Refactoring of memory_bram and xilinx brams

This commit is contained in:
Clifford Wolf 2015-01-18 19:05:29 +01:00
parent 694cc01f1d
commit 8d295730e5
6 changed files with 496 additions and 704 deletions

View File

@ -31,47 +31,111 @@ struct rules_t
SigBit sig_clock;
SigSpec sig_addr, sig_data, sig_en;
bool effective_clkpol;
bool make_transp;
int mapped_port;
};
struct bram_t {
IdString name;
int variant;
int groups, abits, dbits, init;
vector<int> ports, wrmode, enable, transp, clocks, clkpol;
void dump_config() const
{
log(" bram %s # variant %d\n", log_id(name), variant);
log(" init %d\n", init);
log(" abits %d\n", abits);
log(" dbits %d\n", dbits);
log(" groups %d\n", groups);
log(" ports "); for (int v : ports) log("%4d", v); log("\n");
log(" wrmode"); for (int v : wrmode) log("%4d", v); log("\n");
log(" enable"); for (int v : enable) log("%4d", v); log("\n");
log(" transp"); for (int v : transp) log("%4d", v); log("\n");
log(" clocks"); for (int v : clocks) log("%4d", v); log("\n");
log(" clkpol"); for (int v : clkpol) log("%4d", v); log("\n");
log(" endbram\n");
}
void check_vectors() const
{
if (groups != GetSize(ports)) log_error("Bram %s variant %d has %d groups but only %d entries in 'ports'.\n", log_id(name), variant, groups, GetSize(ports));
if (groups != GetSize(wrmode)) log_error("Bram %s variant %d has %d groups but only %d entries in 'wrmode'.\n", log_id(name), variant, groups, GetSize(wrmode));
if (groups != GetSize(enable)) log_error("Bram %s variant %d has %d groups but only %d entries in 'enable'.\n", log_id(name), variant, groups, GetSize(enable));
if (groups != GetSize(transp)) log_error("Bram %s variant %d has %d groups but only %d entries in 'transp'.\n", log_id(name), variant, groups, GetSize(transp));
if (groups != GetSize(clocks)) log_error("Bram %s variant %d has %d groups but only %d entries in 'clocks'.\n", log_id(name), variant, groups, GetSize(clocks));
if (groups != GetSize(clkpol)) log_error("Bram %s variant %d has %d groups but only %d entries in 'clkpol'.\n", log_id(name), variant, groups, GetSize(clkpol));
}
vector<portinfo_t> make_portinfos() const
{
vector<portinfo_t> portinfos;
for (int i = 0; i < groups && i < GetSize(ports); i++)
for (int i = 0; i < groups; i++)
for (int j = 0; j < ports[i]; j++) {
portinfo_t pi;
pi.group = i;
pi.index = j;
pi.dupidx = 0;
pi.wrmode = i < GetSize(wrmode) ? wrmode[i] : 0;
pi.enable = i < GetSize(enable) ? enable[i] : 0;
pi.transp = i < GetSize(transp) ? transp[i] : 0;
pi.clocks = i < GetSize(clocks) ? clocks[i] : 0;
pi.clkpol = i < GetSize(clkpol) ? clkpol[i] : 0;
pi.wrmode = wrmode[i];
pi.enable = enable[i];
pi.transp = transp[i];
pi.clocks = clocks[i];
pi.clkpol = clkpol[i];
pi.mapped_port = -1;
pi.make_transp = false;
pi.effective_clkpol = false;
portinfos.push_back(pi);
}
return portinfos;
}
void find_variant_params(dict<IdString, Const> &variant_params, const bram_t &other) const
{
log_assert(name == other.name);
if (groups != other.groups)
log_error("Bram %s variants %d and %d have different values for 'groups'.\n", log_id(name), variant, other.variant);
if (abits != other.abits)
variant_params["\\CFG_ABITS"] = abits;
if (dbits != other.dbits)
variant_params["\\CFG_DBITS"] = dbits;
if (init != other.init)
variant_params["\\CFG_INIT"] = init;
for (int i = 0; i < groups; i++)
{
if (ports[i] != other.ports[i])
log_error("Bram %s variants %d and %d have different number of %c-ports.\n", log_id(name), variant, other.variant, 'A'+i);
if (wrmode[i] != other.wrmode[i])
variant_params[stringf("\\CFG_WRMODE_%c", 'A' + i)] = wrmode[1];
if (enable[i] != other.enable[i])
variant_params[stringf("\\CFG_ENABLE_%c", 'A' + i)] = enable[1];
if (transp[i] != other.transp[i])
variant_params[stringf("\\CFG_TRANSP_%c", 'A' + i)] = transp[1];
if (clocks[i] != other.clocks[i])
variant_params[stringf("\\CFG_CLOCKS_%c", 'A' + i)] = clocks[1];
if (clkpol[i] != other.clkpol[i])
variant_params[stringf("\\CFG_CLKPOL_%c", 'A' + i)] = clkpol[1];
}
}
};
struct match_t {
IdString name;
dict<string, int> min_limits, max_limits;
bool or_next_if_better;
int shuffle_enable;
bool or_next_if_better, make_transp;
char shuffle_enable;
};
dict<IdString, bram_t> brams;
dict<IdString, vector<bram_t>> brams;
vector<match_t> matches;
std::ifstream infile;
vector<string> tokens;
vector<string> labels;
int linecount;
void syntax_error()
@ -83,11 +147,16 @@ struct rules_t
bool next_line()
{
linecount++;
tokens.clear();
string line;
while (std::getline(infile, line)) {
tokens.clear();
labels.clear();
linecount++;
for (string tok = next_token(line); !tok.empty(); tok = next_token(line)) {
if (tok[0] == '@') {
labels.push_back(tok.substr(1));
continue;
}
if (tok[0] == '#')
break;
tokens.push_back(tok);
@ -120,53 +189,83 @@ struct rules_t
void parse_bram()
{
IdString bram_name = RTLIL::escape_id(tokens[1]);
if (GetSize(tokens) != 2)
syntax_error();
bram_t data;
data.name = RTLIL::escape_id(tokens[1]);
vector<vector<string>> lines_nolabels;
std::map<string, vector<vector<string>>> lines_labels;
while (next_line())
{
if (GetSize(tokens) == 1 && tokens[0] == "endbram") {
brams[data.name] = data;
return;
}
if (parse_single_int("groups", data.groups))
continue;
if (parse_single_int("abits", data.abits))
continue;
if (parse_single_int("dbits", data.dbits))
continue;
if (parse_single_int("init", data.init))
continue;
if (parse_int_vect("ports", data.ports))
continue;
if (parse_int_vect("wrmode", data.wrmode))
continue;
if (parse_int_vect("enable", data.enable))
continue;
if (parse_int_vect("transp", data.transp))
continue;
if (parse_int_vect("clocks", data.clocks))
continue;
if (parse_int_vect("clkpol", data.clkpol))
continue;
break;
if (GetSize(tokens) == 1 && tokens[0] == "endbram")
