mirror of https://github.com/YosysHQ/yosys.git
Big rework; flop info now mostly in cells_sim.v
This commit is contained in:
parent
cfa6dd61ef
commit
79b6edb639
|
@ -81,11 +81,11 @@ struct XAigerWriter
|
|||
|
||||
dict<SigBit, bool> init_map;
|
||||
pool<SigBit> input_bits, output_bits;
|
||||
dict<SigBit, SigBit> not_map, ff_map, alias_map;
|
||||
dict<SigBit, SigBit> not_map, /*ff_map,*/ alias_map;
|
||||
dict<SigBit, pair<SigBit, SigBit>> and_map;
|
||||
vector<std::tuple<SigBit,RTLIL::Cell*,RTLIL::IdString,int>> ci_bits;
|
||||
vector<std::tuple<SigBit,RTLIL::Cell*,RTLIL::IdString,int,int>> co_bits;
|
||||
vector<std::pair<SigBit,int>> ff_bits;
|
||||
dict<SigBit, int> ff_bits;
|
||||
dict<SigBit, float> arrival_times;
|
||||
|
||||
vector<pair<int, int>> aig_gates;
|
||||
|
@ -218,13 +218,8 @@ struct XAigerWriter
|
|||
// box ordering, but not individual AIG cells
|
||||
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
|
||||
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
|
||||
struct flop_data_t {
|
||||
IdString d_port;
|
||||
IdString q_port;
|
||||
int q_arrival;
|
||||
};
|
||||
dict<IdString, flop_data_t> flop_data;
|
||||
bool abc_box_seen = false;
|
||||
std::vector<Cell*> flop_boxes;
|
||||
|
||||
for (auto cell : module->selected_cells()) {
|
||||
if (cell->type == "$_NOT_")
|
||||
|
@ -269,6 +264,8 @@ struct XAigerWriter
|
|||
unused_bits.erase(D);
|
||||
undriven_bits.erase(Q);
|
||||
alias_map[Q] = D;
|
||||
auto r = ff_bits.insert(std::make_pair(D, 0));
|
||||
log_assert(r.second);
|
||||
continue;
|
||||
}
|
||||
|
||||
|
@ -278,59 +275,6 @@ struct XAigerWriter
|
|||
|
||||
toposort.node(cell->name);
|
||||
|
||||
auto r = flop_data.insert(std::make_pair(cell->type, flop_data_t{IdString(), IdString(), 0}));
|
||||
if (r.second && inst_module->attributes.count("\\abc_flop")) {
|
||||
IdString &abc_flop_d = r.first->second.d_port;
|
||||
IdString &abc_flop_q = r.first->second.q_port;
|
||||
for (auto port_name : inst_module->ports) {
|
||||
auto wire = inst_module->wire(port_name);
|
||||
log_assert(wire);
|
||||
if (wire->attributes.count("\\abc_flop_d")) {
|
||||
if (abc_flop_d != IdString())
|
||||
log_error("More than one port has the 'abc_flop_d' attribute set on module '%s'.\n", log_id(cell->type));
|
||||
abc_flop_d = port_name;
|
||||
}
|
||||
if (wire->attributes.count("\\abc_flop_q")) {
|
||||
if (abc_flop_q != IdString())
|
||||
log_error("More than one port has the 'abc_flop_q' attribute set on module '%s'.\n", log_id(cell->type));
|
||||
abc_flop_q = port_name;
|
||||
|
||||
auto it = wire->attributes.find("\\abc_arrival");
|
||||
if (it != wire->attributes.end()) {
|
||||
if (it->second.flags != 0)
|
||||
log_error("Attribute 'abc_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(wire), log_id(cell->type));
|
||||
r.first->second.q_arrival = it->second.as_int();
|
||||
}
|
||||
}
|
||||
}
|
||||
if (abc_flop_d == IdString())
|
||||
log_error("'abc_flop_d' attribute not found on any ports on module '%s'.\n", log_id(cell->type));
|
||||
if (abc_flop_q == IdString())
|
||||
log_error("'abc_flop_q' attribute not found on any ports on module '%s'.\n", log_id(cell->type));
|
||||
}
|
||||
|
||||
auto abc_flop_d = r.first->second.d_port;
|
||||
if (abc_flop_d != IdString()) {
|
||||
SigBit d = cell->getPort(abc_flop_d);
|
||||
SigBit I = sigmap(d);
|
||||
if (I != d)
|
||||
alias_map[d] = I;
|
||||
unused_bits.erase(d);
|
||||
|
||||
auto abc_flop_q = r.first->second.q_port;
|
||||
SigBit q = cell->getPort(abc_flop_q);
|
||||
log_assert(q == sigmap(q));
|
||||
undriven_bits.erase(q);
|
||||
auto it = cell->attributes.find(ID(abc_mergeability));
|
||||
log_assert(it != cell->attributes.end());
|
||||
ff_bits.emplace_back(q, it->second.as_int());
|
||||
cell->attributes.erase(it);
|
||||
|
||||
auto arrival = r.first->second.q_arrival;
|
||||
if (arrival)
|
||||
arrival_times[q] = arrival;
|
||||
}
|
||||
|
||||
for (const auto &conn : cell->connections()) {
|
||||
auto port_wire = inst_module->wire(conn.first);
|
||||
if (port_wire->port_input) {
|
||||
|
@ -345,6 +289,8 @@ struct XAigerWriter
|
|||
bit_drivers[bit].insert(cell->name);
|
||||
}
|
||||
|
||||
if (inst_module->attributes.count("\\abc9_flop"))
|
||||
flop_boxes.push_back(cell);
|
||||
continue;
|
||||
}
|
||||
|
||||
|
@ -403,6 +349,45 @@ struct XAigerWriter
|
|||
}
|
||||
|
||||
if (abc_box_seen) {
|
||||
dict<IdString, std::pair<IdString,int>> flop_q;
|
||||
for (auto cell : flop_boxes) {
|
||||
auto r = flop_q.insert(std::make_pair(cell->type, std::make_pair(IdString(), 0)));
|
||||
SigBit d;
|
||||
if (r.second) {
|
||||
for (const auto &conn : cell->connections()) {
|
||||
const SigSpec &rhs = conn.second;
|
||||
if (!rhs.is_bit())
|
||||
continue;
|
||||
if (!ff_bits.count(rhs))
|
||||
continue;
|
||||
r.first->second.first = conn.first;
|
||||
Module *inst_module = module->design->module(cell->type);
|
||||
Wire *wire = inst_module->wire(conn.first);
|
||||
log_assert(wire);
|
||||
auto jt = wire->attributes.find("\\abc_arrival");
|
||||
if (jt != wire->attributes.end()) {
|
||||
if (jt->second.flags != 0)
|
||||
log_error("Attribute 'abc_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(wire), log_id(cell->type));
|
||||
r.first->second.second = jt->second.as_int();
|
||||
}
|
||||
d = rhs;
|
||||
log_assert(d == sigmap(d));
|
||||
break;
|
||||
}
|
||||
}
|
||||
else
|
||||
d = cell->getPort(r.first->second.first);
|
||||
|
||||
auto it = cell->attributes.find(ID(abc9_mergeability));
|
||||
log_assert(it != cell->attributes.end());
|
||||
ff_bits.at(d) = it->second.as_int();
|
||||
cell->attributes.erase(it);
|
||||
|
||||
auto arrival = r.first->second.second;
|
||||
if (arrival)
|
||||
arrival_times[d] = arrival;
|
