diff --git a/passes/techmap/extract_reduce.cc b/passes/techmap/extract_reduce.cc index 3da6cc40d..c53b35c7a 100644 --- a/passes/techmap/extract_reduce.cc +++ b/passes/techmap/extract_reduce.cc @@ -55,6 +55,13 @@ struct ExtractReducePass : public Pass log("\n"); } + inline bool IsRightType(Cell* cell, GateType gt) + { + return (cell->type == "$_AND_" && gt == GateType::And) || + (cell->type == "$_OR_" && gt == GateType::Or) || + (cell->type == "$_XOR_" && gt == GateType::Xor); + } + virtual void execute(std::vector args, RTLIL::Design *design) { log_header(design, "Executing EXTRACT_REDUCE pass.\n"); @@ -69,7 +76,6 @@ struct ExtractReducePass : public Pass allow_off_chain = true; continue; } - break; } extra_args(args, argidx, design); @@ -109,7 +115,6 @@ struct ExtractReducePass : public Pass // Actual logic starts here pool consumed_cells; - pool head_cells; for (auto cell : module->selected_cells()) { if (consumed_cells.count(cell)) @@ -128,117 +133,185 @@ struct ExtractReducePass : public Pass log("Working on cell %s...\n", cell->name.c_str()); - // Go all the way to the sink - Cell* head_cell = cell; - Cell* x = cell; - while (true) + // If looking for a single chain, follow linearly to the sink + pool sinks; + if(!allow_off_chain) { - if (!((x->type == "$_AND_" && gt == GateType::And) || - (x->type == "$_OR_" && gt == GateType::Or) || - (x->type == "$_XOR_" && gt == GateType::Xor))) - break; - - head_cell = x; - - auto y = sigmap(x->getPort("\\Y")); - log_assert(y.size() == 1); - - // Should only continue if there is one fanout back into a cell (not to a port) - if (sig_to_sink[y[0]].size() != 1) - break; - - x = *sig_to_sink[y[0]].begin(); - } - - log(" Head cell is %s\n", head_cell->name.c_str()); - - pool cur_supercell; - std::deque bfs_queue = {head_cell}; - while (bfs_queue.size()) - { - Cell* x = bfs_queue.front(); - bfs_queue.pop_front(); - - cur_supercell.insert(x); - - auto a = sigmap(x->getPort("\\A")); - log_assert(a.size() == 1); - // Must have only one sink - // XXX: Check that it is indeed this node? - if (sig_to_sink[a[0]].size() + port_sigs.count(a[0]) == 1) + Cell* head_cell = cell; + Cell* x = cell; + while (true) { - Cell* cell_a = sig_to_driver[a[0]]; - if (cell_a && ((cell_a->type == "$_AND_" && gt == GateType::And) || - (cell_a->type == "$_OR_" && gt == GateType::Or) || - (cell_a->type == "$_XOR_" && gt == GateType::Xor))) - { - // The cell here is the correct type, and it's definitely driving only - // this current cell. - bfs_queue.push_back(cell_a); - } + if(!IsRightType(x, gt)) + break; + + head_cell = x; + + auto y = sigmap(x->getPort("\\Y")); + log_assert(y.size() == 1); + + // Should only continue if there is one fanout back into a cell (not to a port) + if (sig_to_sink[y[0]].size() != 1) + break; + + x = *sig_to_sink[y[0]].begin(); } - auto b = sigmap(x->getPort("\\B")); - log_assert(b.size() == 1); - // Must have only one sink - // XXX: Check that it is indeed this node? - if (sig_to_sink[b[0]].size() + port_sigs.count(b[0]) == 1) + sinks.insert(head_cell); + } + + //If off-chain loads are allowed, we have to do a wider traversal to see what the longest chain is + else + { + //BFS, following all chains until they hit a cell of a different type + //Pick the longest one + auto y = sigmap(cell->getPort("\\Y")); + pool current_loads = sig_to_sink[y]; + pool next_loads; + + while(!current_loads.empty()) { - Cell* cell_b = sig_to_driver[b[0]]; - if (cell_b && ((cell_b->type == "$_AND_" && gt == GateType::And) || - (cell_b->type == "$_OR_" && gt == GateType::Or) || - (cell_b->type == "$_XOR_" && gt == GateType::Xor))) + //Find each sink and see what they are + for(auto x : current_loads) { - // The cell here is the correct type, and it's definitely driving only - // this current cell. - bfs_queue.push_back(cell_b); + //Not one of our gates? Don't follow any further + //(but add the originating cell to the list of sinks) + if(!IsRightType(x, gt)) + { + sinks.insert(cell); + continue; + } + + //If this signal drives a port, add it to the sinks + //(even though it may not be the end of a chain) + if(port_sigs.count(x) && !consumed_cells.count(x)) + sinks.insert(x); + + //It's a match, search everything out from it + auto& next = sig_to_sink[x]; + for(auto