RDATA_B_o[1:0] = ram_rdata_b[15:14];
6: RDATA_B_o[1:0] = ram_rdata_b[13:12];
5: RDATA_B_o[1:0] = ram_rdata_b[11:10];
4: RDATA_B_o[1:0] = ram_rdata_b[9:8];
3: RDATA_B_o[1:0] = ram_rdata_b[7:6];
2: RDATA_B_o[1:0] = ram_rdata_b[5:4];
1: RDATA_B_o[1:0] = ram_rdata_b[3:2];
0: RDATA_B_o[1:0] = ram_rdata_b[1:0];
endcase
MODE_1: RDATA_B_o[0] = ram_rdata_b[{1'b0, ram_addr_b[3:0]}];
endcase
endmodule
`default_nettype none

View File

@ -0,0 +1,64 @@
`default_nettype none
module sram1024x18 (
clk_a,
cen_a,
wen_a,
addr_a,
wmsk_a,
wdata_a,
rdata_a,
clk_b,
cen_b,
wen_b,
addr_b,
wmsk_b,
wdata_b,
rdata_b
);
parameter [1024*18-1:0] init = 18431'bx;
(* clkbuf_sink *)
input wire clk_a;
input wire cen_a;
input wire wen_a;
input wire [9:0] addr_a;
input wire [17:0] wmsk_a;
input wire [17:0] wdata_a;
output reg [17:0] rdata_a;
(* clkbuf_sink *)
input wire clk_b;
input wire cen_b;
input wire wen_b;
input wire [9:0] addr_b;
input wire [17:0] wmsk_b;
input wire [17:0] wdata_b;
output reg [17:0] rdata_b;
reg [17:0] ram [1023:0];
integer i;
initial begin
for (i = 0; i < 1024; i = i + 1) begin
ram[i] = init[18*i +: 18];
end
end
always @(posedge clk_a) begin
if (!cen_a) begin
if (!wen_a)
for (i = 0; i < 18; i++) begin
if (!wmsk_a[i]) ram[addr_a][i] <= wdata_a[i];
end
rdata_a <= ram[addr_a];
end
end
always @(posedge clk_b) begin
if (!cen_b) begin
if (!wen_b)
for (i = 0; i < 18; i++) begin
if (!wmsk_b[i]) ram[addr_b][i] <= wdata_b[i];
end
rdata_b <= ram[addr_b];
end
end
endmodule

View File

@ -0,0 +1,620 @@
// Copyright 2020-2022 F4PGA Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// SPDX-License-Identifier: Apache-2.0
`default_nettype wire
module fifo_ctl (
raddr,
waddr,
fflags,
ren_o,
sync,
rmode,
wmode,
rclk,
rst_R_n,
wclk,
rst_W_n,
ren,
wen,
upaf,
upae
);
parameter ADDR_WIDTH = 11;
parameter FIFO_WIDTH = 3'd2;
parameter DEPTH = 6;
output wire [ADDR_WIDTH - 1:0] raddr;
output wire [ADDR_WIDTH - 1:0] waddr;
output wire [7:0] fflags;
output wire ren_o;
input wire sync;
input wire [1:0] rmode;
input wire [1:0] wmode;
(* clkbuf_sink *)
input wire rclk;
input wire rst_R_n;
(* clkbuf_sink *)
input wire wclk;
input wire rst_W_n;
input wire ren;
input wire wen;
input wire [ADDR_WIDTH - 1:0] upaf;
input wire [ADDR_WIDTH - 1:0] upae;
localparam ADDR_PLUS_ONE = ADDR_WIDTH + 1;
reg [ADDR_WIDTH:0] pushtopop1;
reg [ADDR_WIDTH:0] pushtopop2;
reg [ADDR_WIDTH:0] poptopush1;
reg [ADDR_WIDTH:0] poptopush2;
wire [ADDR_WIDTH:0] pushtopop0;
wire [ADDR_WIDTH:0] poptopush0;
wire [ADDR_WIDTH:0] smux_poptopush;
wire [ADDR_WIDTH:0] smux_pushtopop;
assign smux_poptopush = (sync ? poptopush0 : poptopush2);
assign smux_pushtopop = (sync ? pushtopop0 : pushtopop2);
always @(posedge rclk or negedge rst_R_n)
if (~rst_R_n) begin
pushtopop1 <= 'h0;