||||
}
|
||||
|
||||
for (auto &it : bit_users)
|
||||
if (bit_drivers.count(it.first))
|
||||
for (auto driver_cell : bit_drivers.at(it.first))
|
||||
|
@ -498,6 +483,29 @@ struct XAigerWriter
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (box_module->get_bool_attribute("\\abc9_flop")) {
|
||||
IdString port_name = "\\$currQ";
|
||||
RTLIL::Wire* w = box_module->wire(port_name);
|
||||
SigSpec rhs = cell->getPort(port_name);
|
||||
log_assert(GetSize(w) == GetSize(rhs));
|
||||
|
||||
int offset = 0;
|
||||
for (auto b : rhs.bits()) {
|
||||
SigBit I = sigmap(b);
|
||||
if (b == RTLIL::Sx)
|
||||
b = State::S0;
|
||||
else if (I != b) {
|
||||
if (I == RTLIL::Sx)
|
||||
alias_map[b] = State::S0;
|
||||
else
|
||||
alias_map[b] = I;
|
||||
}
|
||||
co_bits.emplace_back(b, cell, port_name, offset++, 0);
|
||||
unused_bits.erase(b);
|
||||
}
|
||||
}
|
||||
|
||||
box_list.emplace_back(cell);
|
||||
}
|
||||
|
||||
|
@ -569,7 +577,7 @@ struct XAigerWriter
|
|||
}
|
||||
|
||||
not_map.sort();
|
||||
ff_map.sort();
|
||||
//ff_map.sort();
|
||||
and_map.sort();
|
||||
|
||||
aig_map[State::S0] = 0;
|
||||
|
@ -850,6 +858,28 @@ struct XAigerWriter
|
|||
}
|
||||
}
|
||||
|
||||
if (box_module->get_bool_attribute("\\abc9_flop")) {
|
||||
log_assert(holes_cell);
|
||||
IdString port_name = "\\$currQ";
|
||||
Wire* w = box_module->wire(port_name);
|
||||
SigSpec rhs = cell->getPort(port_name);
|
||||
log_assert(GetSize(w) == GetSize(rhs));
|
||||
SigSpec port_wire;
|
||||
Wire *holes_wire;
|
||||
for (int i = 0; i < GetSize(w); i++) {
|
||||
box_inputs++;
|
||||
holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
|
||||
if (!holes_wire) {
|
||||
holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
|
||||
holes_wire->port_input = true;
|
||||
holes_wire->port_id = port_id++;
|
||||
holes_module->ports.push_back(holes_wire->name);
|
||||
}
|
||||
port_wire.append(holes_wire);
|
||||
}
|
||||
holes_cell->setPort(w->name, port_wire);
|
||||
}
|
||||
|
||||
write_h_buffer(box_inputs);
|
||||
write_h_buffer(box_outputs);
|
||||
write_h_buffer(box_module->attributes.at("\\abc_box_id").as_int());
|
||||
|
@ -861,6 +891,7 @@ struct XAigerWriter
|
|||
log_debug("flopNum = %d\n", GetSize(ff_bits));
|
||||
write_r_buffer(ff_bits.size());
|
||||
for (const auto &i : ff_bits) {
|
||||
log_assert(i.second > 0);
|
||||
write_r_buffer(i.second);
|
||||
const SigBit &bit = i.first;
|
||||
write_i_buffer(arrival_times.at(bit, 0));
|
||||
|
|
|
@ -740,7 +740,7 @@ void AigerReader::post_process()
|
|||
|
||||
bool is_flop = false;
|
||||
if (seen_boxes.insert(cell->type).second) {
|
||||
if (box_module->attributes.count("\\abc_flop")) {
|
||||
if (box_module->attributes.count("\\abc9_flop")) {
|
||||
log_assert(flop_count < flopNum);
|
||||
flops.insert(cell->type);
|
||||
is_flop = true;
|
||||
|
@ -811,12 +811,18 @@ void AigerReader::post_process()
|
|||
}
|
||||
rhs.append(wire);
|
||||
}
|
||||
|
||||
if (!is_flop || port_name != "\\$pastQ")
|
||||
cell->setPort(port_name, rhs);
|
||||
cell->setPort(port_name, rhs);
|
||||
}
|
||||
|
||||
if (is_flop) {
|
||||
Wire* port = box_module->wire("\\$currQ");
|
||||
log_assert(port);
|
||||
log_assert(co_count < outputs.size());
|
||||
Wire *wire = outputs[co_count++];
|
||||
log_assert(wire);
|
||||
log_assert(wire->port_output);
|
||||
wire->port_output = false;
|
||||
|
||||
RTLIL::Wire *d = outputs[outputs.size() - flopNum + flop_count];
|
||||
log_assert(d);
|
||||
log_assert(d->port_output);
|
||||
|
@ -827,9 +833,10 @@ void AigerReader::post_process()
|
|||
log_assert(q->port_input);
|
||||
q->port_input = false;
|
||||
|
||||
auto ff = module->addCell(NEW_ID, "$__ABC_FF_");
|
||||
ff->setPort("\\D", d);
|
||||
ff->setPort("\\Q", q);
|
||||
flop_count++;
|
||||
module->connect(q, d);
|
||||
cell->set_bool_attribute("\\abc_flop");
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -536,8 +536,10 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
|
|||
cell_stats[mapped_cell->type]++;
|
||||
|
||||
RTLIL::Cell *existing_cell = nullptr;
|
||||
if (mapped_cell->type == ID($lut)) {
|
||||
if (GetSize(mapped_cell->getPort(ID::A)) == 1 && mapped_cell->getParam(ID(LUT)) == RTLIL::Const::from_string("01")) {
|
||||
if (mapped_cell->type.in(ID($lut), ID($__ABC_FF_))) {
|
||||
if (mapped_cell->type == ID($lut) &&
|
||||
GetSize(mapped_cell->getPort(ID::A)) == 1 &&
|
||||
mapped_cell->getParam(ID(LUT)) == RTLIL::Const::from_string("01")) {
|
||||
SigSpec my_a = module->wires_.at(remap_name(mapped_cell->getPort(ID::A).as_wire()->name));
|
||||
SigSpec my_y = module->wires_.at(remap_name(mapped_cell->getPort(ID::Y).as_wire()->name));
|
||||
module->connect(my_y, my_a);
|
||||
|
@ -564,7 +566,8 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
|
|||
cell->attributes = mapped_cell->attributes;
|
||||
}
|
||||
|
||||
auto abc_flop = mapped_cell->attributes.count("\\abc_flop");
|
||||
RTLIL::Module* box_module = design->module(mapped_cell->type);
|
||||
auto abc_flop = box_module && box_module->attributes.count("\\abc9_flop");
|
||||
for (auto &conn : mapped_cell->connections()) {
|
||||
RTLIL::SigSpec newsig;
|
||||
for (auto c : conn.second.chunks()) {
|
||||
|
@ -1073,29 +1076,18 @@ struct Abc9Pass : public Pass {
|
|||
std::set<RTLIL::Cell*> expand_queue_up, next_expand_queue_up;
|
||||
std::set<RTLIL::Cell*> expand_queue_down, next_expand_queue_down;
|
||||
|
||||
typedef pair<bool, RTLIL::SigSpec> clkdomain_t;
|
||||
std::map<clkdomain_t, pool<RTLIL::IdString>> assigned_cells;
|
||||
std::map<RTLIL::Cell*, clkdomain_t> assigned_cells_reverse;
|
||||
std::map<SigSpec, pool<RTLIL::IdString>> assigned_cells;
|
||||
std::map<RTLIL::Cell*, SigSpec> assigned_cells_reverse;
|
||||
|
||||