break;
if (labels.empty())
lines_nolabels.push_back(tokens);
for (auto lab : labels)
lines_labels[lab].push_back(tokens);
}
syntax_error();
std::map<string, vector<vector<string>>> variant_lines;
if (lines_labels.empty())
variant_lines[""] = lines_nolabels;
for (auto &it : lines_labels) {
variant_lines[it.first] = lines_nolabels;
variant_lines[it.first].insert(variant_lines[it.first].end(), it.second.begin(), it.second.end());
}
for (auto &it : variant_lines)
{
bram_t data;
data.name = bram_name;
data.variant = GetSize(brams[data.name]) + 1;
data.groups = 0;
data.abits = 0;
data.dbits = 0;
data.init = 0;
for (auto &line_tokens : it.second)
{
tokens = line_tokens;
if (parse_single_int("groups", data.groups))
continue;
if (parse_single_int("abits", data.abits))
continue;
if (parse_single_int("dbits", data.dbits))
continue;
if (parse_single_int("init", data.init))
continue;
if (parse_int_vect("ports", data.ports))
continue;
if (parse_int_vect("wrmode", data.wrmode))
continue;
if (parse_int_vect("enable", data.enable))
continue;
if (parse_int_vect("transp", data.transp))
continue;
if (parse_int_vect("clocks", data.clocks))
continue;
if (parse_int_vect("clkpol", data.clkpol))
continue;
syntax_error();
}
data.check_vectors();
brams[data.name].push_back(data);
}
}
void parse_match()
@ -177,13 +276,17 @@ struct rules_t
match_t data;
data.name = RTLIL::escape_id(tokens[1]);
data.or_next_if_better = false;
data.make_transp = false;
data.shuffle_enable = 0;
while (next_line())
{
if (!labels.empty())
syntax_error();
if (GetSize(tokens) == 1 && tokens[0] == "endmatch") {
matches.push_back(data);
return;
break;
}
if (GetSize(tokens) == 3 && tokens[0] == "min") {
@ -196,8 +299,13 @@ struct rules_t
continue;
}
if (GetSize(tokens) == 2 && tokens[0] == "shuffle_enable") {
data.shuffle_enable = atoi(tokens[1].c_str());
if (GetSize(tokens) == 2 && tokens[0] == "shuffle_enable" && GetSize(tokens[1]) == 1 && 'A' <= tokens[1][0] && tokens[1][0] <= 'Z') {
data.shuffle_enable = tokens[1][0];
continue;
}
if (GetSize(tokens) == 1 && tokens[0] == "make_transp") {
data.make_transp = true;
continue;
}
@ -206,10 +314,8 @@ struct rules_t
continue;
}
break;
syntax_error();
}
syntax_error();
}
void parse(string filename)
@ -225,22 +331,37 @@ struct rules_t
while (next_line())
{
if (tokens[0] == "bram") parse_bram();
else if (tokens[0] == "match") parse_match();
else syntax_error();
if (!labels.empty())
syntax_error();
if (tokens[0] == "bram") {
parse_bram();
continue;
}
if (tokens[0] == "match") {
parse_match();
continue;
}
syntax_error();
}
infile.close();
}
};
bool replace_cell(Cell *cell, const rules_t::bram_t &bram, const rules_t::match_t &match, dict<string, int> &match_properties, int mode)
bool replace_cell(Cell *cell, const rules_t &rules, const rules_t::bram_t &bram, const rules_t::match_t &match, dict<string, int> &match_properties, int mode)
{
Module *module = cell->module;
auto portinfos = bram.make_portinfos();
int dup_count = 1;
pair<SigBit, bool> make_transp_clk;
bool enable_make_transp = false;
int make_transp_enbits = 0;
dict<int, pair<SigBit, bool>> clock_domains;
dict<int, bool> clock_polarities;
dict<int, bool> read_transp;
@ -264,7 +385,8 @@ bool replace_cell(Cell *cell, const rules_t::bram_t &bram, const rules_t::match_
transp_max = std::max(transp_max, pi.transp);
}
log(" Mapping to bram type %s:\n", log_id(bram.name));
log(" Mapping to bram type %s (variant %d):\n", log_id(bram.name), bram.variant);
// bram.dump_config();
int mem_size = cell->getParam("\\SIZE").as_int();
int mem_abits = cell->getParam("\\ABITS").as_int();
@ -294,9 +416,9 @@ bool replace_cell(Cell *cell, const rules_t::bram_t &bram, const rules_t::match_
SigSpec rd_data = cell->getPort("\\RD_DATA");
SigSpec rd_addr = cell->getPort("\\RD_ADDR");
if (match.shuffle_enable && bram.dbits >= match.shuffle_enable*2)
if (match.shuffle_enable && bram.dbits >= portinfos.at(match.shuffle_enable - 'A').enable*2 && portinfos.at(match.shuffle_enable - 'A').enable > 0)
{
int bucket_size = bram.dbits / match.shuffle_enable;
int bucket_size = bram.dbits / portinfos.at(match.shuffle_enable - 'A').enable;
log(" Shuffle bit order to accommodate enable buckets of size %d..\n", bucket_size);
// extract unshuffled data/enable bits
@ -403,6 +525,8 @@ bool replace_cell(Cell *cell, const rules_t::bram_t &bram, const rules_t::match_
for (; bram_port_i < GetSize(portinfos); bram_port_i++)
{
auto &pi = portinfos[bram_port_i];
make_transp_enbits = pi.enable;
make_transp_clk = clkdom;
if (pi.wrmode != 1)
skip_bram_wport:
@ -544,8 +668,13 @@ grow_read_ports:;
goto skip_bram_rport;
}
if (read_transp.count(pi.transp) && read_transp.at(pi.transp) != transp) {
log(" Bram port %c%d.%d has incompatible read transparancy.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
if (match.make_transp && wr_ports <= 1) {
pi.make_transp = true;
enable_make_transp = true;
} else {
log(" Bram port %c%d.%d has incompatible read transparancy.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
goto skip_bram_rport;
}
}
} else {
if (pi.clocks != 0) {
@ -595,6 +724,10 @@ grow_read_ports:;
int cells = ((mem_width + bram.dbits - 1) / bram.dbits) * ((mem_size + (1 << bram.abits) - 1) / (1 << bram.abits));
match_properties["efficiency"] = (100 * match_properties["bits"]) / (dup_count * cells * bram.dbits * (1 << bram.abits));
match_properties["dcells"] = ((mem_width + bram.dbits - 1) / bram.dbits);
match_properties["acells"] = ((mem_size + (1 << bram.abits) - 1) / (1 << bram.abits));
match_properties["cells"] = match_properties["dcells"] * match_properties["acells"] * match_properties["dups"];
log(" Updated properties: dups=%d waste=%d efficiency=%d\n",