pushtopop2 <= 'h0;
end
else begin
pushtopop1 = pushtopop0;
pushtopop2 = pushtopop1;
end
always @(posedge wclk or negedge rst_W_n)
if (~rst_W_n) begin
poptopush1 <= 'h0;
poptopush2 <= 'h0;
end
else begin
poptopush1 <= poptopush0;
poptopush2 <= poptopush1;
end
fifo_push #(
.ADDR_WIDTH(ADDR_WIDTH),
.DEPTH(DEPTH)
) u_fifo_push(
.wclk(wclk),
.wen(wen),
.rst_n(rst_W_n),
.rmode(rmode),
.wmode(wmode),
.gcout(pushtopop0),
.gcin(smux_poptopush),
.ff_waddr(waddr),
.pushflags(fflags[7:4]),
.upaf(upaf)
);
fifo_pop #(
.ADDR_WIDTH(ADDR_WIDTH),
.FIFO_WIDTH(FIFO_WIDTH),
.DEPTH(DEPTH)
) u_fifo_pop(
.rclk(rclk),
.ren_in(ren),
.rst_n(rst_R_n),
.rmode(rmode),
.wmode(wmode),
.ren_o(ren_o),
.gcout(poptopush0),
.gcin(smux_pushtopop),
.out_raddr(raddr),
.popflags(fflags[3:0]),
.upae(upae)
);
endmodule
module fifo_push (
pushflags,
gcout,
ff_waddr,
rst_n,
wclk,
wen,
rmode,
wmode,
gcin,
upaf
);
parameter ADDR_WIDTH = 11;
parameter DEPTH = 6;
output wire [3:0] pushflags;
output wire [ADDR_WIDTH:0] gcout;
output wire [ADDR_WIDTH - 1:0] ff_waddr;
input rst_n;
(* clkbuf_sink *)
input wclk;
input wen;
input [1:0] rmode;
input [1:0] wmode;
input [ADDR_WIDTH:0] gcin;
input [ADDR_WIDTH - 1:0] upaf;
localparam ADDR_PLUS_ONE = ADDR_WIDTH + 1;
reg full_next;
reg full;
reg paf_next;
reg paf;
reg fmo;
reg fmo_next;
reg overflow;
reg p1;
reg p2;
reg f1;
reg f2;
reg q1;
reg q2;
reg [1:0] gmode;
reg [ADDR_WIDTH:0] waddr;
reg [ADDR_WIDTH:0] raddr;
reg [ADDR_WIDTH:0] gcout_reg;
reg [ADDR_WIDTH:0] gcout_next;
reg [ADDR_WIDTH:0] raddr_next;
reg [ADDR_WIDTH - 1:0] paf_thresh;
wire overflow_next;
wire [ADDR_WIDTH:0] waddr_next;
wire [ADDR_WIDTH:0] gc8out_next;
wire [ADDR_WIDTH - 1:0] gc16out_next;
wire [ADDR_WIDTH - 2:0] gc32out_next;
wire [ADDR_WIDTH:0] tmp;
wire [ADDR_WIDTH:0] next_count;
wire [ADDR_WIDTH:0] count;
wire [ADDR_WIDTH:0] fbytes;
genvar i;
assign next_count = fbytes - (waddr_next >= raddr_next ? waddr_next - raddr_next : (~raddr_next + waddr_next) + 1);
assign count = fbytes - (waddr >= raddr ? waddr - raddr : (~raddr + waddr) + 1);
assign fbytes = 1 << (DEPTH + 5);
always @(*) begin
paf_thresh = wmode[1] ? upaf : (wmode[0] ? upaf << 1 : upaf << 2);
end
always @(*)
case (wmode)
2'h0, 2'h1, 2'h2: begin
full_next = (wen ? f1 : f2);
fmo_next = (wen ? p1 : p2);
paf_next = (wen ? q1 : q2);
end
default: begin
full_next = 1'b0;
fmo_next = 1'b0;
paf_next = 1'b0;
end
endcase
always @(*) begin : PUSH_FULL_FLAGS
f1 = 1'b0;
f2 = 1'b0;
p1 = 1'b0;
p2 = 1'b0;
q1 = next_count < {1'b0, paf_thresh};
q2 = count < {1'b0, paf_thresh};
case (wmode)
2'h0:
case (DEPTH)
3'h6: begin
f1 = {~waddr_next[11], waddr_next[10:2]} == raddr_next[11:2];
f2 = {~waddr[11], waddr[10:2]} == raddr_next[11:2];
p1 = ((waddr_next[10:2] + 1) & 9'h1ff) == raddr_next[10:2];