std::map<RTLIL::Cell*, std::set<RTLIL::SigBit>> cell_to_bit, cell_to_bit_up, cell_to_bit_down;
|
||||
std::map<RTLIL::SigBit, std::set<RTLIL::Cell*>> bit_to_cell, bit_to_cell_up, bit_to_cell_down;
|
||||
|
||||
pool<IdString> seen_cells;
|
||||
struct flop_data_t {
|
||||
IdString clk_port;
|
||||
IdString en_port;
|
||||
};
|
||||
dict<IdString, flop_data_t> flop_data;
|
||||
typedef clkdomain_t endomain_t;
|
||||
typedef std::pair<IdString, SigSpec> endomain_t;
|
||||
std::map<endomain_t, int> mergeability_class;
|
||||
|
||||
for (auto cell : all_cells) {
|
||||
clkdomain_t key;
|
||||
endomain_t key2;
|
||||
|
||||
for (auto &conn : cell->connections())
|
||||
for (auto bit : conn.second) {
|
||||
bit = assign_map(bit);
|
||||
for (auto bit : assign_map(conn.second))
|
||||
if (bit.wire != nullptr) {
|
||||
cell_to_bit[cell].insert(bit);
|
||||
bit_to_cell[bit].insert(cell);
|
||||
|
@ -1108,72 +1100,68 @@ struct Abc9Pass : public Pass {
|
|||
bit_to_cell_up[bit].insert(cell);
|
||||
}
|
||||
}
|
||||
|
||||
auto inst_module = design->module(cell->type);
|
||||
if (!inst_module || !inst_module->attributes.count("\\abc9_flop"))
|
||||
continue;
|
||||
|
||||
auto derived_name = inst_module->derive(design, cell->parameters);
|
||||
auto derived_module = design->module(derived_name);
|
||||
log_assert(derived_module);
|
||||
Pass::call_on_module(design, derived_module, "proc");
|
||||
SigMap derived_sigmap(derived_module);
|
||||
|
||||
Wire *currQ = derived_module->wire("\\$currQ");
|
||||
if (currQ == NULL)
|
||||
log_error("'\\$currQ' is not a wire present in module '%s'.\n", log_id(cell->type));
|
||||
log_assert(!currQ->port_output);
|
||||
if (!currQ->port_input) {
|
||||
currQ->port_input = true;
|
||||
derived_module->ports.push_back(currQ->name);
|
||||
currQ->port_id = GetSize(derived_module->ports);
|
||||
#ifndef NDEBUG
|
||||
derived_module->check();
|
||||
#endif
|
||||
}
|
||||
|
||||
// TODO: Generate this outside
|
||||
decltype(flop_data)::iterator it;
|
||||
if (seen_cells.insert(cell->type).second) {
|
||||
RTLIL::Module* inst_module = design->module(cell->type);
|
||||
if (!inst_module)
|
||||
continue;
|
||||
|
||||
if (!inst_module->attributes.count("\\abc_flop"))
|
||||
continue;
|
||||
|
||||
IdString abc_flop_clk, abc_flop_en;
|
||||
for (auto port_name : inst_module->ports) {
|
||||
auto wire = inst_module->wire(port_name);
|
||||
log_assert(wire);
|
||||
if (wire->attributes.count("\\abc_flop_clk")) {
|
||||
if (abc_flop_clk != IdString())
|
||||
log_error("More than one port has the 'abc_flop_clk' attribute set on module '%s'.\n", log_id(cell->type));
|
||||
abc_flop_clk = port_name;
|
||||
}
|
||||
if (wire->attributes.count("\\abc_flop_en")) {
|
||||
if (abc_flop_en != IdString())
|
||||
log_error("More than one port has the 'abc_flop_en' attribute set on module '%s'.\n", log_id(cell->type));
|
||||
abc_flop_en = port_name;
|
||||
}
|
||||
}
|
||||
|
||||
if (abc_flop_clk == IdString())
|
||||
log_error("'abc_flop_clk' attribute not found on any ports on module '%s'.\n", log_id(cell->type));
|
||||
if (abc_flop_en == IdString())
|
||||
log_error("'abc_flop_en' attribute not found on any ports on module '%s'.\n", log_id(cell->type));
|
||||
|
||||
it = flop_data.insert(std::make_pair(cell->type, flop_data_t{abc_flop_clk, abc_flop_en})).first;
|
||||
}
|
||||
else {
|
||||
it = flop_data.find(cell->type);
|
||||
if (it == flop_data.end())
|
||||
continue;
|
||||
SigSpec pattern;
|
||||
SigSpec with;
|
||||
for (auto &conn : cell->connections()) {
|
||||
Wire *first = derived_module->wire(conn.first);
|
||||
log_assert(first);
|
||||
SigSpec second = assign_map(conn.second);
|
||||
log_assert(GetSize(first) == GetSize(second));
|
||||
pattern.append(first);
|
||||
with.append(second);
|
||||
}
|
||||
|
||||
const auto &data = it->second;
|
||||
Wire *abc9_clock_wire = derived_module->wire("\\$abc9_clock");
|
||||
if (abc9_clock_wire == NULL)
|
||||
log_error("'\\$abc9_clock' is not a wire present in module '%s'.\n", log_id(cell->type));
|
||||
SigSpec abc9_clock = derived_sigmap(abc9_clock_wire);
|
||||
abc9_clock.replace(pattern, with);
|
||||
for (const auto &c : abc9_clock.chunks())
|
||||
log_assert(!c.wire || c.wire->module == mod);
|
||||
|
||||
auto jt = cell->parameters.find("\\CLK_POLARITY");
|
||||
if (jt == cell->parameters.end())
|
||||
log_error("'CLK_POLARITY' is not a parameter on module '%s'.\n", log_id(cell->type));
|
||||
bool this_clk_pol = jt->second.as_bool();
|
||||
|
||||
jt = cell->parameters.find("\\EN_POLARITY");
|
||||
if (jt == cell->parameters.end())
|
||||
log_error("'EN_POLARITY' is not a parameter on module '%s'.\n", log_id(cell->type));
|
||||
bool this_en_pol = jt->second.as_bool();
|
||||
|
||||
key = clkdomain_t(this_clk_pol, assign_map(cell->getPort(data.clk_port)));
|
||||
Wire *abc9_control_wire = derived_module->wire("\\$abc9_control");
|
||||
if (abc9_control_wire == NULL)
|
||||
log_error("'\\$abc9_control' is not a wire present in module '%s'.\n", log_id(cell->type));
|
||||
SigSpec abc9_control = derived_sigmap(abc9_control_wire);
|
||||
abc9_control.replace(pattern, with);
|
||||
for (const auto &c : abc9_control.chunks())
|
||||
log_assert(!c.wire || c.wire->module == mod);
|
||||
|
||||
unassigned_cells.erase(cell);
|
||||
expand_queue.insert(cell);
|
||||
expand_queue_up.insert(cell);
|
||||
expand_queue_down.insert(cell);
|
||||
|
||||
assigned_cells[key].insert(cell->name);
|
||||
assigned_cells_reverse[cell] = key;
|
||||
assigned_cells[abc9_clock].insert(cell->name);
|
||||
assigned_cells_reverse[cell] = abc9_clock;
|
||||
|
||||
key2 = endomain_t(this_en_pol, assign_map(cell->getPort(data.en_port)));
|
||||
auto r = mergeability_class.emplace(key2, mergeability_class.size() + 1);