match_properties["dups"], match_properties["waste"], match_properties["efficiency"]);
@ -623,81 +756,130 @@ grow_read_ports:;
return true;
}
// prepare variant parameters
dict<IdString, Const> variant_params;
for (auto &other_bram : rules.brams.at(bram.name))
bram.find_variant_params(variant_params, other_bram);
// actually replace that memory cell
dict<SigSpec, pair<SigSpec, SigSpec>> dout_cache;
for (int grid_d = 0; grid_d*bram.dbits < mem_width; grid_d++)
for (int grid_a = 0; grid_a*(1 << bram.abits) < mem_size; grid_a++)
for (int dupidx = 0; dupidx < dup_count; dupidx++)
{
Cell *c = module->addCell(module->uniquify(stringf("%s.%d.%d.%d", cell->name.c_str(), grid_d, grid_a, dupidx)), bram.name);
log(" Creating %s cell at grid position <%d %d %d>: %s\n", log_id(bram.name), grid_d, grid_a, dupidx, log_id(c));
SigSpec mktr_wraddr, mktr_wrdata, mktr_wrdata_q;
vector<SigSpec> mktr_wren;
for (auto &pi : portinfos)
if (enable_make_transp) {
mktr_wraddr = module->addWire(NEW_ID, bram.abits);
mktr_wrdata = module->addWire(NEW_ID, bram.dbits);
mktr_wrdata_q = module->addWire(NEW_ID, bram.dbits);
module->addDff(NEW_ID, make_transp_clk.first, mktr_wrdata, mktr_wrdata_q, make_transp_clk.second);
for (int grid_a = 0; grid_a*(1 << bram.abits) < mem_size; grid_a++)
mktr_wren.push_back(module->addWire(NEW_ID, make_transp_enbits));
}
for (int grid_a = 0; grid_a*(1 << bram.abits) < mem_size; grid_a++)
for (int dupidx = 0; dupidx < dup_count; dupidx++)
{
if (pi.dupidx != dupidx)
continue;
Cell *c = module->addCell(module->uniquify(stringf("%s.%d.%d.%d", cell->name.c_str(), grid_d, grid_a, dupidx)), bram.name);
log(" Creating %s cell at grid position <%d %d %d>: %s\n", log_id(bram.name), grid_d, grid_a, dupidx, log_id(c));
string prefix = stringf("%c%d", pi.group + 'A', pi.index + 1);
const char *pf = prefix.c_str();
for (auto &vp : variant_params)
c->setParam(vp.first, vp.second);
if (pi.clocks && (!c->hasPort(stringf("\\CLK%d", (pi.clocks-1) % clocks_max + 1)) || pi.sig_clock.wire)) {
c->setPort(stringf("\\CLK%d", (pi.clocks-1) % clocks_max + 1), pi.sig_clock);
if (pi.clkpol > 1 && pi.sig_clock.wire)
c->setParam(stringf("\\CLKPOL%d", (pi.clkpol-1) % clkpol_max + 1), clock_polarities.at(pi.clkpol));
if (pi.transp > 1 && pi.sig_clock.wire)
c->setParam(stringf("\\TRANSP%d", (pi.transp-1) % transp_max + 1), read_transp.at(pi.transp));
}
SigSpec addr_ok;
if (GetSize(pi.sig_addr) > bram.abits) {
SigSpec extra_addr = pi.sig_addr.extract(bram.abits, GetSize(pi.sig_addr) - bram.abits);
SigSpec extra_addr_sel = SigSpec(grid_a, GetSize(extra_addr));
addr_ok = module->Eq(NEW_ID, extra_addr, extra_addr_sel);
}
if (pi.enable)
for (auto &pi : portinfos)
{
SigSpec sig_en = pi.sig_en;
sig_en.extend_u0((grid_d+1) * pi.enable);
sig_en = sig_en.extract(grid_d * pi.enable, pi.enable);
if (pi.dupidx != dupidx)
continue;
if (!addr_ok.empty())
sig_en = module->Mux(NEW_ID, SigSpec(0, GetSize(sig_en)), sig_en, addr_ok);
string prefix = stringf("%c%d", pi.group + 'A', pi.index + 1);
const char *pf = prefix.c_str();
c->setPort(stringf("\\%sEN", pf), sig_en);
}
SigSpec sig_data = pi.sig_data;
sig_data.extend_u0((grid_d+1) * bram.dbits);
sig_data = sig_data.extract(grid_d * bram.dbits, bram.dbits);
if (pi.wrmode == 1) {
c->setPort(stringf("\\%sDATA", pf), sig_data);
} else {
SigSpec bram_dout = module->addWire(NEW_ID, bram.dbits);
c->setPort(stringf("\\%sDATA", pf), bram_dout);
for (int i = bram.dbits-1; i >= 0; i--)
if (sig_data[i].wire == nullptr) {
sig_data.remove(i);
bram_dout.remove(i);
}
SigSpec addr_ok_q = addr_ok;
if (pi.clocks && !addr_ok.empty()) {
addr_ok_q = module->addWire(NEW_ID);
module->addDff(NEW_ID, pi.sig_clock, addr_ok, addr_ok_q, pi.effective_clkpol);
if (pi.clocks && (!c->hasPort(stringf("\\CLK%d", (pi.clocks-1) % clocks_max + 1)) || pi.sig_clock.wire)) {
c->setPort(stringf("\\CLK%d", (pi.clocks-1) % clocks_max + 1), pi.sig_clock);
if (pi.clkpol > 1 && pi.sig_clock.wire)
c->setParam(stringf("\\CLKPOL%d", (pi.clkpol-1) % clkpol_max + 1), clock_polarities.at(pi.clkpol));
if (pi.transp > 1 && pi.sig_clock.wire)
c->setParam(stringf("\\TRANSP%d", (pi.transp-1) % transp_max + 1), read_transp.at(pi.transp));
}
dout_cache[sig_data].first.append(addr_ok_q);
dout_cache[sig_data].second.append(bram_dout);
}
SigSpec addr_ok;
if (GetSize(pi.sig_addr) > bram.abits) {
SigSpec extra_addr = pi.sig_addr.extract(bram.abits, GetSize(pi.sig_addr) - bram.abits);
SigSpec extra_addr_sel = SigSpec(grid_a, GetSize(extra_addr));
addr_ok = module->Eq(NEW_ID, extra_addr, extra_addr_sel);
}
SigSpec sig_addr = pi.sig_addr;
sig_addr.extend_u0(bram.abits);
c->setPort(stringf("\\%sADDR", pf), sig_addr);
if (pi.enable)
{
SigSpec sig_en = pi.sig_en;
sig_en.extend_u0((grid_d+1) * pi.enable);
sig_en = sig_en.extract(grid_d * pi.enable, pi.enable);
if (!addr_ok.empty())
sig_en = module->Mux(NEW_ID, SigSpec(0, GetSize(sig_en)), sig_en, addr_ok);
c->setPort(stringf("\\%sEN", pf), sig_en);
if (pi.wrmode == 1 && enable_make_transp)
module->connect(mktr_wren[grid_a], sig_en);
}
SigSpec sig_addr = pi.sig_addr;
sig_addr.extend_u0(bram.abits);
c->setPort(stringf("\\%sADDR", pf), sig_addr);
if (pi.wrmode == 1 && enable_make_transp && grid_a == 0)
module->connect(mktr_wraddr, sig_addr);
SigSpec sig_data = pi.sig_data;
sig_data.extend_u0((grid_d+1) * bram.dbits);
sig_data = sig_data.extract(grid_d * bram.dbits, bram.dbits);
if (pi.wrmode == 1) {
c->setPort(stringf("\\%sDATA", pf), sig_data);
if (enable_make_transp && grid_a == 0)
module->connect(mktr_wrdata, sig_data);
} else {
SigSpec bram_dout = module->addWire(NEW_ID, bram.dbits);
c->setPort(stringf("\\%sDATA", pf), bram_dout);
if (pi.make_transp)
{
log(" Adding extra logic for transparent port %c%d.%d.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