p2 = ((waddr[10:2] + 1) & 9'h1ff) == raddr_next[10:2];
end
3'h5: begin
f1 = {~waddr_next[10], waddr_next[9:2]} == raddr_next[10:2];
f2 = {~waddr[10], waddr[9:2]} == raddr_next[10:2];
p1 = ((waddr_next[9:2] + 1) & 8'hff) == raddr_next[9:2];
p2 = ((waddr[9:2] + 1) & 8'hff) == raddr_next[9:2];
end
3'h4: begin
f1 = {~waddr_next[9], waddr_next[8:2]} == raddr_next[9:2];
f2 = {~waddr[9], waddr[8:2]} == raddr_next[9:2];
p1 = ((waddr_next[8:2] + 1) & 7'h7f) == raddr_next[8:2];
p2 = ((waddr[8:2] + 1) & 7'h7f) == raddr_next[8:2];
end
3'h3: begin
f1 = {~waddr_next[8], waddr_next[7:2]} == raddr_next[8:2];
f2 = {~waddr[8], waddr[7:2]} == raddr_next[8:2];
p1 = ((waddr_next[7:2] + 1) & 6'h3f) == raddr_next[7:2];
p2 = ((waddr[7:2] + 1) & 6'h3f) == raddr_next[7:2];
end
3'h2: begin
f1 = {~waddr_next[7], waddr_next[6:2]} == raddr_next[7:2];
f2 = {~waddr[7], waddr[6:2]} == raddr_next[7:2];
p1 = ((waddr_next[6:2] + 1) & 5'h1f) == raddr_next[6:2];
p2 = ((waddr[6:2] + 1) & 5'h1f) == raddr_next[6:2];
end
3'h1: begin
f1 = {~waddr_next[6], waddr_next[5:2]} == raddr_next[6:2];
f2 = {~waddr[6], waddr[5:2]} == raddr_next[6:2];
p1 = ((waddr_next[5:2] + 1) & 4'hf) == raddr_next[5:2];
p2 = ((waddr[5:2] + 1) & 4'hf) == raddr_next[5:2];
end
3'h0: begin
f1 = {~waddr_next[5], waddr_next[4:2]} == raddr_next[5:2];
f2 = {~waddr[5], waddr[4:2]} == raddr_next[5:2];
p1 = ((waddr_next[4:2] + 1) & 3'h7) == raddr_next[4:2];
p2 = ((waddr[4:2] + 1) & 3'h7) == raddr_next[4:2];
end
3'h7: begin
f1 = {~waddr_next[ADDR_WIDTH], waddr_next[ADDR_WIDTH - 1:2]} == raddr_next[ADDR_WIDTH:2];
f2 = {~waddr[ADDR_WIDTH], waddr[ADDR_WIDTH - 1:2]} == raddr_next[ADDR_WIDTH:2];
p1 = ((waddr_next[ADDR_WIDTH - 1:2] + 1) & {ADDR_WIDTH - 2 {1'b1}}) == raddr_next[ADDR_WIDTH - 1:2];
p2 = ((waddr[ADDR_WIDTH - 1:2] + 1) & {ADDR_WIDTH - 2 {1'b1}}) == raddr_next[ADDR_WIDTH - 1:2];
end
endcase
2'h1:
case (DEPTH)
3'h6: begin
f1 = {~waddr_next[11], waddr_next[10:1]} == raddr_next[11:1];
f2 = {~waddr[11], waddr[10:1]} == raddr_next[11:1];
p1 = ((waddr_next[10:1] + 1) & 10'h3ff) == raddr_next[10:1];
p2 = ((waddr[10:1] + 1) & 10'h3ff) == raddr_next[10:1];
end
3'h5: begin
f1 = {~waddr_next[10], waddr_next[9:1]} == raddr_next[10:1];
f2 = {~waddr[10], waddr[9:1]} == raddr_next[10:1];
p1 = ((waddr_next[9:1] + 1) & 9'h1ff) == raddr_next[9:1];
p2 = ((waddr[9:1] + 1) & 9'h1ff) == raddr_next[9:1];
end
3'h4: begin
f1 = {~waddr_next[9], waddr_next[8:1]} == raddr_next[9:1];
f2 = {~waddr[9], waddr[8:1]} == raddr_next[9:1];
p1 = ((waddr_next[8:1] + 1) & 8'hff) == raddr_next[8:1];
p2 = ((waddr[8:1] + 1) & 8'hff) == raddr_next[8:1];
end
3'h3: begin
f1 = {~waddr_next[8], waddr_next[7:1]} == raddr_next[8:1];
f2 = {~waddr[8], waddr[7:1]} == raddr_next[8:1];