|
||||
auto YS_ATTRIBUTE(unused) r2 = cell->attributes.insert(std::make_pair(ID(abc_mergeability), r.first->second));
|
||||
endomain_t key(cell->type, abc9_control);
|
||||
auto r = mergeability_class.emplace(key, mergeability_class.size() + 1);
|
||||
auto YS_ATTRIBUTE(unused) r2 = cell->attributes.insert(std::make_pair(ID(abc9_mergeability), r.first->second));
|
||||
log_assert(r2.second);
|
||||
}
|
||||
|
||||
|
@ -1182,7 +1170,7 @@ struct Abc9Pass : public Pass {
|
|||
if (!expand_queue_up.empty())
|
||||
{
|
||||
RTLIL::Cell *cell = *expand_queue_up.begin();
|
||||
clkdomain_t key = assigned_cells_reverse.at(cell);
|
||||
SigSpec key = assigned_cells_reverse.at(cell);
|
||||
expand_queue_up.erase(cell);
|
||||
|
||||
for (auto bit : cell_to_bit_up[cell])
|
||||
|
@ -1199,7 +1187,7 @@ struct Abc9Pass : public Pass {
|
|||
if (!expand_queue_down.empty())
|
||||
{
|
||||
RTLIL::Cell *cell = *expand_queue_down.begin();
|
||||
clkdomain_t key = assigned_cells_reverse.at(cell);
|
||||
SigSpec key = assigned_cells_reverse.at(cell);
|
||||
expand_queue_down.erase(cell);
|
||||
|
||||
for (auto bit : cell_to_bit_down[cell])
|
||||
|
@ -1222,7 +1210,7 @@ struct Abc9Pass : public Pass {
|
|||
while (!expand_queue.empty())
|
||||
{
|
||||
RTLIL::Cell *cell = *expand_queue.begin();
|
||||
clkdomain_t key = assigned_cells_reverse.at(cell);
|
||||
SigSpec key = assigned_cells_reverse.at(cell);
|
||||
expand_queue.erase(cell);
|
||||
|
||||
for (auto bit : cell_to_bit.at(cell)) {
|
||||
|
@ -1240,7 +1228,7 @@ struct Abc9Pass : public Pass {
|
|||
expand_queue.swap(next_expand_queue);
|
||||
}
|
||||
|
||||
clkdomain_t key(true, RTLIL::SigSpec());
|
||||
SigSpec key;
|
||||
for (auto cell : unassigned_cells) {
|
||||
assigned_cells[key].insert(cell->name);
|
||||
assigned_cells_reverse[cell] = key;
|
||||
|
@ -1248,8 +1236,7 @@ struct Abc9Pass : public Pass {
|
|||
|
||||
log_header(design, "Summary of detected clock domains:\n");
|
||||
for (auto &it : assigned_cells)
|
||||
log(" %d cells in clk=%s%s\n", GetSize(it.second),
|
||||
std::get<0>(it.first) ? "" : "!", log_signal(std::get<1>(it.first)));
|
||||
log(" %d cells in clk=%s\n", GetSize(it.second), log_signal(it.first));
|
||||
|
||||
design->selection_stack.emplace_back(false);
|
||||
for (auto &it : assigned_cells) {
|
||||
|
|
|
@ -26,27 +26,23 @@ module FDRE (output reg Q, input C, CE, D, R);
|
|||
parameter [0:0] IS_D_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_R_INVERTED = 1'b0;
|
||||
wire \$nextQ ;
|
||||
\$__ABC_FDRE #(
|
||||
FDRE #(
|
||||
.INIT(INIT),
|
||||
.IS_C_INVERTED(IS_C_INVERTED),
|
||||
.IS_D_INVERTED(IS_D_INVERTED),
|
||||
.IS_R_INVERTED(IS_R_INVERTED),
|
||||
.CLK_POLARITY(!IS_C_INVERTED),
|
||||
.EN_POLARITY(1'b1)
|
||||
.IS_R_INVERTED(IS_R_INVERTED)
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .R(R)
|
||||
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .R(R)
|
||||
);
|
||||
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
|
||||
endmodule
|
||||
module FDRE_1 (output reg Q, input C, CE, D, R);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
wire \$nextQ ;
|
||||
\$__ABC_FDRE_1 #(
|
||||
.INIT(|0),
|
||||
.CLK_POLARITY(1'b0),
|
||||
.EN_POLARITY(1'b1)
|
||||
FDRE_1 #(
|
||||
.INIT(|0),
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .R(R)
|
||||
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .R(R)
|
||||
);
|
||||
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
|
||||
endmodule
|
||||
|
@ -57,28 +53,24 @@ module FDCE (output reg Q, input C, CE, D, CLR);
|
|||
parameter [0:0] IS_D_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_CLR_INVERTED = 1'b0;
|
||||
wire \$nextQ , \$currQ ;
|
||||
\$__ABC_FDCE #(
|
||||
FDCE #(
|
||||
.INIT(INIT),
|
||||
.IS_C_INVERTED(IS_C_INVERTED),
|
||||
.IS_D_INVERTED(IS_D_INVERTED),
|
||||
.IS_CLR_INVERTED(IS_CLR_INVERTED),
|
||||
.CLK_POLARITY(!IS_C_INVERTED),
|
||||
.EN_POLARITY(1'b1)
|
||||
.IS_CLR_INVERTED(IS_CLR_INVERTED)
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .CLR(CLR)
|
||||
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .CLR(CLR)
|
||||
);
|
||||
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
|
||||
\$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR), .Y(Q));
|
||||
\$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q));
|
||||
endmodule
|
||||
module FDCE_1 (output reg Q, input C, CE, D, CLR);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
wire \$nextQ , \$currQ ;
|
||||
\$__ABC_FDCE_1 #(
|
||||
.INIT(INIT),
|
||||
.CLK_POLARITY(1'b0),
|
||||
.EN_POLARITY(1'b1)
|
||||
FDCE_1 #(
|
||||
.INIT(INIT)
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .CLR(CLR)
|
||||
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .CLR(CLR)
|
||||
);
|
||||
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
|
||||
\$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR), .Y(Q));
|
||||
|
@ -90,33 +82,56 @@ module FDPE (output reg Q, input C, CE, D, PRE);
|
|||
parameter [0:0] IS_D_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_PRE_INVERTED = 1'b0;
|
||||
wire \$nextQ , \$currQ ;
|
||||
\$__ABC_FDPE #(
|
||||
FDPE #(
|
||||
.INIT(INIT),
|
||||
.IS_C_INVERTED(IS_C_INVERTED),
|
||||
.IS_D_INVERTED(IS_D_INVERTED),
|
||||
.IS_PRE_INVERTED(IS_PRE_INVERTED),
|
||||
.CLK_POLARITY(!IS_C_INVERTED),
|
||||
.EN_POLARITY(1'b1)
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .PRE(PRE)
|
||||
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .PRE(PRE)
|
||||
);
|
||||
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
|
||||
\$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE), .Y(Q));
|
||||
\$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q));
|
||||
endmodule
|
||||