SigSpec transp_en_d = module->Mux(NEW_ID, SigSpec(0, make_transp_enbits),
mktr_wren[grid_a], module->Eq(NEW_ID, mktr_wraddr, sig_addr));
SigSpec transp_en_q = module->addWire(NEW_ID, make_transp_enbits);
module->addDff(NEW_ID, make_transp_clk.first, transp_en_d, transp_en_q, make_transp_clk.second);
for (int i = 0; i < make_transp_enbits; i++) {
int en_width = bram.dbits / make_transp_enbits;
SigSpec orig_bram_dout = bram_dout.extract(i * en_width, en_width);
SigSpec bypass_dout = mktr_wrdata_q.extract(i * en_width, en_width);
bram_dout.replace(i * en_width, module->Mux(NEW_ID, orig_bram_dout, bypass_dout, transp_en_q[i]));
}
}
for (int i = bram.dbits-1; i >= 0; i--)
if (sig_data[i].wire == nullptr) {
sig_data.remove(i);
bram_dout.remove(i);
}
SigSpec addr_ok_q = addr_ok;
if (pi.clocks && !addr_ok.empty()) {
addr_ok_q = module->addWire(NEW_ID);
module->addDff(NEW_ID, pi.sig_clock, addr_ok, addr_ok_q, pi.effective_clkpol);
}
dout_cache[sig_data].first.append(addr_ok_q);
dout_cache[sig_data].second.append(bram_dout);
}
}
}
}
@ -737,127 +919,136 @@ void handle_cell(Cell *cell, const rules_t &rules)
log(" %s=%d", it.first.c_str(), it.second);
log("\n");
pool<IdString> failed_brams;
dict<int, int> best_rule_cache;
pool<pair<IdString, int>> failed_brams;
dict<pair<int, int>, std::tuple<int, int, int>> best_rule_cache;
for (int i = 0; i < GetSize(rules.matches); i++)
{
auto &match = rules.matches.at(i);
if (!rules.brams.count(rules.matches[i].name))
log_error("No bram description for resource %s found!\n", log_id(rules.matches[i].name));
auto &match = rules.matches.at(i);
auto &bram = rules.brams.at(match.name);
if (match.name.in(failed_brams))
continue;
int avail_rd_ports = 0;
int avail_wr_ports = 0;
for (int j = 0; j < bram.groups; j++) {
if (GetSize(bram.wrmode) < j || bram.wrmode.at(j) == 0)
avail_rd_ports += GetSize(bram.ports) < j ? bram.ports.at(j) : 0;
if (GetSize(bram.wrmode) < j || bram.wrmode.at(j) != 0)
avail_wr_ports += GetSize(bram.ports) < j ? bram.ports.at(j) : 0;
}
log(" Checking rule #%d for bram type %s:\n", i, log_id(match.name));
log(" Bram geometry: abits=%d dbits=%d wports=%d rports=%d\n", bram.abits, bram.dbits, avail_wr_ports, avail_rd_ports);
int dups = avail_rd_ports ? (match_properties["rports"] + avail_rd_ports - 1) / avail_rd_ports : 1;
match_properties["dups"] = dups;
log(" Estimated number of duplicates for more read ports: dups=%d\n", match_properties["dups"]);
int aover = match_properties["words"] % (1 << bram.abits);
int awaste = aover ? (1 << bram.abits) - aover : 0;
match_properties["awaste"] = awaste;
int dover = match_properties["dbits"] % bram.dbits;
int dwaste = dover ? bram.dbits - dover : 0;
match_properties["dwaste"] = dwaste;
int bwaste = awaste * bram.dbits + dwaste * (1 << bram.abits) - awaste * dwaste;
match_properties["bwaste"] = bwaste;
int waste = match_properties["dups"] * bwaste;
match_properties["waste"] = waste;
int cells = ((match_properties["dbits"] + bram.dbits - 1) / bram.dbits) * ((match_properties["words"] + (1 << bram.abits) - 1) / (1 << bram.abits));
int efficiency = (100 * match_properties["bits"]) / (dups * cells * bram.dbits * (1 << bram.abits));
match_properties["efficiency"] = efficiency;
log(" Metrics for %s: awaste=%d dwaste=%d bwaste=%d waste=%d efficiency=%d\n",
log_id(match.name), awaste, dwaste, bwaste, waste, efficiency);
for (auto it : match.min_limits) {
if (it.first == "waste" || it.first == "dups")
continue;
if (!match_properties.count(it.first))
log_error("Unknown property '%s' in match rule for bram type %s.\n",
it.first.c_str(), log_id(match.name));
if (match_properties[it.first] >= it.second)
continue;
log(" Rule #%d for bram type %s rejected: requirement 'min %s %d' not met.\n",
i, log_id(match.name), it.first.c_str(), it.second);
goto next_match_rule;
}
for (auto it : match.max_limits) {
if (!match_properties.count(it.first))
log_error("Unknown property '%s' in match rule for bram type %s.\n",
it.first.c_str(), log_id(match.name));
if (match_properties[it.first] <= it.second)
continue;
log(" Rule #%d for bram type %s rejected: requirement 'max %s %d' not met.\n",
i, log_id(match.name), it.first.c_str(), it.second);
goto next_match_rule;
}
log(" Rule #%d for bram type %s accepted.\n", i, log_id(match.name));
if (match.or_next_if_better || !best_rule_cache.empty())
for (int vi = 0; vi < GetSize(rules.brams.at(match.name)); vi++)
{
if (match.or_next_if_better && i+1 == GetSize(rules.matches))
log_error("Found 'or_next_if_better' in last match rule.\n");
auto &bram = rules.brams.at(match.name).at(vi);
bool or_next_if_better = match.or_next_if_better || vi+1 < GetSize(rules.brams.at(match.name));
if (!replace_cell(cell, bram, match, match_properties, 1)) {
log(" Mapping to bram type %s failed.\n", log_id(match.name));
failed_brams.insert(match.name);
goto next_match_rule;
}
log(" Storing for later selection.\n");
best_rule_cache[i] = match_properties["efficiency"];
if (match.or_next_if_better)
goto next_match_rule;
next_match_rule:
if (match.or_next_if_better || best_rule_cache.empty())
if (failed_brams.count(pair<IdString, int>(bram.name, bram.variant)))
continue;
log(" Selecting best of %d rules:\n", GetSize(best_rule_cache));
int best_rule = best_rule_cache.begin()->first;
for (auto &it : best_rule_cache) {
if (it.second > best_rule_cache[best_rule])
best_rule = it.first;
log(" Efficiency for rule %d: %d\n", it.first, it.second);
int avail_rd_ports = 0;
int avail_wr_ports = 0;
for (int j = 0; j < bram.groups; j++) {
if (GetSize(bram.wrmode) < j || bram.wrmode.at(j) == 0)
avail_rd_ports += GetSize(bram.ports) < j ? bram.ports.at(j) : 0;
if (GetSize(bram.wrmode) < j || bram.wrmode.at(j) != 0)