p1 = ((waddr_next[7:1] + 1) & 7'h7f) == raddr_next[7:1];
p2 = ((waddr[7:1] + 1) & 7'h7f) == raddr_next[7:1];
end
3'h2: begin
f1 = {~waddr_next[7], waddr_next[6:1]} == raddr_next[7:1];
f2 = {~waddr[7], waddr[6:1]} == raddr_next[7:1];
p1 = ((waddr_next[6:1] + 1) & 6'h3f) == raddr_next[6:1];
p2 = ((waddr[6:1] + 1) & 6'h3f) == raddr_next[6:1];
end
3'h1: begin
f1 = {~waddr_next[6], waddr_next[5:1]} == raddr_next[6:1];
f2 = {~waddr[6], waddr[5:1]} == raddr_next[6:1];
p1 = ((waddr_next[5:1] + 1) & 5'h1f) == raddr_next[5:1];
p2 = ((waddr[5:1] + 1) & 5'h1f) == raddr_next[5:1];
end
3'h0: begin
f1 = {~waddr_next[5], waddr_next[4:1]} == raddr_next[5:1];
f2 = {~waddr[5], waddr[4:1]} == raddr_next[5:1];
p1 = ((waddr_next[4:1] + 1) & 4'hf) == raddr_next[4:1];
p2 = ((waddr[4:1] + 1) & 4'hf) == raddr_next[4:1];
end
3'h7: begin
f1 = {~waddr_next[ADDR_WIDTH], waddr_next[ADDR_WIDTH - 1:1]} == raddr_next[ADDR_WIDTH:1];
f2 = {~waddr[ADDR_WIDTH], waddr[ADDR_WIDTH - 1:1]} == raddr_next[ADDR_WIDTH:1];
p1 = ((waddr_next[ADDR_WIDTH - 1:1] + 1) & {ADDR_WIDTH - 1 {1'b1}}) == raddr_next[ADDR_WIDTH - 1:1];
p2 = ((waddr[ADDR_WIDTH - 1:1] + 1) & {ADDR_WIDTH - 1 {1'b1}}) == raddr_next[ADDR_WIDTH - 1:1];
end
endcase
2'h2:
case (DEPTH)
3'h6: begin
f1 = {~waddr_next[11], waddr_next[10:0]} == raddr_next[11:0];
f2 = {~waddr[11], waddr[10:0]} == raddr_next[11:0];
p1 = ((waddr_next[10:0] + 1) & 11'h7ff) == raddr_next[10:0];
p2 = ((waddr[10:0] + 1) & 11'h7ff) == raddr_next[10:0];
end
3'h5: begin
f1 = {~waddr_next[10], waddr_next[9:0]} == raddr_next[10:0];
f2 = {~waddr[10], waddr[9:0]} == raddr_next[10:0];
p1 = ((waddr_next[9:0] + 1) & 10'h3ff) == raddr_next[9:0];
p2 = ((waddr[9:0] + 1) & 10'h3ff) == raddr_next[9:0];
end
3'h4: begin
f1 = {~waddr_next[9], waddr_next[8:0]} == raddr_next[9:0];
f2 = {~waddr[9], waddr[8:0]} == raddr_next[9:0];
p1 = ((waddr_next[8:0] + 1) & 9'h1ff) == raddr_next[8:0];
p2 = ((waddr[8:0] + 1) & 9'h1ff) == raddr_next[8:0];
end
3'h3: begin
f1 = {~waddr_next[8], waddr_next[7:0]} == raddr_next[8:0];
f2 = {~waddr[8], waddr[7:0]} == raddr_next[8:0];
p1 = ((waddr_next[7:0] + 1) & 8'hff) == raddr_next[7:0];
p2 = ((waddr[7:0] + 1) & 8'hff) == raddr_next[7:0];
end
3'h2: begin
f1 = {~waddr_next[7], waddr_next[6:0]} == raddr_next[7:0];
f2 = {~waddr[7], waddr[6:0]} == raddr_next[7:0];
p1 = ((waddr_next[6:0] + 1) & 7'h7f) == raddr_next[6:0];
p2 = ((waddr[6:0] + 1) & 7'h7f) == raddr_next[6:0];
end
3'h1: begin
f1 = {~waddr_next[6], waddr_next[5:0]} == raddr_next[6:0];
f2 = {~waddr[6], waddr[5:0]} == raddr_next[6:0];
p1 = ((waddr_next[5:0] + 1) & 6'h3f) == raddr_next[5:0];
p2 = ((waddr[5:0] + 1) & 6'h3f) == raddr_next[5:0];
end
3'h0: begin
f1 = {~waddr_next[5], waddr_next[4:0]} == raddr_next[5:0];
f2 = {~waddr[5], waddr[4:0]} == raddr_next[5:0];