z : next) + next_loads.insert(z); } + + //If we couldn't find any downstream loads, stop. + //Create a reduction for each of the max-length chains we found + if(next_loads.empty()) + { + for(auto s : current_loads) + { + //Not one of our gates? Don't follow any further + if(!IsRightType(s, gt)) + continue; + + sinks.insert(s); + } + break; + } + + //Otherwise, continue down the chain + current_loads = next_loads; + next_loads.clear(); } } - log(" Cells:\n"); - for (auto x : cur_supercell) - log(" %s\n", x->name.c_str()); - - if (cur_supercell.size() > 1) + //We have our list, go act on it + for(auto head_cell : sinks) { - // Worth it to create reduce cell - log(" Creating $reduce_* cell!\n"); + log(" Head cell is %s\n", head_cell->name.c_str()); - pool input_pool; - pool input_pool_intermed; - for (auto x : cur_supercell) + //Avoid duplication if we already were covered + if(consumed_cells.count(head_cell)) + continue; + + pool cur_supercell; + std::deque bfs_queue = {head_cell}; + while (bfs_queue.size()) { - input_pool.insert(sigmap(x->getPort("\\A"))[0]); - input_pool.insert(sigmap(x->getPort("\\B"))[0]); - input_pool_intermed.insert(sigmap(x->getPort("\\Y"))[0]); + Cell* x = bfs_queue.front(); + bfs_queue.pop_front(); + + cur_supercell.insert(x); + + auto a = sigmap(x->getPort("\\A")); + log_assert(a.size() == 1); + + // Must have only one sink unless we're going off chain + // XXX: Check that it is indeed this node? + if( allow_off_chain || (sig_to_sink[a[0]].size() + port_sigs.count(a[0]) == 1) ) + { + Cell* cell_a = sig_to_driver[a[0]]; + if(cell_a && IsRightType(cell_a, gt)) + { + // The cell here is the correct type, and it's definitely driving + // this current cell. + bfs_queue.push_back(cell_a); + } + } + + auto b = sigmap(x->getPort("\\B")); + log_assert(b.size() == 1); + + // Must have only one sink + // XXX: Check that it is indeed this node? + if( allow_off_chain || (sig_to_sink[b[0]].size() + port_sigs.count(b[0]) == 1) ) + { + Cell* cell_b = sig_to_driver[b[0]]; + if(cell_b && IsRightType(cell_b, gt)) + { + // The cell here is the correct type, and it's definitely driving only + // this current cell. + bfs_queue.push_back(cell_b); + } + } } - SigSpec input; - for (auto b : input_pool) - if (input_pool_intermed.count(b) == 0) - input.append_bit(b); - - SigBit output = sigmap(head_cell->getPort("\\Y")[0]); - - auto new_reduce_cell = module->addCell(NEW_ID, - gt == GateType::And ? "$reduce_and" : - gt == GateType::Or ? "$reduce_or" : - gt == GateType::Xor ? "$reduce_xor" : ""); - new_reduce_cell->setParam("\\A_SIGNED", 0); - new_reduce_cell->setParam("\\A_WIDTH", input.size()); - new_reduce_cell->setParam("\\Y_WIDTH", 1); - new_reduce_cell->setPort("\\A", input); - new_reduce_cell->setPort("\\Y", output); + log(" Cells:\n"); for (auto x : cur_supercell) - consumed_cells.insert(x); - head_cells.insert(head_cell); + log(" %s\n", x->name.c_str()); + + if (cur_supercell.size() > 1) + { + // Worth it to create reduce cell + log(" Creating $reduce_* cell!\n"); + + pool input_pool; + pool input_pool_intermed; + for (auto x : cur_supercell) + { + input_pool.insert(sigmap(x->getPort("\\A"))[0]); + input_pool.insert(sigmap(x->getPort("\\B"))[0]); + input_pool_intermed.insert(sigmap(x->getPort("\\Y"))[0]); + } + SigSpec input; + for (auto b : input_pool) + if (input_pool_intermed.count(b) == 0) + input.append_bit(b); + + SigBit output = sigmap(head_cell->getPort("\\Y")[0]); + + auto new_reduce_cell = module->addCell(NEW_ID, + gt == GateType::And ? "$reduce_and" : + gt == GateType::Or ? "$reduce_or" : + gt == GateType::Xor ? "$reduce_xor" : ""); + new_reduce_cell->setParam("\\A_SIGNED", 0); + new_reduce_cell->setParam("\\A_WIDTH", input.size()); + new_reduce_cell->setParam("\\Y_WIDTH", 1); + new_reduce_cell->setPort("\\A", input); + new_reduce_cell->setPort("\\Y", output); + + if(allow_off_chain) + consumed_cells.insert(head_cell); + else + { + for (auto x : cur_supercell) + consumed_cells.insert(x); + } + } } } // Remove all of the head cells, since we supplant them. // Do not remove the upstream cells since some might still be in use ("clean" will get rid of unused ones) - for (auto cell : head_cells) + for (auto cell : consumed_cells) module->remove(cell); }