avail_wr_ports += GetSize(bram.ports) < j ? bram.ports.at(j) : 0;
}
log(" Selected rule %d with efficiency %d.\n", best_rule, best_rule_cache[best_rule]);
best_rule_cache.clear();
log(" Checking rule #%d for bram type %s (variant %d):\n", i+1, log_id(bram.name), bram.variant);
log(" Bram geometry: abits=%d dbits=%d wports=%d rports=%d\n", bram.abits, bram.dbits, avail_wr_ports, avail_rd_ports);
if (!replace_cell(cell, rules.brams.at(rules.matches.at(best_rule).name), rules.matches.at(best_rule), match_properties, 2))
log_error("Mapping to bram type %s after pre-selection failed.\n", log_id(rules.matches.at(best_rule).name));
int dups = avail_rd_ports ? (match_properties["rports"] + avail_rd_ports - 1) / avail_rd_ports : 1;
match_properties["dups"] = dups;
log(" Estimated number of duplicates for more read ports: dups=%d\n", match_properties["dups"]);
int aover = match_properties["words"] % (1 << bram.abits);
int awaste = aover ? (1 << bram.abits) - aover : 0;
match_properties["awaste"] = awaste;
int dover = match_properties["dbits"] % bram.dbits;
int dwaste = dover ? bram.dbits - dover : 0;
match_properties["dwaste"] = dwaste;
int bwaste = awaste * bram.dbits + dwaste * (1 << bram.abits) - awaste * dwaste;
match_properties["bwaste"] = bwaste;
int waste = match_properties["dups"] * bwaste;
match_properties["waste"] = waste;
int cells = ((match_properties["dbits"] + bram.dbits - 1) / bram.dbits) * ((match_properties["words"] + (1 << bram.abits) - 1) / (1 << bram.abits));
int efficiency = (100 * match_properties["bits"]) / (dups * cells * bram.dbits * (1 << bram.abits));
match_properties["efficiency"] = efficiency;
log(" Metrics for %s: awaste=%d dwaste=%d bwaste=%d waste=%d efficiency=%d\n",
log_id(match.name), awaste, dwaste, bwaste, waste, efficiency);
for (auto it : match.min_limits) {
if (it.first == "waste" || it.first == "dups" || it.first == "acells" || it.first == "dcells" || it.first == "cells")
continue;
if (!match_properties.count(it.first))
log_error("Unknown property '%s' in match rule for bram type %s.\n",
it.first.c_str(), log_id(match.name));
if (match_properties[it.first] >= it.second)
continue;
log(" Rule #%d for bram type %s (variant %d) rejected: requirement 'min %s %d' not met.\n",
i+1, log_id(bram.name), bram.variant, it.first.c_str(), it.second);
goto next_match_rule;
}
for (auto it : match.max_limits) {
if (it.first == "acells" || it.first == "dcells" || it.first == "cells")
continue;
if (!match_properties.count(it.first))
log_error("Unknown property '%s' in match rule for bram type %s.\n",
it.first.c_str(), log_id(match.name));
if (match_properties[it.first] <= it.second)
continue;
log(" Rule #%d for bram type %s (variant %d) rejected: requirement 'max %s %d' not met.\n",
i+1, log_id(bram.name), bram.variant, it.first.c_str(), it.second);
goto next_match_rule;
}
log(" Rule #%d for bram type %s (variant %d) accepted.\n", i+1, log_id(bram.name), bram.variant);
if (or_next_if_better || !best_rule_cache.empty())
{
if (or_next_if_better && i+1 == GetSize(rules.matches) && vi+1 == GetSize(rules.brams.at(match.name)))
log_error("Found 'or_next_if_better' in last match rule.\n");
if (!replace_cell(cell, rules, bram, match, match_properties, 1)) {
log(" Mapping to bram type %s failed.\n", log_id(match.name));
failed_brams.insert(pair<IdString, int>(bram.name, bram.variant));
goto next_match_rule;
}
log(" Storing for later selection.\n");
best_rule_cache[pair<int, int>(i, vi)] = std::tuple<int, int, int>(match_properties["efficiency"], -match_properties["cells"], -match_properties["acells"]);
if (or_next_if_better)
goto next_match_rule;
next_match_rule:
if (or_next_if_better || best_rule_cache.empty())
continue;
log(" Selecting best of %d rules:\n", GetSize(best_rule_cache));
pair<int, int> best_rule = best_rule_cache.begin()->first;
for (auto &it : best_rule_cache) {
if (it.second > best_rule_cache[best_rule])
best_rule = it.first;
log(" Efficiency for rule %d.%d: efficiency=%d, cells=%d, acells=%d\n", it.first.first+1, it.first.second+1,
std::get<0>(it.second), -std::get<1>(it.second), -std::get<2>(it.second));
}
log(" Selected rule %d.%d with efficiency %d.\n", best_rule.first+1, best_rule.second+1, std::get<0>(best_rule_cache[best_rule]));
best_rule_cache.clear();
auto &best_bram = rules.brams.at(rules.matches.at(best_rule.first).name).at(best_rule.second);
if (!replace_cell(cell, rules, best_bram, rules.matches.at(best_rule.first), match_properties, 2))
log_error("Mapping to bram type %s (variant %d) after pre-selection failed.\n", log_id(best_bram.name), best_bram.variant);
return;
}
if (!replace_cell(cell, rules, bram, match, match_properties, 0)) {
log(" Mapping to bram type %s failed.\n", log_id(match.name));
failed_brams.insert(pair<IdString, int>(bram.name, bram.variant));
goto next_match_rule;
}
return;
}
if (!replace_cell(cell, bram, match, match_properties, 0)) {
log(" Mapping to bram type %s failed.\n", log_id(match.name));
failed_brams.insert(match.name);
goto next_match_rule;
}
return;
}
log(" No acceptable bram resources found.\n");
@ -903,6 +1094,12 @@ struct MemoryBramPass : public Pass {
log("and a value greater than 1 means configurable. All groups with the same value\n");
log("greater than 1 share the same configuration bit.\n");
log("\n");
log("Using the same bram name in different bram blocks will create different variants\n");
log("of the bram. Verilog configration parameters for the bram are created as needed.\n");
log("\n");
log("It is also possible to create variants by repeating statements in the bram block\n");
log("and appending '@<label>' to the individual statements.\n");
log("\n");
log("A match rule looks like this:\n");
log("\n");
log(" match RAMB1024X32\n");