p1 = ((waddr_next[4:0] + 1) & 5'h1f) == raddr_next[4:0];
p2 = ((waddr[4:0] + 1) & 5'h1f) == raddr_next[4:0];
end
3'h7: begin
f1 = {~waddr_next[ADDR_WIDTH], waddr_next[ADDR_WIDTH - 1:0]} == raddr_next[ADDR_WIDTH:0];
f2 = {~waddr[ADDR_WIDTH], waddr[ADDR_WIDTH - 1:0]} == raddr_next[ADDR_WIDTH:0];
p1 = ((waddr_next[ADDR_WIDTH - 1:0] + 1) & {ADDR_WIDTH {1'b1}}) == raddr_next[ADDR_WIDTH - 1:0];
p2 = ((waddr[ADDR_WIDTH - 1:0] + 1) & {ADDR_WIDTH {1'b1}}) == raddr_next[ADDR_WIDTH - 1:0];
end
endcase
2'h3: begin
f1 = 1'b0;
f2 = 1'b0;
p1 = 1'b0;
p2 = 1'b0;
end
endcase
end
always @(*)
case (wmode)
2'h0: gmode = 2'h0;
2'h1: gmode = (rmode == 2'h0 ? 2'h0 : 2'h1);
2'h2: gmode = (rmode == 2'h2 ? 2'h2 : rmode);
2'h3: gmode = 2'h3;
endcase
assign gc8out_next = (waddr_next >> 1) ^ waddr_next;
assign gc16out_next = (waddr_next >> 2) ^ (waddr_next >> 1);
assign gc32out_next = (waddr_next >> 3) ^ (waddr_next >> 2);
always @(*)
if (wen)
case (gmode)
2'h2: gcout_next = gc8out_next;
2'h1: gcout_next = {1'b0, gc16out_next};
2'h0: gcout_next = {2'b00, gc32out_next};
default: gcout_next = {ADDR_PLUS_ONE {1'b0}};
endcase
else
gcout_next = {ADDR_PLUS_ONE {1'b0}};
always @(posedge wclk or negedge rst_n)
if (~rst_n) begin
full <= 1'b0;
fmo <= 1'b0;
paf <= 1'b0;
raddr <= {ADDR_PLUS_ONE {1'b0}};
end
else begin
full <= full_next;
fmo <= fmo_next;
paf <= paf_next;
case (gmode)
0: raddr <= raddr_next & {{ADDR_WIDTH - 1 {1'b1}}, 2'b00};
1: raddr <= raddr_next & {{ADDR_WIDTH {1'b1}}, 1'b0};
2: raddr <= raddr_next & {ADDR_WIDTH + 1 {1'b1}};
3: raddr <= 12'h000;
endcase
end
assign overflow_next = full & wen;
always @(posedge wclk or negedge rst_n)
if (~rst_n)
overflow <= 1'b0;
else if (wen == 1'b1)
overflow <= overflow_next;
always @(posedge wclk or negedge rst_n)
if (~rst_n) begin
waddr <= {ADDR_WIDTH + 1 {1'b0}};
gcout_reg <= {ADDR_WIDTH + 1 {1'b0}};
end
else if (wen == 1'b1) begin
waddr <= waddr_next;
gcout_reg <= gcout_next;
end
assign gcout = gcout_reg;
generate
for (i = 0; i < (ADDR_WIDTH + 1); i = i + 1) begin : genblk1
assign tmp[i] = ^(gcin >> i);
end
endgenerate
always @(*)
case (gmode)
2'h0: raddr_next = {tmp[ADDR_WIDTH - 2:0], 2'b00} & {{ADDR_WIDTH - 1 {1'b1}}, 2'b00};
2'h1: raddr_next = {tmp[ADDR_WIDTH - 1:0], 1'b0} & {{ADDR_WIDTH {1'b1}}, 1'b0};
2'h2: raddr_next = {tmp[ADDR_WIDTH:0]} & {ADDR_WIDTH + 1 {1'b1}};
default: raddr_next = {ADDR_WIDTH + 1 {1'b0}};
endcase
assign ff_waddr = waddr[ADDR_WIDTH - 1:0];
assign pushflags = {full, fmo, paf, overflow};
assign waddr_next = waddr + (wmode == 2'h0 ? 'h4 : (wmode == 2'h1 ? 'h2 : 'h1));
endmodule
module fifo_pop (
ren_o,
popflags,
out_raddr,
gcout,
rst_n,
rclk,
ren_in,
rmode,
wmode,
gcin,
upae
);
parameter ADDR_WIDTH = 11;
parameter FIFO_WIDTH = 3'd2;
parameter DEPTH = 6;
