mirror of https://github.com/YosysHQ/yosys.git
Implemented off-chain support for extract_reduce
This commit is contained in:
parent
3404934c9c
commit
7b3966714c
|
@ -55,6 +55,13 @@ struct ExtractReducePass : public Pass
|
|||
log("\n");
|
||||
}
|
||||
|
||||
inline bool IsRightType(Cell* cell, GateType gt)
|
||||
{
|
||||
return (cell->type == "$_AND_" && gt == GateType::And) ||
|
||||
(cell->type == "$_OR_" && gt == GateType::Or) ||
|
||||
(cell->type == "$_XOR_" && gt == GateType::Xor);
|
||||
}
|
||||
|
||||
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
|
||||
{
|
||||
log_header(design, "Executing EXTRACT_REDUCE pass.\n");
|
||||
|
@ -69,7 +76,6 @@ struct ExtractReducePass : public Pass
|
|||
allow_off_chain = true;
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
}
|
||||
extra_args(args, argidx, design);
|
||||
|
||||
|
@ -109,7 +115,6 @@ struct ExtractReducePass : public Pass
|
|||
|
||||
// Actual logic starts here
|
||||
pool<Cell*> consumed_cells;
|
||||
pool<Cell*> head_cells;
|
||||
for (auto cell : module->selected_cells())
|
||||
{
|
||||
if (consumed_cells.count(cell))
|
||||
|
@ -128,14 +133,15 @@ struct ExtractReducePass : public Pass
|
|||
|
||||
log("Working on cell %s...\n", cell->name.c_str());
|
||||
|
||||
// Go all the way to the sink
|
||||
// If looking for a single chain, follow linearly to the sink
|
||||
pool<Cell*> sinks;
|
||||
if(!allow_off_chain)
|
||||
{
|
||||
Cell* head_cell = cell;
|
||||
Cell* x = cell;
|
||||
while (true)
|
||||
{
|
||||
if (!((x->type == "$_AND_" && gt == GateType::And) ||
|
||||
(x->type == "$_OR_" && gt == GateType::Or) ||
|
||||
(x->type == "$_XOR_" && gt == GateType::Xor)))
|
||||
if(!IsRightType(x, gt))
|
||||
break;
|
||||
|
||||
head_cell = x;
|
||||
|
@ -150,8 +156,72 @@ struct ExtractReducePass : public Pass
|
|||
x = *sig_to_sink[y[0]].begin();
|
||||
}
|
||||
|
||||
sinks.insert(head_cell);
|
||||
}
|
||||
|
||||
//If off-chain loads are allowed, we have to do a wider traversal to see what the longest chain is
|
||||
else
|
||||
{
|
||||
//BFS, following all chains until they hit a cell of a different type
|
||||
//Pick the longest one
|
||||
auto y = sigmap(cell->getPort("\\Y"));
|
||||
pool<Cell*> current_loads = sig_to_sink[y];
|
||||
pool<Cell*> next_loads;
|
||||
|
||||
while(!current_loads.empty())
|
||||
{
|
||||
//Find each sink and see what they are
|
||||
for(auto x : current_loads)
|
||||
{
|
||||
//Not one of our gates? Don't follow any further
|
||||
//(but add the originating cell to the list of sinks)
|
||||
if(!IsRightType(x, gt))
|
||||
{
|
||||
sinks.insert(cell);
|
||||
continue;
|
||||
}
|
||||
|
||||
//If this signal drives a port, add it to the sinks
|
||||
//(even though it may not be the end of a chain)
|
||||
if(port_sigs.count(x) && !consumed_cells.count(x))
|
||||
sinks.insert(x);
|
||||
|
||||
//It's a match, search everything out from it
|
||||
auto& next = sig_to_sink[x];
|
||||
for(auto z : next)
|
||||
next_loads.insert(z);
|
||||
}
|
||||
|
||||
//If we couldn't find any downstream loads, stop.