@ -927,6 +1124,10 @@ struct MemoryBramPass : public Pass {
log(" waste ........ total number of unused bram bits (bwaste*dups)\n");
log(" efficiency ... total percentage of used and non-duplicated bits\n");
log("\n");
log(" acells ....... number of cells in 'address-direction'\n");
log(" dcells ....... number of cells in 'data-direction'\n");
log(" cells ........ total number of cells (acells*dcells*dups)\n");
log("\n");
log("The interface for the created bram instances is dervived from the bram\n");
log("description. Use 'techmap' to convert the created bram instances into\n");
log("instances of the actual bram cells of your target architecture.\n");
@ -935,9 +1136,11 @@ struct MemoryBramPass : public Pass {
log("has a higher efficiency than the next match (and the one after that if\n");
log("the next also has 'or_next_if_better' set, and so forth).\n");
log("\n");
log("A match containing the command 'shuffle_enable <N>' will re-organize\n");
log("the data bits to accommodate bram ports with <N> enable bits before\n");
log("mapping to the bram.\n");
log("A match containing the command 'make_transp' will add external circuitry\n");
log("to simulate 'transparent read', if neccessary.\n");
log("\n");
log("A match containing the command 'shuffle_enable A' will re-organize\n");
log("the data bits to accommodate the enable pattern of port A.\n");
log("\n");
}
virtual void execute(vector<string> args, Design *design)

View File

@ -1,133 +1,67 @@
bram $__XILINX_RAMB36_SDP72
bram $__XILINX_RAMB36_SDP
abits 9
dbits 72
groups 2
ports 1 1
wrmode 0 1
enable 0 8
transp 2 0
transp 0 0
clocks 2 3
clkpol 2 3
endbram
bram $__XILINX_RAMB18_SDP36
bram $__XILINX_RAMB18_SDP
abits 9
dbits 36
groups 2
ports 1 1
wrmode 0 1
enable 0 4
transp 2 0
transp 0 0
clocks 2 3
clkpol 2 3
endbram
bram $__XILINX_RAMB18_TDP18
abits 10
dbits 18
bram $__XILINX_RAMB18_TDP
abits 10 @a10d18
dbits 18 @a10d18
abits 11 @a11d9
dbits 9 @a11d9
abits 12 @a12d4
dbits 4 @a12d4
abits 13 @a13d2
dbits 2 @a13d2
abits 14 @a14d1
dbits 1 @a14d1
groups 2
ports 1 1
wrmode 0 1
enable 0 2
transp 2 0
enable 0 2 @a10d18
enable 0 1 @a11d9 @a12d4 @a13d2 @a14d1
transp 0 0
clocks 2 3
clkpol 2 3
endbram
bram $__XILINX_RAMB18_TDP9
abits 11
dbits 9
groups 2
ports 1 1
wrmode 0 1
enable 0 1
transp 2 0
clocks 2 3
clkpol 2 3
endbram
bram $__XILINX_RAMB18_TDP4
abits 12
dbits 4
groups 2
ports 1 1
wrmode 0 1
enable 0 1
transp 2 0
clocks 2 3
clkpol 2 3
endbram
bram $__XILINX_RAMB18_TDP2
abits 13
dbits 2
groups 2
ports 1 1
wrmode 0 1
enable 0 1
transp 2 0
clocks 2 3
clkpol 2 3
endbram
bram $__XILINX_RAMB18_TDP1
abits 14
dbits 1
groups 2
ports 1 1
wrmode 0 1
enable 0 1
transp 2 0
clocks 2 3
clkpol 2 3
endbram
match $__XILINX_RAMB36_SDP72
match $__XILINX_RAMB36_SDP
min bits 4096
min efficiency 5
shuffle_enable 8
shuffle_enable B
or_next_if_better
endmatch
match $__XILINX_RAMB18_SDP36
match $__XILINX_RAMB18_SDP
min bits 4096
min efficiency 5
shuffle_enable 4
shuffle_enable B
or_next_if_better
endmatch
match $__XILINX_RAMB18_TDP18
match $__XILINX_RAMB18_TDP
min bits 4096
min efficiency 5
shuffle_enable 2
or_next_if_better
shuffle_enable B
make_transp
endmatch
match $__XILINX_RAMB18_TDP9
min bits 4096
min efficiency 5
shuffle_enable 2
or_next_if_better
endmatch
match $__XILINX_RAMB18_TDP4
min bits 4096
min efficiency 5
shuffle_enable 2
or_next_if_better
endmatch
match $__XILINX_RAMB18_TDP2
min bits 4096
min efficiency 5
shuffle_enable 2
or_next_if_better
endmatch
match $__XILINX_RAMB18_TDP1
min bits 4096
min efficiency 5
shuffle_enable 2
endmatch

View File

@ -1,5 +1,4 @@
module \$__XILINX_RAMB36_SDP72 (CLK2, CLK3, A1ADDR, A1DATA, B1ADDR, B1DATA, B1EN);
parameter TRANSP2 = 1;
module \$__XILINX_RAMB36_SDP (CLK2, CLK3, A1ADDR, A1DATA, B1ADDR, B1DATA, B1EN);
parameter CLKPOL2 = 1;
parameter CLKPOL3 = 1;
@ -19,29 +18,8 @@ module \$__XILINX_RAMB36_SDP72 (CLK2, CLK3, A1ADDR, A1DATA, B1ADDR, B1DATA, B1EN
wire [7:0] DIP, DOP;
wire [63:0] DI, DO;
wire [71:0] A1DATA_BUF;
reg [71:0] B1DATA_Q;
reg [7:0] transparent_cycle;
wire [1023:0] _TECHMAP_DO_ = "proc; opt -fast";
generate if (CLKPOL2)
always @(posedge CLK2) begin transparent_cycle <= TRANSP2 && A1ADDR == B1ADDR ? B1EN : 0; B1DATA_Q <= B1DATA; end
else
always @(negedge CLK2) begin transparent_cycle <= TRANSP2 && A1ADDR == B1ADDR ? B1EN : 0; B1DATA_Q <= B1DATA; end
endgenerate
assign A1DATA[ 8: 0] = transparent_cycle[0] ? B1DATA_Q[ 8: 0] : A1DATA_BUF[ 8: 0];
assign A1DATA[17: 9] = transparent_cycle[1] ? B1DATA_Q[17: 9] : A1DATA_BUF[17: 9];
assign A1DATA[26:18] = transparent_cycle[2] ? B1DATA_Q[26:18] : A1DATA_BUF[26:18];
assign A1DATA[35:27] = transparent_cycle[3] ? B1DATA_Q[35:27] : A1DATA_BUF[35:27];
assign A1DATA[44:36] = transparent_cycle[4] ? B1DATA_Q[44:36] : A1DATA_BUF[44:36];
assign A1DATA[53:45] = transparent_cycle[5] ? B1DATA_Q[53:45] : A1DATA_BUF[53:45];
assign A1DATA[62:54] = transparent_cycle[6] ? B1DATA_Q[62:54] : A1DATA_BUF[62:54];
assign A1DATA[71:63] = transparent_cycle[7] ? B1DATA_Q[71:63] : A1DATA_BUF[71:63];
assign A1DATA_BUF = { DOP[7], DO[63:56], DOP[6], DO[55:48], DOP[5], DO[47:40], DOP[4], DO[39:32],
DOP[3], DO[31:24], DOP[2], DO[23:16], DOP[1], DO[15: 8], DOP[0], DO[ 7: 0] };
assign A1DATA = { DOP[7], DO[63:56], DOP[6], DO[55:48], DOP[5], DO[47:40], DOP[4], DO[39:32],
DOP[3], DO[31:24], DOP[2], DO[23:16], DOP[1], DO[15: 8], DOP[0], DO[ 7: 0] };
assign { DIP[7], DI[63:56], DIP[6], DI[55:48], DIP[5], DI[47:40], DIP[4], DI[39:32],
DIP[3], DI[31:24], DIP[2], DI[23:16], DIP[1], DI[15: 8], DIP[0], DI[ 7: 0] } = B1DATA;
@ -84,8 +62,7 @@ endmodule
// ------------------------------------------------------------------------
module \$__XILINX_RAMB18_SDP36 (CLK2, CLK3, A1ADDR, A1DATA, B1ADDR, B1DATA, B1EN);
parameter TRANSP2 = 1;
module \$__XILINX_RAMB18_SDP (CLK2, CLK3, A1ADDR, A1DATA, B1ADDR, B1DATA, B1EN);
parameter CLKPOL2 = 1;
parameter CLKPOL3 = 1;
@ -105,24 +82,7 @@ module \$__XILINX_RAMB18_SDP36 (CLK2, CLK3, A1ADDR, A1DATA, B1ADDR, B1DATA, B1EN
wire [3:0] DIP, DOP;
wire [31:0] DI, DO;
wire [35:0] A1DATA_BUF;
reg [35:0] B1DATA_Q;
reg [3:0] transparent_cycle;
wire [1023:0] _TECHMAP_DO_ = "proc; opt -fast";
generate if (CLKPOL2)
always @(posedge CLK2) begin transparent_cycle <= TRANSP2 && A1ADDR == B1ADDR ? B1EN : 0; B1DATA_Q <= B1DATA; end
else
always @(negedge CLK2) begin transparent_cycle <= TRANSP2 && A1ADDR == B1ADDR ? B1EN : 0; B1DATA_Q <= B1DATA; end
endgenerate
assign A1DATA[ 8: 0] = transparent_cycle[0] ? B1DATA_Q[ 8: 0] : A1DATA_BUF[ 8: 0];
assign A1DATA[17: 9] = transparent_cycle[1] ? B1DATA_Q[17: 9] : A1DATA_BUF[17: 9];
assign A1DATA[26:18] = transparent_cycle[2] ? B1DATA_Q[26:18] : A1DATA_BUF[26:18];
assign A1DATA[35:27] = transparent_cycle[3] ? B1DATA_Q[35:27] : A1DATA_BUF[35:27];
assign A1DATA_BUF = { DOP[3], DO[31:24], DOP[2], DO[23:16], DOP[1], DO[15: 8], DOP[0], DO[ 7: 0] };
assign A1DATA = { DOP[3], DO[31:24], DOP[2], DO[23:16], DOP[1], DO[15: 8], DOP[0], DO[ 7: 0] };
assign { DIP[3], DI[31:24], DIP[2], DI[23:16], DIP[1], DI[15: 8], DIP[0], DI[ 7: 0] } = B1DATA;
RAMB18E1 #(
@ -163,51 +123,40 @@ endmodule
// ------------------------------------------------------------------------
module \$__XILINX_RAMB18_TDP18 (CLK2, CLK3, A1ADDR, A1DATA, B1ADDR, B1DATA, B1EN);
parameter TRANSP2 = 1;
module \$__XILINX_RAMB18_TDP (CLK2, CLK3, A1ADDR, A1DATA, B1ADDR, B1DATA, B1EN);
parameter CFG_ABITS = 10;
parameter CFG_DBITS = 18;
parameter CFG_ENABLE_B = 2;
parameter CLKPOL2 = 1;
parameter CLKPOL3 = 1;
input CLK2;
input CLK3;
input [9:0] A1ADDR;
output [17:0] A1DATA;
input [CFG_ABITS-1:0] A1ADDR;
output [CFG_DBITS-1:0] A1DATA;
input [9:0] B1ADDR;
input [17:0] B1DATA;
input [1:0] B1EN;
input [CFG_ABITS-1:0] B1ADDR;
input [CFG_DBITS-1:0] B1DATA;
input [CFG_ENABLE_B-1:0] B1EN;
wire [13:0] A1ADDR_14 = {A1ADDR, 4'b0};
wire [13:0] B1ADDR_14 = {B1ADDR, 4'b0};
wire [13:0] A1ADDR_14 = A1ADDR << (14 - CFG_ABITS);
wire [13:0] B1ADDR_14 = B1ADDR << (14 - CFG_ABITS);
wire [3:0] B1EN_4 = B1EN;
wire [1:0] DIP, DOP;
wire [15:0] DI, DO;
wire [17:0] A1DATA_BUF;
reg [17:0] B1DATA_Q;
reg [1:0] transparent_cycle;
wire [1023:0] _TECHMAP_DO_ = "proc; opt -fast";
generate if (CLKPOL2)
always @(posedge CLK2) begin transparent_cycle <= TRANSP2 && A1ADDR == B1ADDR ? B1EN : 0; B1DATA_Q <= B1DATA; end
else
always @(negedge CLK2) begin transparent_cycle <= TRANSP2 && A1ADDR == B1ADDR ? B1EN : 0; B1DATA_Q <= B1DATA; end
endgenerate
assign A1DATA[ 8: 0] = transparent_cycle[0] ? B1DATA_Q[ 8: 0] : A1DATA_BUF[ 8: 0];
assign A1DATA[17: 9] = transparent_cycle[1] ? B1DATA_Q[17: 9] : A1DATA_BUF[17: 9];
assign A1DATA_BUF = { DOP[1], DO[15: 8], DOP[0], DO[ 7: 0] };
assign A1DATA = { DOP[1], DO[15: 8], DOP[0], DO[ 7: 0] };
assign { DIP[1], DI[15: 8], DIP[0], DI[ 7: 0] } = B1DATA;
RAMB18E1 #(
.RAM_MODE("TDP"),
.READ_WIDTH_A(18),
.READ_WIDTH_B(18),
.WRITE_WIDTH_A(18),
.WRITE_WIDTH_B(18),
.READ_WIDTH_A(CFG_DBITS),
.READ_WIDTH_B(CFG_DBITS),
.WRITE_WIDTH_A(CFG_DBITS),
.WRITE_WIDTH_B(CFG_DBITS),
.WRITE_MODE_A("READ_FIRST"),
.WRITE_MODE_B("READ_FIRST"),
.IS_CLKARDCLK_INVERTED(!CLKPOL2),
@ -233,307 +182,7 @@ module \$__XILINX_RAMB18_TDP18 (CLK2, CLK3, A1ADDR, A1DATA, B1ADDR, B1DATA, B1EN
.REGCEB(|0),
.RSTRAMB(|0),
.RSTREGB(|0),
.WEBWE({2'b00, B1EN})
);
endmodule
// ------------------------------------------------------------------------
module \$__XILINX_RAMB18_TDP9 (CLK2, CLK3, A1ADDR, A1DATA, B1ADDR, B1DATA, B1EN);
parameter TRANSP2 = 1;
parameter CLKPOL2 = 1;
parameter CLKPOL3 = 1;
input CLK2;
input CLK3;
input [10:0] A1ADDR;
output [8:0] A1DATA;
input [10:0] B1ADDR;
input [8:0] B1DATA;
input B1EN;
wire [13:0] A1ADDR_14 = {A1ADDR, 3'b0};
wire [13:0] B1ADDR_14 = {B1ADDR, 3'b0};
wire [1:0] DIP, DOP;
wire [15:0] DI, DO;
wire [8:0] A1DATA_BUF;
reg [8:0] B1DATA_Q;
reg transparent_cycle;
wire [1023:0] _TECHMAP_DO_ = "proc; opt -fast";
generate if (CLKPOL2)
always @(posedge CLK2) begin transparent_cycle <= TRANSP2 && A1ADDR == B1ADDR ? B1EN : 0; B1DATA_Q <= B1DATA; end
else
always @(negedge CLK2) begin transparent_cycle <= TRANSP2 && A1ADDR == B1ADDR ? B1EN : 0; B1DATA_Q <= B1DATA; end
endgenerate
assign A1DATA = transparent_cycle ? B1DATA_Q : A1DATA_BUF;
assign A1DATA_BUF = { DOP[1], DO[15: 8], DOP[0], DO[ 7: 0] };
assign { DIP[1], DI[15: 8], DIP[0], DI[ 7: 0] } = B1DATA;
RAMB18E1 #(
.RAM_MODE("TDP"),
.READ_WIDTH_A(9),
.READ_WIDTH_B(9),
.WRITE_WIDTH_A(9),
.WRITE_WIDTH_B(9),
.WRITE_MODE_A("READ_FIRST"),
.WRITE_MODE_B("READ_FIRST"),
.IS_CLKARDCLK_INVERTED(!CLKPOL2),
.IS_CLKBWRCLK_INVERTED(!CLKPOL3)
) _TECHMAP_REPLACE_ (
.DIADI(16'b0),
.DIPADIP(2'b0),
.DOADO(DO),
.DOPADOP(DOP),
.ADDRARDADDR(A1ADDR_14),
.CLKARDCLK(CLK2),
.ENARDEN(|1),
.REGCEAREGCE(|1),
.RSTRAMARSTRAM(|0),
.RSTREGARSTREG(|0),
.WEA(2'b0),
.DIBDI(DI),
.DIPBDIP(DIP),
.ADDRBWRADDR(B1ADDR_14),
.CLKBWRCLK(CLK3),
.ENBWREN(|1),
.REGCEB(|0),
.RSTRAMB(|0),
.RSTREGB(|0),
.WEBWE({3'b00, B1EN})
);
endmodule
// ------------------------------------------------------------------------
module \$__XILINX_RAMB18_TDP4 (CLK2, CLK3, A1ADDR, A1DATA, B1ADDR, B1DATA, B1EN);
parameter TRANSP2 = 1;
parameter CLKPOL2 = 1;
parameter CLKPOL3 = 1;
input CLK2;
input CLK3;
input [11:0] A1ADDR;
output [3:0] A1DATA;
input [11:0] B1ADDR;
input [3:0] B1DATA;
input B1EN;
wire [13:0] A1ADDR_14 = {A1ADDR, 2'b0};
wire [13:0] B1ADDR_14 = {B1ADDR, 2'b0};
wire [1:0] DIP, DOP;
wire [15:0] DI, DO;
wire [3:0] A1DATA_BUF;
reg [3:0] B1DATA_Q;
reg transparent_cycle;
wire [1023:0] _TECHMAP_DO_ = "proc; opt -fast";
generate if (CLKPOL2)