output wire ren_o;
output wire [3:0] popflags;
output reg [ADDR_WIDTH - 1:0] out_raddr;
output wire [ADDR_WIDTH:0] gcout;
input rst_n;
(* clkbuf_sink *)
input rclk;
input ren_in;
input [1:0] rmode;
input [1:0] wmode;
input [ADDR_WIDTH:0] gcin;
input [ADDR_WIDTH - 1:0] upae;
localparam ADDR_PLUS_ONE = ADDR_WIDTH + 1;
reg empty;
reg epo;
reg pae;
reg underflow;
reg e1;
reg e2;
reg o1;
reg o2;
reg q1;
reg q2;
reg [1:0] bwl_sel;
reg [1:0] gmode;
reg [ADDR_WIDTH - 1:0] ff_raddr;
reg [ADDR_WIDTH:0] waddr;
reg [ADDR_WIDTH:0] raddr;
reg [ADDR_WIDTH:0] gcout_reg;
reg [ADDR_WIDTH:0] gcout_next;
reg [ADDR_WIDTH:0] waddr_next;
reg [ADDR_WIDTH - 1:0] pae_thresh;
wire ren_out;
wire empty_next;
wire pae_next;
wire epo_next;
wire [ADDR_WIDTH - 2:0] gc32out_next;
wire [ADDR_WIDTH - 1:0] gc16out_next;
wire [ADDR_WIDTH:0] gc8out_next;
wire [ADDR_WIDTH:0] raddr_next;
wire [ADDR_WIDTH - 1:0] ff_raddr_next;
wire [ADDR_WIDTH:0] tmp;
wire [ADDR_PLUS_ONE:0] next_count;
wire [ADDR_PLUS_ONE:0] count;
wire [ADDR_PLUS_ONE:0] fbytes;
genvar i;
assign next_count = waddr - raddr_next;
assign count = waddr - raddr;
assign fbytes = 1 << (DEPTH + 5);
always @(*) pae_thresh = rmode[1] ? upae : (rmode[0] ? upae << 1 : upae << 2);
assign ren_out = (empty ? 1'b1 : ren_in);
always @(*)
case (rmode)
2'h0: gmode = 2'h0;
2'h1: gmode = (wmode == 2'h0 ? 2'h0 : 2'h1);
2'h2: gmode = (wmode == 2'h2 ? 2'h2 : wmode);
2'h3: gmode = 2'h3;
endcase
always @(*) begin
e1 = 1'b0;
e2 = 1'b0;
o1 = 1'b0;
o2 = 1'b0;
q1 = next_count < {1'b0, pae_thresh};
q2 = count < {1'b0, pae_thresh};
case (rmode)
2'h0: begin
e1 = raddr_next[ADDR_WIDTH:2] == waddr_next[ADDR_WIDTH:2];
e2 = raddr[ADDR_WIDTH:2] == waddr_next[ADDR_WIDTH:2];
o1 = (raddr_next[ADDR_WIDTH:2] + 1) == waddr_next[ADDR_WIDTH:2];
o2 = (raddr[ADDR_WIDTH:2] + 1) == waddr_next[ADDR_WIDTH:2];
end
2'h1: begin
e1 = raddr_next[ADDR_WIDTH:1] == waddr_next[ADDR_WIDTH:1];
e2 = raddr[ADDR_WIDTH:1] == waddr_next[ADDR_WIDTH:1];
o1 = (raddr_next[ADDR_WIDTH:1] + 1) == waddr_next[ADDR_WIDTH:1];
o2 = (raddr[ADDR_WIDTH:1] + 1) == waddr_next[ADDR_WIDTH:1];
end
2'h2: begin
e1 = raddr_next[ADDR_WIDTH:0] == waddr_next[ADDR_WIDTH:0];
e2 = raddr[ADDR_WIDTH:0] == waddr_next[ADDR_WIDTH:0];
o1 = (raddr_next[ADDR_WIDTH:0] + 1) == waddr_next[ADDR_WIDTH:0];
o2 = (raddr[ADDR_WIDTH:0] + 1) == waddr_next[11:0];
end
2'h3: begin
e1 = 1'b0;
e2 = 1'b0;
o1 = 1'b0;
o2 = 1'b0;
end
endcase
end
assign empty_next = (ren_in & !empty ? e1 : e2);
assign epo_next = (ren_in & !empty ? o1 : o2);
assign pae_next = (ren_in & !empty ? q1 : q2);
always @(posedge rclk or negedge rst_n)
if (~rst_n) begin
empty <= 1'b1;
pae <= 1'b1;
epo <= 1'b0;
end
else begin
empty <= empty_next;
pae <= pae_next;
epo <= epo_next;
end
assign gc8out_next = (raddr_next >> 1) ^ raddr_next;