module FDPE_1 (output reg Q, input C, CE, D, PRE);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
wire \$nextQ , \$currQ ;
|
||||
\$__ABC_FDPE_1 #(
|
||||
.INIT(INIT),
|
||||
.CLK_POLARITY(1'b0),
|
||||
.EN_POLARITY(1'b1)
|
||||
FDPE_1 #(
|
||||
.INIT(INIT)
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .PRE(PRE)
|
||||
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .PRE(PRE)
|
||||
);
|
||||
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
|
||||
\$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE), .Y(Q));
|
||||
endmodule
|
||||
|
||||
module FDSE (output reg Q, input C, CE, D, S);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
parameter [0:0] IS_C_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_D_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_S_INVERTED = 1'b0;
|
||||
wire \$nextQ ;
|
||||
FDSE #(
|
||||
.INIT(INIT),
|
||||
.IS_C_INVERTED(IS_C_INVERTED),
|
||||
.IS_D_INVERTED(IS_D_INVERTED),
|
||||
.IS_S_INVERTED(IS_S_INVERTED)
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .S(S)
|
||||
);
|
||||
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
|
||||
endmodule
|
||||
module FDSE_1 (output reg Q, input C, CE, D, S);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
wire \$nextQ ;
|
||||
FDSE_1 #(
|
||||
.INIT(|0),
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .S(S)
|
||||
);
|
||||
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
|
||||
endmodule
|
||||
|
||||
module RAM32X1D (
|
||||
output DPO, SPO,
|
||||
input D,
|
||||
|
|
|
@ -26,97 +26,9 @@ module \$__XILINX_MUXF78 (output O, input I0, I1, I2, I3, S0, S1);
|
|||
: (S0 ? I1 : I0);
|
||||
endmodule
|
||||
|
||||
module \$__ABC_FF_ (input C, D, output Q);
|
||||
module \$__ABC_FF_ (input D, output Q);
|
||||
endmodule
|
||||
|
||||
(* abc_box_id = 1000 *)
|
||||
module \$__ABC_ASYNC (input A, S, output Y);
|
||||
endmodule
|
||||
|
||||
(* abc_box_id=1001, lib_whitebox, abc_flop *)
|
||||
module \$__ABC_FDRE ((* abc_flop_q, abc_arrival=303 *) output Q,
|
||||
(* abc_flop_clk *) input C,
|
||||
(* abc_flop_en *) input CE,
|
||||
(* abc_flop_d *) input D,
|
||||
input R, \$pastQ );
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
parameter [0:0] IS_C_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_D_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_R_INVERTED = 1'b0;
|
||||
parameter CLK_POLARITY = !IS_C_INVERTED;
|
||||
parameter EN_POLARITY = 1'b1;
|
||||
assign Q = (R ^ IS_R_INVERTED) ? 1'b0 : (CE ? (D ^ IS_D_INVERTED) : \$pastQ );
|
||||
endmodule
|
||||
|
||||
(* abc_box_id=1002, lib_whitebox, abc_flop *)
|
||||
module \$__ABC_FDRE_1 ((* abc_flop_q, abc_arrival=303 *) output Q,
|
||||
(* abc_flop_clk *) input C,
|
||||
(* abc_flop_en *) input CE,
|
||||
(* abc_flop_d *) input D,
|
||||
input R, \$pastQ );
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
parameter CLK_POLARITY = 1'b0;
|
||||
parameter EN_POLARITY = 1'b1;
|
||||
assign Q = R ? 1'b0 : (CE ? D : \$pastQ );
|
||||
endmodule
|
||||
|
||||
(* abc_box_id=1003, lib_whitebox, abc_flop *)
|
||||
module \$__ABC_FDCE ((* abc_flop_q, abc_arrival=303 *) output Q,
|
||||
(* abc_flop_clk *) input C,
|
||||
(* abc_flop_en *) input CE,
|
||||
(* abc_flop_d *) input D,
|
||||
input CLR, \$pastQ );
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
parameter [0:0] IS_C_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_D_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_CLR_INVERTED = 1'b0;
|
||||
parameter CLK_POLARITY = !IS_C_INVERTED;
|
||||
parameter EN_POLARITY = 1'b1;
|
||||
assign Q = (CE && !(CLR ^ IS_CLR_INVERTED)) ? (D ^ IS_D_INVERTED) : \$pastQ ;
|
||||
endmodule
|
||||
|
||||
(* abc_box_id=1004, lib_whitebox, abc_flop *)
|
||||
module \$__ABC_FDCE_1 ((* abc_flop_q, abc_arrival=303 *) output Q,
|
||||
(* abc_flop_clk *) input C,
|
||||
(* abc_flop_en *) input CE,
|
||||
(* abc_flop_d *) input D,
|
||||
input CLR, \$pastQ );
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
parameter CLK_POLARITY = 1'b0;
|
||||
parameter EN_POLARITY = 1'b1;
|
||||
assign Q = (CE && !CLR) ? D : \$pastQ ;
|
||||
endmodule
|
||||
|
||||
(* abc_box_id=1005, lib_whitebox, abc_flop *)
|
||||
module \$__ABC_FDPE ((* abc_flop_q, abc_arrival=303 *) output Q,
|
||||
(* abc_flop_clk *) input C,
|
||||
(* abc_flop_en *) input CE,
|
||||
(* abc_flop_d *) input D,
|
||||
input PRE, \$pastQ );
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
parameter [0:0] IS_C_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_D_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_PRE_INVERTED = 1'b0;
|
||||
parameter CLK_POLARITY = !IS_C_INVERTED;
|
||||
parameter EN_POLARITY = 1'b1;
|
||||
assign Q = (CE && !(PRE ^ IS_PRE_INVERTED)) ? (D ^ IS_D_INVERTED) : \$pastQ ;
|
||||
endmodule
|
||||
|
||||
(* abc_box_id=1006, lib_whitebox, abc_flop *)
|
||||
module \$__ABC_FDPE_1 ((* abc_flop_q, abc_arrival=303 *) output Q,
|
||||
(* abc_flop_clk *) input C,
|
||||
(* abc_flop_en *) input CE,
|
||||
(* abc_flop_d *) input D,
|
||||
input PRE, \$pastQ );
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
parameter CLK_POLARITY = 1'b0;
|
||||
parameter EN_POLARITY = 1'b1;
|
||||
assign Q = (CE && !PRE) ? D : \$pastQ ;
|
||||
endmodule
|
||||
|
||||
(* abc_box_id=2000 *)
|
||||
module \$__ABC_LUT6 (input A, input [5:0] S, output Y);
|
||||
endmodule
|
||||
(* abc_box_id=2001 *)
|
||||
module \$__ABC_LUT7 (input A, input [6:0] S, output Y);
|
||||
endmodule
|
||||
|
|
|
@ -24,124 +24,6 @@ module \$__ABC_ASYNC (input A, S, output Y);
|
|||
assign Y = A;
|
||||
endmodule
|
||||
|
||||
module \$__ABC_FDRE (output Q,
|
||||
input C,
|
||||
input CE,
|
||||
input D,
|
||||
input R, \$pastQ );
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
parameter [0:0] IS_C_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_D_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_R_INVERTED = 1'b0;
|
||||
parameter CLK_POLARITY = !IS_C_INVERTED;
|
||||
parameter EN_POLARITY = 1'b1;
|
||||
|
||||
FDRE #(
|
||||
.INIT(INIT),
|
||||
.IS_C_INVERTED(IS_C_INVERTED),
|
||||
.IS_D_INVERTED(IS_D_INVERTED),
|
||||
.IS_R_INVERTED(IS_R_INVERTED),
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.D(D), .Q(Q), .C(C), .CE(CE), .R(R)
|
||||
);
|
||||
endmodule
|
||||
|
||||
module \$__ABC_FDRE_1 (output Q,
|
||||
input C,
|
||||
input CE,
|
||||
input D,
|
||||
input R, \$pastQ );
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
parameter CLK_POLARITY = 1'b0;
|
||||
parameter EN_POLARITY = 1'b1;
|
||||
assign Q = R ? 1'b0 : (CE ? D : \$pastQ );
|
||||
|
||||
FDRE_1 #(
|
||||
.INIT(INIT),
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.D(D), .Q(Q), .C(C), .CE(CE), .R(R)
|
||||
);
|
||||
endmodule
|
||||
|
||||
module \$__ABC_FDCE (output Q,
|
||||
input C,
|
||||
input CE,
|
||||
input D,
|
||||
input CLR, \$pastQ );
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
parameter [0:0] IS_C_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_D_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_CLR_INVERTED = 1'b0;
|
||||
parameter CLK_POLARITY = !IS_C_INVERTED;
|
||||
parameter EN_POLARITY = 1'b1;
|
||||
|
||||
FDCE #(
|
||||
.INIT(INIT),
|
||||
.IS_C_INVERTED(IS_C_INVERTED),
|
||||
.IS_D_INVERTED(IS_D_INVERTED),
|
||||
.IS_CLR_INVERTED(IS_CLR_INVERTED),
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.D(D), .Q(Q), .C(C), .CE(CE), .CLR(CLR)
|
||||
);
|
||||
endmodule
|
||||
|
||||
module \$__ABC_FDCE_1 (output Q,
|
||||
input C,
|
||||
input CE,
|
||||
input D,
|
||||
input CLR, \$pastQ );
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
parameter CLK_POLARITY = 1'b0;
|
||||
parameter EN_POLARITY = 1'b1;
|
||||
|
||||
FDCE_1 #(
|
||||
.INIT(INIT),
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.D(D), .Q(Q), .C(C), .CE(CE), .CLR(CLR)
|
||||
);
|
||||
endmodule
|
||||
|
||||
module \$__ABC_FDPE (output Q,
|
||||
input C,
|
||||
input CE,
|
||||
input D,
|
||||
input PRE, \$pastQ );
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
parameter [0:0] IS_C_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_D_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_PRE_INVERTED = 1'b0;
|
||||
parameter CLK_POLARITY = !IS_C_INVERTED;
|
||||
parameter EN_POLARITY = 1'b1;
|
||||
|
||||
FDPE #(
|
||||
.INIT(INIT),
|
||||
.IS_C_INVERTED(IS_C_INVERTED),
|
||||
.IS_D_INVERTED(IS_D_INVERTED),
|
||||
.IS_PRE_INVERTED(IS_PRE_INVERTED),
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.D(D), .Q(Q), .C(C), .CE(CE), .PRE(PRE)
|
||||
);
|
||||
endmodule
|
||||
|
||||
module \$__ABC_FDPE_1 (output Q,
|
||||
input C,
|
||||
input CE,
|
||||
input D,
|
||||
input PRE, \$pastQ );
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
parameter CLK_POLARITY = 1'b0;
|
||||
parameter EN_POLARITY = 1'b1;
|
||||
|
||||
FDPE_1 #(
|
||||
.INIT(INIT),
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.D(D), .Q(Q), .C(C), .CE(CE), .PRE(PRE)
|
||||
);
|
||||
endmodule
|
||||
|
||||
module \$__ABC_LUT6 (input A, input [5:0] S, output Y);
|
||||
assign Y = A;
|
||||
endmodule
|
||||
module \$__ABC_LUT7 (input A, input [6:0] S, output Y);
|
||||
assign Y = A;
|
||||
module \$__ABC_FF_ (input D, output Q);
|
||||
assign Q = D;
|
||||
endmodule
|
||||
|
|
|
@ -52,36 +52,46 @@ $__ABC_ASYNC 1000 0 2 1
|
|||
# https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L237-L251
|
||||
# https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L265-L277
|
||||
|
||||
# Inputs: C CE D R \$pastQ
|
||||
# Inputs: C CE D R \$currQ
|
||||
# Outputs: Q
|
||||
FDRE 1001 1 5 1
|
||||
0 151 0 446 0
|
||||
|
||||
# Inputs: C CE D R \$pastQ
|
||||
# Inputs: C CE D R \$currQ
|
||||
# Outputs: Q
|
||||
FDRE_1 1002 1 5 1
|
||||
0 151 0 446 0
|
||||
|
||||
# Inputs: C CE CLR D \$pastQ
|
||||
# Inputs: C CE CLR D \$currQ
|
||||
# Outputs: Q
|
||||
FDCE 1003 1 5 1
|
||||
0 151 806 0 0
|
||||
|
||||
# Inputs: C CE CLR D \$pastQ
|
||||
# Inputs: C CE CLR D \$currQ
|
||||
# Outputs: Q
|
||||
FDCE_1 1004 1 5 1
|
||||
0 151 806 0 0
|
||||
|
||||
# Inputs: C CE D PRE \$pastQ
|
||||
# Inputs: C CE D PRE \$currQ
|
||||
# Outputs: Q
|
||||
FDPE 1005 1 5 1
|
||||
0 151 0 806 0
|
||||
|
||||
# Inputs: C CE D PRE \$pastQ
|
||||
# Inputs: C CE D PRE \$currQ
|
||||
# Outputs: Q
|
||||
FDPE_1 1006 1 5 1
|
||||
0 151 0 806 0
|
||||
|
||||
# Inputs: C CE D S \$currQ
|
||||
# Outputs: Q
|
||||
FDSE 1007 1 5 1
|
||||
0 151 0 446 0
|
||||
|
||||
# Inputs: C CE D S \$currQ
|
||||
# Outputs: Q
|
||||
FDSE_1 1008 1 5 1
|
||||
0 151 0 446 0
|
||||
|
||||
# SLICEM/A6LUT
|
||||
# Box to emulate comb/seq behaviour of RAMD{32,64} and SRL{16,32}
|
||||
# Necessary since RAMD* and SRL* have both combinatorial (i.e.
|
||||
|
|
|
@ -240,6 +240,7 @@ endmodule
|
|||
|
||||
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L238-L250
|
||||
|
||||
(* abc_box_id=1001, lib_whitebox, abc9_flop *)
|
||||
module FDRE (
|
||||
(* abc_arrival=303 *)
|
||||
output reg Q,
|
||||
|
@ -257,35 +258,72 @@ module FDRE (
|
|||
parameter [0:0] IS_D_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_R_INVERTED = 1'b0;
|
||||
initial Q <= INIT;
|
||||
wire \$currQ ;
|
||||
reg \$nextQ ;
|
||||
always @* if (R == !IS_R_INVERTED) \$nextQ = 1'b0; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
|
||||
`ifdef _ABC
|
||||
// `abc9' requires that complex flops be split into a combinatorial
|
||||
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
|
||||
// In order to achieve clock-enable behaviour, the current value
|
||||
// of the sequential output is required which Yosys will
|
||||
// connect to the special `\$currQ' wire.
|
||||
|
||||
// Special signal indicating clock domain
|
||||
// (used to partition the module so that `abc9' only performs
|
||||
// sequential synthesis (reachability analysis) correctly on
|
||||
// one domain at a time)
|
||||
wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
|
||||
// Special signal indicating control domain
|
||||
// (which, combined with this spell type, encodes to `abc9'
|
||||
// which flops may be merged together)
|
||||
wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
|
||||
always @* Q = \$nextQ ;
|
||||
`else
|
||||
assign \$currQ = Q;
|
||||
generate case (|IS_C_INVERTED)
|
||||
1'b0: always @(posedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
|
||||
1'b1: always @(negedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
|
||||
1'b0: always @(posedge C) Q <= \$nextQ ;
|
||||
1'b1: always @(negedge C) Q <= \$nextQ ;
|
||||
endcase endgenerate
|
||||
`endif
|
||||
endmodule
|
||||
|
||||
module FDSE (
|
||||
(* abc_box_id=1002, lib_whitebox, abc9_flop *)
|
||||
module FDRE_1 (
|
||||
(* abc_arrival=303 *)
|
||||
output reg Q,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_C_INVERTED" *)
|
||||
input C,
|
||||
input CE,
|
||||
(* invertible_pin = "IS_D_INVERTED" *)
|
||||
input D,
|
||||
(* invertible_pin = "IS_S_INVERTED" *)
|
||||
input S
|
||||
input CE, D, R
|
||||
);
|
||||
parameter [0:0] INIT = 1'b1;
|
||||
parameter [0:0] IS_C_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_D_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_S_INVERTED = 1'b0;
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
initial Q <= INIT;
|
||||
generate case (|IS_C_INVERTED)
|
||||
1'b0: always @(posedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
|
||||
1'b1: always @(negedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
|
||||
endcase endgenerate
|
||||
wire \$currQ ;
|
||||
reg \$nextQ ;
|
||||
always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else \$nextQ = \$currQ ;
|
||||
`ifdef _ABC
|
||||
// `abc9' requires that complex flops be split into a combinatorial
|
||||
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
|
||||
// In order to achieve clock-enable behaviour, the current value
|
||||
// of the sequential output is required which Yosys will
|
||||
// connect to the special `\$currQ' wire.
|
||||
|
||||
// Special signal indicating clock domain
|
||||
// (used to partition the module so that `abc9' only performs
|
||||
// sequential synthesis (reachability analysis) correctly on
|
||||
// one domain at a time)
|
||||
wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
|
||||
// Special signal indicating control domain
|
||||
// (which, combined with this spell type, encodes to `abc9'
|
||||
// which flops may be merged together)
|
||||
wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
|
||||
always @* Q = \$nextQ ;
|
||||
`else
|
||||
assign \$currQ = Q;
|
||||
always @(negedge C) Q <= \$nextQ ;
|
||||
`endif
|
||||
endmodule
|
||||
|
||||
(* abc_box_id=1003, lib_whitebox, abc9_flop *)
|
||||
module FDCE (
|
||||
(* abc_arrival=303 *)
|
||||
output reg Q,
|
||||
|
@ -303,14 +341,78 @@ module FDCE (
|
|||
parameter [0:0] IS_D_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_CLR_INVERTED = 1'b0;
|
||||
initial Q <= INIT;
|
||||
wire \$currQ ;
|
||||
reg \$nextQ ;
|
||||
always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
|
||||
`ifdef _ABC
|
||||
// `abc9' requires that complex flops be split into a combinatorial
|
||||
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
|
||||
// In order to achieve clock-enable behaviour, the current value
|
||||
// of the sequential output is required which Yosys will
|
||||
// connect to the special `\$currQ' wire.
|
||||
// Since this is an async flop, async behaviour is also dealt with
|
||||
// using the $_ABC_ASYNC box by abc_map.v
|
||||
|
||||
// Special signal indicating clock domain
|
||||
// (used to partition the module so that `abc9' only performs
|
||||
// sequential synthesis (reachability analysis) correctly on
|
||||
// one domain at a time)
|
||||
wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
|
||||
// Special signal indicating control domain
|
||||
// (which, combined with this spell type, encodes to `abc9'
|
||||
// which flops may be merged together)
|
||||
wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
|
||||
always @* Q = \$nextQ ;
|
||||
`else
|
||||
assign \$currQ = Q;
|
||||
generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED})
|
||||
2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
|
||||
2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
|
||||
2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
|
||||
2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED;
|
||||
2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
|
||||
2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
|
||||
2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
|
||||
2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
|
||||
endcase endgenerate
|
||||
`endif
|
||||
endmodule
|
||||
|
||||
(* abc_box_id=1004, lib_whitebox, abc9_flop *)
|
||||
module FDCE_1 (
|
||||
(* abc_arrival=303 *)
|
||||
output reg Q,
|
||||
(* clkbuf_sink *)
|
||||
input C,
|
||||
input CE, D, CLR
|
||||
);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
initial Q <= INIT;
|
||||
wire \$currQ ;
|
||||
reg \$nextQ ;
|
||||
always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
|
||||
`ifdef _ABC
|
||||
// `abc9' requires that complex flops be split into a combinatorial
|
||||
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
|
||||
// In order to achieve clock-enable behaviour, the current value
|
||||
// of the sequential output is required which Yosys will
|
||||
// connect to the special `\$currQ' wire.
|
||||
// Since this is an async flop, async behaviour is also dealt with
|
||||
// using the $_ABC_ASYNC box by abc_map.v
|
||||
|
||||
// Special signal indicating clock domain
|
||||
// (used to partition the module so that `abc9' only performs
|
||||
// sequential synthesis (reachability analysis) correctly on
|
||||
// one domain at a time)
|
||||
wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
|
||||
// Special signal indicating control domain
|
||||
// (which, combined with this spell type, encodes to `abc9'
|
||||
// which flops may be merged together)
|
||||
wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
|
||||
always @* Q = \$nextQ ;
|
||||
`else
|
||||
assign \$currQ = Q;
|
||||
always @(negedge C, posedge CLR) if (CLR == !IS_CLR_INVERTED) Q <= 1'b0; else Q <= \$nextQ ;
|
||||
`endif
|
||||
endmodule
|
||||
|
||||
(* abc_box_id=1005, lib_whitebox, abc9_flop *)
|
||||
module FDPE (
|
||||
(* abc_arrival=303 *)
|
||||
output reg Q,
|
||||
|
@ -328,50 +430,40 @@ module FDPE (
|
|||
parameter [0:0] IS_D_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_PRE_INVERTED = 1'b0;
|
||||
initial Q <= INIT;
|
||||
wire \$currQ ;
|
||||
reg \$nextQ ;
|
||||
always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
|
||||
`ifdef _ABC
|
||||
// `abc9' requires that complex flops be split into a combinatorial
|
||||
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
|
||||
// In order to achieve clock-enable behaviour, the current value
|
||||
// of the sequential output is required which Yosys will
|
||||
// connect to the special `\$currQ' wire.
|
||||
// Since this is an async flop, async behaviour is also dealt with
|
||||
// using the $_ABC_ASYNC box by abc_map.v
|
||||
|
||||
// Special signal indicating clock domain
|
||||
// (used to partition the module so that `abc9' only performs
|
||||
// sequential synthesis (reachability analysis) correctly on
|
||||
// one domain at a time)
|
||||
wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
|
||||
// Special signal indicating control domain
|
||||
// (which, combined with this spell type, encodes to `abc9'
|
||||
// which flops may be merged together)
|
||||
wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
|
||||
always @* Q = \$nextQ ;
|
||||
`else
|
||||
assign \$currQ = Q;
|
||||
generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED})
|
||||
2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
|
||||
2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
|
||||
2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
|
||||
2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED;
|
||||
2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
|
||||
2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
|
||||
2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
|
||||
2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
|
||||
endcase endgenerate
|
||||
`endif
|
||||
endmodule
|
||||
|
||||
module FDRE_1 (
|
||||
(* abc_arrival=303 *)
|
||||
output reg Q,
|
||||
(* clkbuf_sink *)
|
||||
input C,
|
||||
input CE, D, R
|
||||
);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
initial Q <= INIT;
|
||||
always @(negedge C) if (R) Q <= 1'b0; else if(CE) Q <= D;
|
||||
endmodule
|
||||
|
||||
module FDSE_1 (
|
||||
(* abc_arrival=303 *)
|
||||
output reg Q,
|
||||
(* clkbuf_sink *)
|
||||
input C,
|
||||
input CE, D, S
|
||||
);
|
||||
parameter [0:0] INIT = 1'b1;
|
||||
initial Q <= INIT;
|
||||
always @(negedge C) if (S) Q <= 1'b1; else if(CE) Q <= D;
|
||||
endmodule
|
||||
|
||||
module FDCE_1 (
|
||||
(* abc_arrival=303 *)
|
||||
output reg Q,
|
||||
(* clkbuf_sink *)
|
||||
input C,
|
||||
input CE, D, CLR
|
||||
);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
initial Q <= INIT;
|
||||
always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D;
|
||||
endmodule
|
||||
|
||||
(* abc_box_id=1006, lib_whitebox, abc9_flop *)
|
||||
module FDPE_1 (
|
||||
(* abc_arrival=303 *)
|
||||
output reg Q,
|
||||
|
@ -381,7 +473,115 @@ module FDPE_1 (
|
|||
);
|
||||
parameter [0:0] INIT = 1'b1;
|
||||
initial Q <= INIT;
|
||||
always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D;
|
||||
wire \$currQ ;
|
||||
reg \$nextQ ;
|
||||
always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
|
||||
`ifdef _ABC
|
||||
// `abc9' requires that complex flops be split into a combinatorial
|
||||
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
|
||||
// In order to achieve clock-enable behaviour, the current value
|
||||
// of the sequential output is required which Yosys will
|
||||
// connect to the special `\$currQ' wire.
|
||||
// Since this is an async flop, async behaviour is also dealt with
|
||||
// using the $_ABC_ASYNC box by abc_map.v
|
||||
|
||||
// Special signal indicating clock domain
|
||||
// (used to partition the module so that `abc9' only performs
|
||||
// sequential synthesis (reachability analysis) correctly on
|
||||
// one domain at a time)
|
||||
wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
|
||||
// Special signal indicating control domain
|
||||
// (which, combined with this spell type, encodes to `abc9'
|
||||
// which flops may be merged together)
|
||||
wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
|
||||
always @* Q = \$nextQ ;
|
||||
`else
|
||||
assign \$currQ = Q;
|
||||
always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= \$nextQ ;
|
||||
`endif
|
||||
endmodule
|
||||
|
||||
(* abc_box_id=1007, lib_whitebox, abc9_flop *)
|
||||
module FDSE (
|
||||
(* abc_arrival=303 *)
|
||||
output reg Q,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_C_INVERTED" *)
|
||||
input C,
|
||||
input CE,
|
||||
(* invertible_pin = "IS_D_INVERTED" *)
|
||||
input D,
|
||||
(* invertible_pin = "IS_S_INVERTED" *)
|
||||
input S
|
||||
);
|
||||
parameter [0:0] INIT = 1'b1;
|
||||
parameter [0:0] IS_C_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_D_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_S_INVERTED = 1'b0;
|
||||
initial Q <= INIT;
|
||||
wire \$currQ ;
|
||||
reg \$nextQ ;
|
||||
always @* if (S == !IS_S_INVERTED) \$nextQ = 1'b1; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
|
||||
`ifdef _ABC
|
||||
// `abc9' requires that complex flops be split into a combinatorial
|
||||
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
|
||||
// In order to achieve clock-enable behaviour, the current value
|
||||
// of the sequential output is required which Yosys will
|
||||
// connect to the special `\$currQ' wire.
|
||||
|
||||
// Special signal indicating clock domain
|
||||
// (used to partition the module so that `abc9' only performs
|
||||
// sequential synthesis (reachability analysis) correctly on
|
||||
// one domain at a time)
|
||||
wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
|
||||
// Special signal indicating control domain
|
||||
// (which, combined with this spell type, encodes to `abc9'
|
||||
// which flops may be merged together)
|
||||
wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
|
||||
always @* Q = \$nextQ ;
|
||||
`else
|
||||
assign \$currQ = Q;
|
||||
generate case (|IS_C_INVERTED)
|
||||
1'b0: always @(posedge C) Q <= \$nextQ ;
|
||||
1'b1: always @(negedge C) Q <= \$nextQ ;
|
||||
endcase endgenerate
|
||||
`endif
|
||||
endmodule
|
||||
|
||||
(* abc_box_id=1008, lib_whitebox, abc9_flop *)
|
||||
module FDSE_1 (
|
||||
(* abc_arrival=303 *)
|
||||
output reg Q,
|
||||
(* clkbuf_sink *)
|
||||
input C,
|
||||
input CE, D, S
|
||||
);
|
||||
parameter [0:0] INIT = 1'b1;
|
||||
initial Q <= INIT;
|
||||
wire \$currQ ;
|
||||
reg \$nextQ ;
|
||||
always @* if (S) \$nextQ = 1'b1; else if (CE) \$nextQ = D; else \$nextQ = \$currQ ;
|
||||
`ifdef _ABC
|
||||
// `abc9' requires that complex flops be split into a combinatorial
|
||||
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
|
||||
// In order to achieve clock-enable behaviour, the current value
|
||||
// of the sequential output is required which Yosys will
|
||||
// connect to the special `\$currQ' wire.
|
||||
|
||||
// Special signal indicating clock domain
|
||||
// (used to partition the module so that `abc9' only performs
|
||||
// sequential synthesis (reachability analysis) correctly on
|
||||
// one domain at a time)
|
||||
wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
|
||||
// Special signal indicating control domain
|
||||
// (which, combined with this spell type, encodes to `abc9'
|
||||
// which flops may be merged together)
|
||||
wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
|
||||
always @* Q = \$nextQ ;
|
||||
`else
|
||||
assign \$currQ = Q;
|
||||
always @(negedge C) Q <= \$nextQ ;
|
||||
`endif
|
||||
endmodule
|
||||
|
||||
module RAM32X1D (
|
||||
|
|
|
@ -276,9 +276,9 @@ struct SynthXilinxPass : public ScriptPass
|
|||
|
||||
if (check_label("begin")) {
|
||||
if (vpr)
|
||||
run("read_verilog -lib -D_EXPLICIT_CARRY +/xilinx/cells_sim.v");
|
||||
run("read_verilog -lib -D_ABC -D_EXPLICIT_CARRY +/xilinx/cells_sim.v");
|
||||
else
|
||||
run("read_verilog -lib +/xilinx/cells_sim.v");
|
||||
run("read_verilog -lib -D_ABC +/xilinx/cells_sim.v");
|
||||
|
||||
if (help_mode)
|
||||
run("read_verilog -lib +/xilinx/{family}_cells_xtra.v");
|
||||
|
|
Loading…
Reference in New Issue