always @(posedge CLK2) begin transparent_cycle <= TRANSP2 && A1ADDR == B1ADDR ? B1EN : 0; B1DATA_Q <= B1DATA; end
else
always @(negedge CLK2) begin transparent_cycle <= TRANSP2 && A1ADDR == B1ADDR ? B1EN : 0; B1DATA_Q <= B1DATA; end
endgenerate
assign A1DATA = transparent_cycle ? B1DATA_Q : A1DATA_BUF;
assign A1DATA_BUF = { DOP[1], DO[15: 8], DOP[0], DO[ 7: 0] };
assign { DIP[1], DI[15: 8], DIP[0], DI[ 7: 0] } = B1DATA;
RAMB18E1 #(
.RAM_MODE("TDP"),
.READ_WIDTH_A(4),
.READ_WIDTH_B(4),
.WRITE_WIDTH_A(4),
.WRITE_WIDTH_B(4),
.WRITE_MODE_A("READ_FIRST"),
.WRITE_MODE_B("READ_FIRST"),
.IS_CLKARDCLK_INVERTED(!CLKPOL2),
.IS_CLKBWRCLK_INVERTED(!CLKPOL3)
) _TECHMAP_REPLACE_ (
.DIADI(16'b0),
.DIPADIP(2'b0),
.DOADO(DO),
.DOPADOP(DOP),
.ADDRARDADDR(A1ADDR_14),
.CLKARDCLK(CLK2),
.ENARDEN(|1),
.REGCEAREGCE(|1),
.RSTRAMARSTRAM(|0),
.RSTREGARSTREG(|0),
.WEA(2'b0),
.DIBDI(DI),
.DIPBDIP(DIP),
.ADDRBWRADDR(B1ADDR_14),
.CLKBWRCLK(CLK3),
.ENBWREN(|1),
.REGCEB(|0),
.RSTRAMB(|0),
.RSTREGB(|0),
.WEBWE({3'b00, B1EN})
);
endmodule
// ------------------------------------------------------------------------
module \$__XILINX_RAMB18_TDP2 (CLK2, CLK3, A1ADDR, A1DATA, B1ADDR, B1DATA, B1EN);
parameter TRANSP2 = 1;
parameter CLKPOL2 = 1;
parameter CLKPOL3 = 1;
input CLK2;
input CLK3;
input [12:0] A1ADDR;
output [1:0] A1DATA;
input [12:0] B1ADDR;
input [1:0] B1DATA;
input B1EN;
wire [13:0] A1ADDR_14 = {A1ADDR, 1'b0};
wire [13:0] B1ADDR_14 = {B1ADDR, 1'b0};
wire [1:0] DIP, DOP;
wire [15:0] DI, DO;
wire [3:0] A1DATA_BUF;
reg [3:0] B1DATA_Q;
reg transparent_cycle;
wire [1023:0] _TECHMAP_DO_ = "proc; opt -fast";
generate if (CLKPOL2)
always @(posedge CLK2) begin transparent_cycle <= TRANSP2 && A1ADDR == B1ADDR ? B1EN : 0; B1DATA_Q <= B1DATA; end
else
always @(negedge CLK2) begin transparent_cycle <= TRANSP2 && A1ADDR == B1ADDR ? B1EN : 0; B1DATA_Q <= B1DATA; end
endgenerate
assign A1DATA = transparent_cycle ? B1DATA_Q : A1DATA_BUF;
assign A1DATA_BUF = { DOP[1], DO[15: 8], DOP[0], DO[ 7: 0] };
assign { DIP[1], DI[15: 8], DIP[0], DI[ 7: 0] } = B1DATA;
RAMB18E1 #(
.RAM_MODE("TDP"),
.READ_WIDTH_A(2),
.READ_WIDTH_B(2),
.WRITE_WIDTH_A(2),
.WRITE_WIDTH_B(2),
.WRITE_MODE_A("READ_FIRST"),
.WRITE_MODE_B("READ_FIRST"),
.IS_CLKARDCLK_INVERTED(!CLKPOL2),
.IS_CLKBWRCLK_INVERTED(!CLKPOL3)
) _TECHMAP_REPLACE_ (
.DIADI(16'b0),
.DIPADIP(2'b0),
.DOADO(DO),
.DOPADOP(DOP),
.ADDRARDADDR(A1ADDR_14),
.CLKARDCLK(CLK2),
.ENARDEN(|1),
.REGCEAREGCE(|1),
.RSTRAMARSTRAM(|0),
.RSTREGARSTREG(|0),
.WEA(2'b0),
.DIBDI(DI),
.DIPBDIP(DIP),
.ADDRBWRADDR(B1ADDR_14),
.CLKBWRCLK(CLK3),
.ENBWREN(|1),
.REGCEB(|0),
.RSTRAMB(|0),
.RSTREGB(|0),
.WEBWE({3'b00, B1EN})
);
endmodule
// ------------------------------------------------------------------------
module \$__XILINX_RAMB18_TDP1 (CLK2, CLK3, A1ADDR, A1DATA, B1ADDR, B1DATA, B1EN);
parameter TRANSP2 = 1;
parameter CLKPOL2 = 1;
parameter CLKPOL3 = 1;
input CLK2;
input CLK3;
input [13:0] A1ADDR;
output A1DATA;
input [13:0] B1ADDR;
input B1DATA;
input B1EN;
wire [13:0] A1ADDR_14 = A1ADDR;
wire [13:0] B1ADDR_14 = B1ADDR;
wire [1:0] DIP, DOP;
wire [15:0] DI, DO;
wire [3:0] A1DATA_BUF;
reg [3:0] B1DATA_Q;
reg transparent_cycle;
wire [1023:0] _TECHMAP_DO_ = "proc; opt -fast";
generate if (CLKPOL2)
always @(posedge CLK2) begin transparent_cycle <= TRANSP2 && A1ADDR == B1ADDR ? B1EN : 0; B1DATA_Q <= B1DATA; end
else
always @(negedge CLK2) begin transparent_cycle <= TRANSP2 && A1ADDR == B1ADDR ? B1EN : 0; B1DATA_Q <= B1DATA; end
endgenerate
assign A1DATA = transparent_cycle ? B1DATA_Q : A1DATA_BUF;
assign A1DATA_BUF = { DOP[1], DO[15: 8], DOP[0], DO[ 7: 0] };
assign { DIP[1], DI[15: 8], DIP[0], DI[ 7: 0] } = B1DATA;
RAMB18E1 #(
.RAM_MODE("TDP"),
.READ_WIDTH_A(1),
.READ_WIDTH_B(1),
.WRITE_WIDTH_A(1),
.WRITE_WIDTH_B(1),
.WRITE_MODE_A("READ_FIRST"),
.WRITE_MODE_B("READ_FIRST"),
.IS_CLKARDCLK_INVERTED(!CLKPOL2),
.IS_CLKBWRCLK_INVERTED(!CLKPOL3)
) _TECHMAP_REPLACE_ (
.DIADI(16'b0),
.DIPADIP(2'b0),
.DOADO(DO),
.DOPADOP(DOP),
.ADDRARDADDR(A1ADDR_14),
.CLKARDCLK(CLK2),
.ENARDEN(|1),
.REGCEAREGCE(|1),
.RSTRAMARSTRAM(|0),
.RSTREGARSTREG(|0),
.WEA(2'b0),
.DIBDI(DI),
.DIPBDIP(DIP),
.ADDRBWRADDR(B1ADDR_14),
.CLKBWRCLK(CLK3),
.ENBWREN(|1),
.REGCEB(|0),
.RSTRAMB(|0),
.RSTREGB(|0),
.WEBWE({3'b00, B1EN})
.WEBWE(B1EN_4)
);
endmodule

View File

@ -2,15 +2,19 @@
set -e
transp_list="0 1"
abits_list="1 2 4 8 10 16 20"
dbits_list="1 2 4 8 10 16 20 24 30 32 40 48 50 56 60 64 70 72 80"
use_xsim=false
unisims=/opt/Xilinx/Vivado/2014.4/data/verilog/src/unisims
echo "all: all_list" > bram1.mk
all_list=""
for transp in 0 1; do
for abits in 1 2 4 8 10 16 20; do
for dbits in 1 2 4 8 10 16 20 24 30 32 40 48 50 56 60 64 70 72 80; do
for transp in $transp_list; do
for abits in $abits_list; do
for dbits in $dbits_list; do
if [ $(( (1 << $abits) * $dbits )) -gt 1000000 ]; then continue; fi
id=`printf "%d%02d%02d" $transp $abits $dbits`
echo "Creating bram1_$id.."

View File

@ -69,9 +69,9 @@ def create_bram(dsc_f, sim_f, ref_f, tb_f, k1, k2, or_next):
print("endbram", file=dsc_f)
print("match bram_%02d_%02d" % (k1, k2), file=dsc_f)
if random.randrange(2):
non_zero_enables = [i for i in enable if i]
non_zero_enables = [chr(ord('A') + i) for i in range(len(enable)) if enable[i]]
if len(non_zero_enables):
print(" shuffle_enable %d" % random.choice(non_zero_enables), file=dsc_f)
print(" shuffle_enable %c" % random.choice(non_zero_enables), file=dsc_f)
if or_next:
print(" or_next_if_better", file=dsc_f)
print("endmatch", file=dsc_f)

View File

@ -53,6 +53,8 @@ int main(int argc, char **argv)
// here means we don't care about the result.
if (buffer1[i] == 'z' || buffer1[i] == 'x')
continue;
if (buffer1[i] == 'Z' || buffer1[i] == 'X')
continue;
check(buffer1[i] == buffer2[i]);
}