assign gc16out_next = (raddr_next >> 2) ^ (raddr_next >> 1);
assign gc32out_next = (raddr_next >> 3) ^ (raddr_next >> 2);
always @(*)
if (ren_in)
case (gmode)
2'h2: gcout_next = gc8out_next;
2'h1: gcout_next = {1'b0, gc16out_next};
2'h0: gcout_next = {2'b00, gc32out_next};
default: gcout_next = 'h0;
endcase
else
gcout_next = 'h0;
always @(posedge rclk or negedge rst_n)
if (~rst_n)
waddr <= 12'h000;
else
waddr <= waddr_next;
always @(posedge rclk or negedge rst_n)
if (~rst_n) begin
underflow <= 1'b0;
bwl_sel <= 2'h0;
gcout_reg <= 12'h000;
end
else if (ren_in) begin
underflow <= empty;
if (!empty) begin
bwl_sel <= raddr_next[1:0];
gcout_reg <= gcout_next;
end
end
generate
for (i = 0; i < (ADDR_WIDTH + 1); i = i + 1) begin : genblk1
assign tmp[i] = ^(gcin >> i);
end
endgenerate
always @(*)
case (gmode)
2'h0: waddr_next = {tmp[ADDR_WIDTH - 2:0], 2'b00} & {{ADDR_WIDTH - 1 {1'b1}}, 2'b00};
2'h1: waddr_next = {tmp[ADDR_WIDTH - 1:0], 1'b0} & {{ADDR_WIDTH {1'b1}}, 1'b0};
2'h2: waddr_next = {tmp[ADDR_WIDTH:0]} & {ADDR_PLUS_ONE {1'b1}};
default: waddr_next = {ADDR_PLUS_ONE {1'b0}};
endcase
assign ff_raddr_next = ff_raddr + (rmode == 2'h0 ? 'h4 : (rmode == 2'h1 ? 'h2 : 'h1));
assign raddr_next = raddr + (rmode == 2'h0 ? 'h4 : (rmode == 2'h1 ? 'h2 : 'h1));
always @(posedge rclk or negedge rst_n)
if (~rst_n)
ff_raddr <= 1'sb0;
else if (empty & ~empty_next)
ff_raddr <= raddr_next[ADDR_WIDTH - 1:0];
else if ((ren_in & !empty) & ~empty_next)
ff_raddr <= ff_raddr_next;
always @(posedge rclk or negedge rst_n)
if (~rst_n)
raddr <= 12'h000;
else if (ren_in & !empty)
raddr <= raddr_next;
always @(*)
case (FIFO_WIDTH)
3'h2: out_raddr = {ff_raddr[ADDR_WIDTH - 1:1], bwl_sel[0]};
3'h4: out_raddr = {ff_raddr[ADDR_WIDTH - 1:2], bwl_sel};
default: out_raddr = ff_raddr[ADDR_WIDTH - 1:0];
endcase
assign ren_o = ren_out;
assign gcout = gcout_reg;
assign popflags = {empty, epo, pae, underflow};
endmodule
`default_nettype none

View File

@ -0,0 +1,77 @@
// Copyright 2020-2022 F4PGA Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// SPDX-License-Identifier: Apache-2.0
module BRAM_TDP #(parameter AWIDTH = 10,
parameter DWIDTH = 36)(
clk_a,
rce_a,
ra_a,
rq_a,
wce_a,
wa_a,
wd_a,
clk_b,
rce_b,
ra_b,
rq_b,
wce_b,
wa_b,
wd_b
);
input clk_a;
input rce_a;
input [AWIDTH-1:0] ra_a;
output reg [DWIDTH-1:0] rq_a;
input wce_a;
input [AWIDTH-1:0] wa_a;
input [DWIDTH-1:0] wd_a;
input clk_b;
input rce_b;
input [AWIDTH-1:0] ra_b;
output reg [DWIDTH-1:0] rq_b;
input wce_b;
input [AWIDTH-1:0] wa_b;
input [DWIDTH-1:0] wd_b;
(* no_rw_check = 1 *)
reg [DWIDTH-1:0] memory[0:(1<<AWIDTH)-1];
wire [AWIDTH-1:0] a_a = rce_a ? ra_a : wa_a;
wire [AWIDTH-1:0] a_b = rce_b ? ra_b : wa_b;
wire ce_a = rce_a || wce_a;
wire ce_b = rce_b || wce_b;
always @(posedge clk_a) begin
if (ce_a) begin
if (wce_a)
memory[a_a] <= wd_a;
rq_a <= memory[a_a];
end
end
always @(posedge clk_b) begin
if (ce_b) begin
if (wce_b)
memory[a_b] <= wd_b;
rq_b <= memory[a_b];
end
end
endmodule

View File

@ -0,0 +1,5 @@
read_verilog +/quicklogic/qlf_k6n10f/brams_sim.v +/quicklogic/qlf_k6n10f/sram1024x18_mem.v +/quicklogic/qlf_k6n10f/ufifo_ctl.v +/quicklogic/qlf_k6n10f/TDP18K_FIFO.v
read_verilog -formal bram_tdp.v bram_tdp_tb.v
hierarchy -top TB
proc
sim -clock clk -n 20 -assert # -vcd bram_tdp.vcd

View File

@ -0,0 +1,99 @@
module TB(input clk);
localparam ADDR_WIDTH = 10;
localparam DATA_WIDTH = 36;
localparam VECTORLEN = 16;
reg rce_a_testvector [VECTORLEN-1:0];
reg [ADDR_WIDTH-1:0] ra_a_testvector [VECTORLEN-1:0];
reg [ADDR_WIDTH-1:0] rq_a_expected [VECTORLEN-1:0];
reg wce_a_testvector [VECTORLEN-1:0];
reg [ADDR_WIDTH-1:0] wa_a_testvector [VECTORLEN-1:0];
reg [ADDR_WIDTH-1:0] wd_a_testvector [VECTORLEN-1:0];
reg rce_b_testvector [VECTORLEN-1:0];
reg [ADDR_WIDTH-1:0] ra_b_testvector [VECTORLEN-1:0];
reg [ADDR_WIDTH-1:0] rq_b_expected [VECTORLEN-1:0];
reg wce_b_testvector [VECTORLEN-1:0];
reg [ADDR_WIDTH-1:0] wa_b_testvector [VECTORLEN-1:0];
reg [ADDR_WIDTH-1:0] wd_b_testvector [VECTORLEN-1:0];
reg [$clog2(VECTORLEN)-1:0] i = 0;
integer j;
initial begin
for (j = 0; j < VECTORLEN; j = j + 1) begin
rce_a_testvector[j] = 1'b0;
ra_a_testvector[j] = 10'h0;
wce_a_testvector[j] = 1'b0;
wa_a_testvector[j] = 10'h0;
rce_b_testvector[j] = 1'b0;
ra_b_testvector[j] = 10'h0;
wce_b_testvector[j] = 1'b0;
wa_b_testvector[j] = 10'h0;
end
wce_a_testvector[0] = 1'b1;
wa_a_testvector[0] = 10'hA;
wd_a_testvector[0] = 36'hDEADBEEF;
rce_b_testvector[2] = 1'b1;
ra_b_testvector[2] = 10'hA;
rq_b_expected[3] = 36'hDEADBEEF;
end
wire rce_a = rce_a_testvector[i];
wire [ADDR_WIDTH-1:0] ra_a = ra_a_testvector[i];
wire [DATA_WIDTH-1:0] rq_a;
wire wce_a = wce_a_testvector[i];
wire [ADDR_WIDTH-1:0] wa_a = wa_a_testvector[i];
wire [DATA_WIDTH-1:0] wd_a = wd_a_testvector[i];
wire rce_b = rce_b_testvector[i];
wire [ADDR_WIDTH-1:0] ra_b = ra_b_testvector[i];
wire [DATA_WIDTH-1:0] rq_b = rq_b_expected[i];
wire wce_b = wce_b_testvector[i];
wire [ADDR_WIDTH-1:0] wa_b = wa_b_testvector[i];
wire [DATA_WIDTH-1:0] wd_b = wd_b_testvector[i];
uut #(
.AWIDTH(ADDR_WIDTH),
.DWIDTH(DATA_WIDTH)
) BRAM_TDP (
.clk_a(clk),
.rce_a(rce_a),
.ra_a(ra_a),
.rq_a(rq_a),
.wce_a(wce_a),
.wa_a(wa_a),
.wd_a(wd_a),
.clk_b(clk),
.rce_b(rce_b),
.ra_b(ra_b),
.rq_b(rq_b),
.wce_b(wce_b),
.wa_b(wa_b),
.wd_b(wd_b)
);
always @(posedge clk) begin
if (i < VECTORLEN-1) begin
if (i > 0) begin
if($past(rce_a))
assert(rq_a == rq_a_expected[i]);
if($past(rce_b))
assert(rq_b == rq_b_expected[i]);
end
i <= i + 1;
end
end
endmodule