|
||||
//Create a reduction for each of the max-length chains we found
|
||||
if(next_loads.empty())
|
||||
{
|
||||
for(auto s : current_loads)
|
||||
{
|
||||
//Not one of our gates? Don't follow any further
|
||||
if(!IsRightType(s, gt))
|
||||
continue;
|
||||
|
||||
sinks.insert(s);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
//Otherwise, continue down the chain
|
||||
current_loads = next_loads;
|
||||
next_loads.clear();
|
||||
}
|
||||
}
|
||||
|
||||
//We have our list, go act on it
|
||||
for(auto head_cell : sinks)
|
||||
{
|
||||
log(" Head cell is %s\n", head_cell->name.c_str());
|
||||
|
||||
//Avoid duplication if we already were covered
|
||||
if(consumed_cells.count(head_cell))
|
||||
continue;
|
||||
|
||||
pool<Cell*> cur_supercell;
|
||||
std::deque<Cell*> bfs_queue = {head_cell};
|
||||
while (bfs_queue.size())
|
||||
|
@ -163,16 +233,15 @@ struct ExtractReducePass : public Pass
|
|||
|
||||
auto a = sigmap(x->getPort("\\A"));
|
||||
log_assert(a.size() == 1);
|
||||
// Must have only one sink
|
||||
|
||||
// Must have only one sink unless we're going off chain
|
||||
// XXX: Check that it is indeed this node?
|
||||
if (sig_to_sink[a[0]].size() + port_sigs.count(a[0]) == 1)
|
||||
if( allow_off_chain || (sig_to_sink[a[0]].size() + port_sigs.count(a[0]) == 1) )
|
||||
{
|
||||
Cell* cell_a = sig_to_driver[a[0]];
|
||||
if (cell_a && ((cell_a->type == "$_AND_" && gt == GateType::And) ||
|
||||
(cell_a->type == "$_OR_" && gt == GateType::Or) ||
|
||||
(cell_a->type == "$_XOR_" && gt == GateType::Xor)))
|
||||
if(cell_a && IsRightType(cell_a, gt))
|
||||
{
|
||||
// The cell here is the correct type, and it's definitely driving only
|
||||
// The cell here is the correct type, and it's definitely driving
|
||||
// this current cell.
|
||||
bfs_queue.push_back(cell_a);
|
||||
}
|
||||
|
@ -180,14 +249,13 @@ struct ExtractReducePass : public Pass
|
|||
|
||||
auto b = sigmap(x->getPort("\\B"));
|
||||
log_assert(b.size() == 1);
|
||||
|
||||
// Must have only one sink
|
||||
// XXX: Check that it is indeed this node?
|
||||
if (sig_to_sink[b[0]].size() + port_sigs.count(b[0]) == 1)
|
||||
if( allow_off_chain || (sig_to_sink[b[0]].size() + port_sigs.count(b[0]) == 1) )
|
||||
{
|
||||
Cell* cell_b = sig_to_driver[b[0]];
|
||||
if (cell_b && ((cell_b->type == "$_AND_" && gt == GateType::And) ||
|
||||
(cell_b->type == "$_OR_" && gt == GateType::Or) ||
|
||||
(cell_b->type == "$_XOR_" && gt == GateType::Xor)))
|
||||
if(cell_b && IsRightType(cell_b, gt))
|
||||
{
|
||||
// The cell here is the correct type, and it's definitely driving only
|
||||
// this current cell.
|
||||
|
@ -230,15 +298,20 @@ struct ExtractReducePass : public Pass
|
|||
new_reduce_cell->setPort("\\A", input);
|
||||
new_reduce_cell->setPort("\\Y", output);
|
||||
|
||||
if(allow_off_chain)
|
||||
consumed_cells.insert(head_cell);
|
||||
else
|
||||
{
|
||||
for (auto x : cur_supercell)
|
||||
consumed_cells.insert(x);
|
||||
head_cells.insert(head_cell);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Remove all of the head cells, since we supplant them.
|
||||
// Do not remove the upstream cells since some might still be in use ("clean" will get rid of unused ones)
|
||||
for (auto cell : head_cells)
|
||||
for (auto cell : consumed_cells)
|
||||
module->remove(cell);
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue