document functionalir.h and change visitors to derive from AbstractVisitor. remove extraneous widths arguments from visitors.

This commit is contained in:
Emily Schmidt 2024-07-17 11:53:42 +01:00
parent 6922633b0b
commit 55c2c17853
5 changed files with 400 additions and 170 deletions

View File

@ -98,7 +98,7 @@ struct CxxStruct {
}
};
template<class NodePrinter> struct CxxPrintVisitor {
template<class NodePrinter> struct CxxPrintVisitor : public FunctionalIR::AbstractVisitor<void> {
using Node = FunctionalIR::Node;
CxxWriter &f;
NodePrinter np;
@ -108,36 +108,36 @@ template<class NodePrinter> struct CxxPrintVisitor {
template<typename... Args> void print(const char *fmt, Args&&... args) {
f.print_with(np, fmt, std::forward<Args>(args)...);
}
void buf(Node, Node n) { print("{}", n); }
void slice(Node, Node a, int, int offset, int out_width) { print("{0}.slice<{2}>({1})", a, offset, out_width); }
void zero_extend(Node, Node a, int, int out_width) { print("{}.zero_extend<{}>()", a, out_width); }
void sign_extend(Node, Node a, int, int out_width) { print("{}.sign_extend<{}>()", a, out_width); }
void concat(Node, Node a, int, Node b, int) { print("{}.concat({})", a, b); }
void add(Node, Node a, Node b, int) { print("{} + {}", a, b); }
void sub(Node, Node a, Node b, int) { print("{} - {}", a, b); }
void mul(Node, Node a, Node b, int) { print("{} * {}", a, b); }
void unsigned_div(Node, Node a, Node b, int) { print("{} / {}", a, b); }
void unsigned_mod(Node, Node a, Node b, int) { print("{} % {}", a, b); }
void bitwise_and(Node, Node a, Node b, int) { print("{} & {}", a, b); }
void bitwise_or(Node, Node a, Node b, int) { print("{} | {}", a, b); }
void bitwise_xor(Node, Node a, Node b, int) { print("{} ^ {}", a, b); }
void bitwise_not(Node, Node a, int) { print("~{}", a); }
void unary_minus(Node, Node a, int) { print("-{}", a); }
void reduce_and(Node, Node a, int) { print("{}.all()", a); }
void reduce_or(Node, Node a, int) { print("{}.any()", a); }
void reduce_xor(Node, Node a, int) { print("{}.parity()", a); }
void equal(Node, Node a, Node b, int) { print("{} == {}", a, b); }
void not_equal(Node, Node a, Node b, int) { print("{} != {}", a, b); }
void signed_greater_than(Node, Node a, Node b, int) { print("{}.signed_greater_than({})", a, b); }
void signed_greater_equal(Node, Node a, Node b, int) { print("{}.signed_greater_equal({})", a, b); }
void unsigned_greater_than(Node, Node a, Node b, int) { print("{} > {}", a, b); }
void unsigned_greater_equal(Node, Node a, Node b, int) { print("{} >= {}", a, b); }
void logical_shift_left(Node, Node a, Node b, int, int) { print("{} << {}", a, b); }
void logical_shift_right(Node, Node a, Node b, int, int) { print("{} >> {}", a, b); }
void arithmetic_shift_right(Node, Node a, Node b, int, int) { print("{}.arithmetic_shift_right({})", a, b); }
void mux(Node, Node a, Node b, Node s, int) { print("{2}.any() ? {1} : {0}", a, b, s); }
void pmux(Node, Node a, Node b, Node s, int, int) { print("{0}.pmux({1}, {2})", a, b, s); }
void constant(Node, RTLIL::Const value) {
void buf(Node, Node n) override { print("{}", n); }
void slice(Node, Node a, int offset, int out_width) override { print("{0}.slice<{2}>({1})", a, offset, out_width); }
void zero_extend(Node, Node a, int out_width) override { print("{}.zero_extend<{}>()", a, out_width); }
void sign_extend(Node, Node a, int out_width) override { print("{}.sign_extend<{}>()", a, out_width); }
void concat(Node, Node a, Node b) override { print("{}.concat({})", a, b); }
void add(Node, Node a, Node b) override { print("{} + {}", a, b); }
void sub(Node, Node a, Node b) override { print("{} - {}", a, b); }
void mul(Node, Node a, Node b) override { print("{} * {}", a, b); }
void unsigned_div(Node, Node a, Node b) override { print("{} / {}", a, b); }
void unsigned_mod(Node, Node a, Node b) override { print("{} % {}", a, b); }
void bitwise_and(Node, Node a, Node b) override { print("{} & {}", a, b); }
void bitwise_or(Node, Node a, Node b) override { print("{} | {}", a, b); }
void bitwise_xor(Node, Node a, Node b) override { print("{} ^ {}", a, b); }
void bitwise_not(Node, Node a) override { print("~{}", a); }
void unary_minus(Node, Node a) override { print("-{}", a); }
void reduce_and(Node, Node a) override { print("{}.all()", a); }
void reduce_or(Node, Node a) override { print("{}.any()", a); }
void reduce_xor(Node, Node a) override { print("{}.parity()", a); }
void equal(Node, Node a, Node b) override { print("{} == {}", a, b); }
void not_equal(Node, Node a, Node b) override { print("{} != {}", a, b); }
void signed_greater_than(Node, Node a, Node b) override { print("{}.signed_greater_than({})", a, b); }
void signed_greater_equal(Node, Node a, Node b) override { print("{}.signed_greater_equal({})", a, b); }
void unsigned_greater_than(Node, Node a, Node b) override { print("{} > {}", a, b); }
void unsigned_greater_equal(Node, Node a, Node b) override { print("{} >= {}", a, b); }
void logical_shift_left(Node, Node a, Node b) override { print("{} << {}", a, b); }
void logical_shift_right(Node, Node a, Node b) override { print("{} >> {}", a, b); }
void arithmetic_shift_right(Node, Node a, Node b) override { print("{}.arithmetic_shift_right({})", a, b); }
void mux(Node, Node a, Node b, Node s) override { print("{2}.any() ? {1} : {0}", a, b, s); }
void pmux(Node, Node a, Node b, Node s) override { print("{0}.pmux({1}, {2})", a, b, s); }
void constant(Node, RTLIL::Const value) override {
std::stringstream ss;
bool multiple = value.size() > 32;
ss << "Signal<" << value.size() << ">(" << std::hex << std::showbase;
@ -151,11 +151,11 @@ template<class NodePrinter> struct CxxPrintVisitor {
ss << ")";
print("{}", ss.str());
}
void input(Node, IdString name) { print("input.{}", input_struct[name]); }
void state(Node, IdString name) { print("current_state.{}", state_struct[name]); }
void memory_read(Node, Node mem, Node addr, int, int) { print("{}.read({})", mem, addr); }
void memory_write(Node, Node mem, Node addr, Node data, int, int) { print("{}.write({}, {})", mem, addr, data); }
void undriven(Node, int width) { print("Signal<{}>(0)", width); }
void input(Node, IdString name) override { print("input.{}", input_struct[name]); }
void state(Node, IdString name) override { print("current_state.{}", state_struct[name]); }
void memory_read(Node, Node mem, Node addr) override { print("{}.read({})", mem, addr); }
void memory_write(Node, Node mem, Node addr, Node data) override { print("{}.write({}, {})", mem, addr, data); }
void undriven(Node, int width) override { print("Signal<{}>(0)", width); }
};
struct CxxModule {

View File

@ -109,7 +109,7 @@ public:
}
};
struct SmtPrintVisitor {
struct SmtPrintVisitor : public FunctionalIR::AbstractVisitor<SExpr> {
using Node = FunctionalIR::Node;
std::function<SExpr(Node)> n;
SmtStruct &input_struct;
@ -134,35 +134,35 @@ struct SmtPrintVisitor {
return list(list("_", "extract", offset + out_width - 1, offset), std::move(arg));
}
SExpr buf(Node, Node a) { return n(a); }
SExpr slice(Node, Node a, int, int offset, int out_width) { return extract(n(a), offset, out_width); }
SExpr zero_extend(Node, Node a, int, int out_width) { return list(list("_", "zero_extend", out_width - a.width()), n(a)); }
SExpr sign_extend(Node, Node a, int, int out_width) { return list(list("_", "sign_extend", out_width - a.width()), n(a)); }
SExpr concat(Node, Node a, int, Node b, int) { return list("concat", n(b), n(a)); }
SExpr add(Node, Node a, Node b, int) { return list("bvadd", n(a), n(b)); }
SExpr sub(Node, Node a, Node b, int) { return list("bvsub", n(a), n(b)); }
SExpr mul(Node, Node a, Node b, int) { return list("bvmul", n(a), n(b)); }
SExpr unsigned_div(Node, Node a, Node b, int) { return list("bvudiv", n(a), n(b)); }
SExpr unsigned_mod(Node, Node a, Node b, int) { return list("bvurem", n(a), n(b)); }
SExpr bitwise_and(Node, Node a, Node b, int) { return list("bvand", n(a), n(b)); }
SExpr bitwise_or(Node, Node a, Node b, int) { return list("bvor", n(a), n(b)); }
SExpr bitwise_xor(Node, Node a, Node b, int) { return list("bvxor", n(a), n(b)); }
SExpr bitwise_not(Node, Node a, int) { return list("bvnot", n(a)); }
SExpr unary_minus(Node, Node a, int) { return list("bvneg", n(a)); }
SExpr reduce_and(Node, Node a, int) { return from_bool(list("=", n(a), literal(RTLIL::Const(State::S1, a.width())))); }
SExpr reduce_or(Node, Node a, int) { return from_bool(list("distinct", n(a), literal(RTLIL::Const(State::S0, a.width())))); }
SExpr reduce_xor(Node, Node a, int) {
SExpr buf(Node, Node a) override { return n(a); }
SExpr slice(Node, Node a, int offset, int out_width) override { return extract(n(a), offset, out_width); }
SExpr zero_extend(Node, Node a, int out_width) override { return list(list("_", "zero_extend", out_width - a.width()), n(a)); }
SExpr sign_extend(Node, Node a, int out_width) override { return list(list("_", "sign_extend", out_width - a.width()), n(a)); }
SExpr concat(Node, Node a, Node b) override { return list("concat", n(b), n(a)); }
SExpr add(Node, Node a, Node b) override { return list("bvadd", n(a), n(b)); }
SExpr sub(Node, Node a, Node b) override { return list("bvsub", n(a), n(b)); }
SExpr mul(Node, Node a, Node b) override { return list("bvmul", n(a), n(b)); }
SExpr unsigned_div(Node, Node a, Node b) override { return list("bvudiv", n(a), n(b)); }
SExpr unsigned_mod(Node, Node a, Node b) override { return list("bvurem", n(a), n(b)); }
SExpr bitwise_and(Node, Node a, Node b) override { return list("bvand", n(a), n(b)); }
SExpr bitwise_or(Node, Node a, Node b) override { return list("bvor", n(a), n(b)); }
SExpr bitwise_xor(Node, Node a, Node b) override { return list("bvxor", n(a), n(b)); }
SExpr bitwise_not(Node, Node a) override { return list("bvnot", n(a)); }
SExpr unary_minus(Node, Node a) override { return list("bvneg", n(a)); }
SExpr reduce_and(Node, Node a) override { return from_bool(list("=", n(a), literal(RTLIL::Const(State::S1, a.width())))); }
SExpr reduce_or(Node, Node a) override { return from_bool(list("distinct", n(a), literal(RTLIL::Const(State::S0, a.width())))); }
SExpr reduce_xor(Node, Node a) override {
vector<SExpr> s { "bvxor" };
for(int i = 0; i < a.width(); i++)
s.push_back(extract(n(a), i));
return s;
}
SExpr equal(Node, Node a, Node b, int) { return from_bool(list("=", n(a), n(b))); }
SExpr not_equal(Node, Node a, Node b, int) { return from_bool(list("distinct", n(a), n(b))); }
SExpr signed_greater_than(Node, Node a, Node b, int) { return from_bool(list("bvsgt", n(a), n(b))); }
SExpr signed_greater_equal(Node, Node a, Node b, int) { return from_bool(list("bvsge", n(a), n(b))); }
SExpr unsigned_greater_than(Node, Node a, Node b, int) { return from_bool(list("bvugt", n(a), n(b))); }
SExpr unsigned_greater_equal(Node, Node a, Node b, int) { return from_bool(list("bvuge", n(a), n(b))); }
SExpr equal(Node, Node a, Node b) override { return from_bool(list("=", n(a), n(b))); }
SExpr not_equal(Node, Node a, Node b) override { return from_bool(list("distinct", n(a), n(b))); }
SExpr signed_greater_than(Node, Node a, Node b) override { return from_bool(list("bvsgt", n(a), n(b))); }
SExpr signed_greater_equal(Node, Node a, Node b) override { return from_bool(list("bvsge", n(a), n(b))); }
SExpr unsigned_greater_than(Node, Node a, Node b) override { return from_bool(list("bvugt", n(a), n(b))); }
SExpr unsigned_greater_equal(Node, Node a, Node b) override { return from_bool(list("bvuge", n(a), n(b))); }
SExpr extend(SExpr &&a, int in_width, int out_width) {
if(in_width < out_width)
@ -170,24 +170,24 @@ struct SmtPrintVisitor {
else
return std::move(a);
}
SExpr logical_shift_left(Node, Node a, Node b, int, int) { return list("bvshl", n(a), extend(n(b), b.width(), a.width())); }
SExpr logical_shift_right(Node, Node a, Node b, int, int) { return list("bvlshr", n(a), extend(n(b), b.width(), a.width())); }
SExpr arithmetic_shift_right(Node, Node a, Node b, int, int) { return list("bvashr", n(a), extend(n(b), b.width(), a.width())); }
SExpr mux(Node, Node a, Node b, Node s, int) { return list("ite", to_bool(n(s)), n(b), n(a)); }
SExpr pmux(Node, Node a, Node b, Node s, int, int) {
SExpr logical_shift_left(Node, Node a, Node b) override { return list("bvshl", n(a), extend(n(b), b.width(), a.width())); }
SExpr logical_shift_right(Node, Node a, Node b) override { return list("bvlshr", n(a), extend(n(b), b.width(), a.width())); }
SExpr arithmetic_shift_right(Node, Node a, Node b) override { return list("bvashr", n(a), extend(n(b), b.width(), a.width())); }
SExpr mux(Node, Node a, Node b, Node s) override { return list("ite", to_bool(n(s)), n(b), n(a)); }
SExpr pmux(Node, Node a, Node b, Node s) override {
SExpr rv = n(a);
for(int i = 0; i < s.width(); i++)
rv = list("ite", to_bool(extract(n(s), i)), extract(n(b), a.width() * i, a.width()), rv);
return rv;
}
SExpr constant(Node, RTLIL::Const value) { return literal(value); }
SExpr memory_read(Node, Node mem, Node addr, int, int) { return list("select", n(mem), n(addr)); }
SExpr memory_write(Node, Node mem, Node addr, Node data, int, int) { return list("store", n(mem), n(addr), n(data)); }
SExpr constant(Node, RTLIL::Const value) override { return literal(value); }
SExpr memory_read(Node, Node mem, Node addr) override { return list("select", n(mem), n(addr)); }
SExpr memory_write(Node, Node mem, Node addr, Node data) override { return list("store", n(mem), n(addr), n(data)); }
SExpr input(Node, IdString name) { return input_struct.access("inputs", name); }
SExpr state(Node, IdString name) { return state_struct.access("state", name); }
SExpr input(Node, IdString name) override { return input_struct.access("inputs", name); }
SExpr state(Node, IdString name) override { return state_struct.access("state", name); }
SExpr undriven(Node, int width) { return literal(RTLIL::Const(State::S0, width)); }
SExpr undriven(Node, int width) override { return literal(RTLIL::Const(State::S0, width)); }
};
struct SmtModule {

View File

@ -109,7 +109,7 @@ public:
{
auto found = graph_->sparse_attrs.find(index_);
log_assert(found != graph_->sparse_attrs.end());
return *found;
return found->second;
}
};

View File

@ -21,6 +21,83 @@
YOSYS_NAMESPACE_BEGIN
const char *FunctionalIR::fn_to_string(FunctionalIR::Fn fn) {
switch(fn) {
case FunctionalIR::Fn::invalid: return "invalid";
case FunctionalIR::Fn::buf: return "buf";
case FunctionalIR::Fn::slice: return "slice";
case FunctionalIR::Fn::zero_extend: return "zero_extend";
case FunctionalIR::Fn::sign_extend: return "sign_extend";
case FunctionalIR::Fn::concat: return "concat";
case FunctionalIR::Fn::add: return "add";
case FunctionalIR::Fn::sub: return "sub";
case FunctionalIR::Fn::mul: return "mul";
case FunctionalIR::Fn::unsigned_div: return "unsigned_div";
case FunctionalIR::Fn::unsigned_mod: return "unsigned_mod";
case FunctionalIR::Fn::bitwise_and: return "bitwise_and";
case FunctionalIR::Fn::bitwise_or: return "bitwise_or";
case FunctionalIR::Fn::bitwise_xor: return "bitwise_xor";
case FunctionalIR::Fn::bitwise_not: return "bitwise_not";
case FunctionalIR::Fn::reduce_and: return "reduce_and";
case FunctionalIR::Fn::reduce_or: return "reduce_or";
case FunctionalIR::Fn::reduce_xor: return "reduce_xor";
case FunctionalIR::Fn::unary_minus: return "unary_minus";
case FunctionalIR::Fn::equal: return "equal";
case FunctionalIR::Fn::not_equal: return "not_equal";
case FunctionalIR::Fn::signed_greater_than: return "signed_greater_than";
case FunctionalIR::Fn::signed_greater_equal: return "signed_greater_equal";
case FunctionalIR::Fn::unsigned_greater_than: return "unsigned_greater_than";
case FunctionalIR::Fn::unsigned_greater_equal: return "unsigned_greater_equal";
case FunctionalIR::Fn::logical_shift_left: return "logical_shift_left";
case FunctionalIR::Fn::logical_shift_right: return "logical_shift_right";
case FunctionalIR::Fn::arithmetic_shift_right: return "arithmetic_shift_right";
case FunctionalIR::Fn::mux: return "mux";
case FunctionalIR::Fn::pmux: return "pmux";
case FunctionalIR::Fn::constant: return "constant";
case FunctionalIR::Fn::input: return "input";
case FunctionalIR::Fn::state: return "state";
case FunctionalIR::Fn::multiple: return "multiple";
case FunctionalIR::Fn::undriven: return "undriven";
case FunctionalIR::Fn::memory_read: return "memory_read";
case FunctionalIR::Fn::memory_write: return "memory_write";
}
log_error("fn_to_string: unknown FunctionalIR::Fn value %d", (int)fn);
}
struct PrintVisitor : FunctionalIR::DefaultVisitor<std::string> {
using Node = FunctionalIR::Node;
std::function<std::string(Node)> np;
PrintVisitor(std::function<std::string(Node)> np) : np(np) { }
// as a general rule the default handler is good enough iff the only arguments are of type Node
std::string slice(Node, Node a, int offset, int out_width) override { return "slice(" + np(a) + ", " + std::to_string(offset) + ", " + std::to_string(out_width) + ")"; }
std::string zero_extend(Node, Node a, int out_width) override { return "zero_extend(" + np(a) + ", " + std::to_string(out_width) + ")"; }
std::string sign_extend(Node, Node a, int out_width) override { return "sign_extend(" + np(a) + ", " + std::to_string(out_width) + ")"; }
std::string constant(Node, RTLIL::Const value) override { return "constant(" + value.as_string() + ")"; }
std::string input(Node, IdString name) override { return "input(" + name.str() + ")"; }
std::string state(Node, IdString name) override { return "state(" + name.str() + ")"; }
std::string undriven(Node, int width) override { return "undriven(" + std::to_string(width) + ")"; }
std::string default_handler(Node self) override {
std::string ret = FunctionalIR::fn_to_string(self.fn());
ret += "(";
for(size_t i = 0; i < self.arg_count(); i++) {
if(i > 0) ret += ", ";
ret += np(self.arg(i));
}
ret += ")";
return ret;
}
};
std::string FunctionalIR::Node::to_string()
{
return to_string([](Node n) { return RTLIL::unescape_id(n.name()); });
}
std::string FunctionalIR::Node::to_string(std::function<std::string(Node)> np)
{
return visit(PrintVisitor(np));
}
template <class T, class Factory>
class CellSimplifier {
Factory &factory;
@ -47,11 +124,6 @@ class CellSimplifier {
return neg_if(a, a_width, sign(a, a_width));
}
public:
T reduce_or(T a, int width) {
if (width == 1)
return a;
return factory.reduce_or(a, width);
}
T extend(T a, int in_width, int out_width, bool is_signed) {
if(in_width == out_width)
return a;
@ -153,8 +225,8 @@ public:
else
log_abort();
}else if(cellType.in({ID($logic_or), ID($logic_and)})){
T a = reduce_or(inputs.at(ID(A)), a_width);
T b = reduce_or(inputs.at(ID(B)), b_width);
T a = factory.reduce_or(inputs.at(ID(A)), a_width);
T b = factory.reduce_or(inputs.at(ID(B)), b_width);
T y = cellType == ID($logic_and) ? factory.bitwise_and(a, b, 1) : factory.bitwise_or(a, b, 1);
return extend(y, 1, y_width, false);
}else if(cellType == ID($not)){
@ -166,11 +238,11 @@ public:
T a = extend(inputs.at(ID(A)), a_width, y_width, a_signed);
return factory.unary_minus(a, y_width);
}else if(cellType == ID($logic_not)){
T a = reduce_or(inputs.at(ID(A)), a_width);
T a = factory.reduce_or(inputs.at(ID(A)), a_width);
T y = factory.bitwise_not(a, 1);
return extend(y, 1, y_width, false);
}else if(cellType.in({ID($reduce_or), ID($reduce_bool)})){
T a = reduce_or(inputs.at(ID(A)), a_width);
T a = factory.reduce_or(inputs.at(ID(A)), a_width);
return extend(a, 1, y_width, false);
}else if(cellType == ID($reduce_and)){
T a = factory.reduce_and(inputs.at(ID(A)), a_width);
@ -244,7 +316,7 @@ public:
// which equals the negative of (-a) / b with rounding up rather than down
// note that to handle the case where a = most negative value properly,
// we have to calculate a1_sign from the original values rather than using sign(a1, width)
T a1_sign = factory.bitwise_and(factory.not_equal(sign(a, width), sign(b, width), 1), reduce_or(a, width), 1);
T a1_sign = factory.bitwise_and(factory.not_equal(sign(a, width), sign(b, width), 1), factory.reduce_or(a, width), 1);
T a2 = factory.mux(a1, factory.bitwise_not(a1, width), a1_sign, width);
T y1 = factory.unsigned_div(a2, b1, width);
T y2 = extend(y1, width, y_width, false);
@ -560,6 +632,7 @@ void FunctionalIR::forward_buf() {
_graph.permute(perm, alias);
}
// Quoting routine to make error messages nicer
static std::string quote_fmt(const char *fmt)
{
std::string r;

View File

@ -31,45 +31,123 @@ YOSYS_NAMESPACE_BEGIN
class FunctionalIR {
public:
// each function is documented with a short pseudocode declaration or definition
// standard C/Verilog operators are used to describe the result
//
// the types used in this are:
// - bit[N]: a bitvector of N bits
// bit[N] can be indicated as signed or unsigned. this is not tracked by the functional backend
// but is meant to indicate how the value is interpreted
// if a bit[N] is marked as neither signed nor unsigned, this means the result should be valid with *either* interpretation
// - memory[N, M]: a memory with N address and M data bits
// - int: C++ int
// - Const[N]: yosys RTLIL::Const (with size() == N)
// - IdString: yosys IdString
// - any: used in documentation to indicate that the type is unconstrained
//
// nodes in the functional backend are either of type bit[N] or memory[N,M] (for some N, M: int)
// additionally, they can carry a constant of type int, Const[N] or IdString
// each node has a 'sort' field that stores the type of the node
// slice, zero_extend, sign_extend use the type field to store out_width
enum class Fn {
// invalid() = known-invalid/shouldn't happen value
// TODO: maybe remove this and use e.g. std::optional instead?
invalid,
// buf(a: any): any = a
// no-op operation
// when constructing the compute graph we generate invalid buf() nodes as a placeholder
// and later insert the argument
buf,
// slice(a: bit[in_width], offset: int, out_width: int): bit[out_width] = a[offset +: out_width]
// required: offset + out_width <= in_width
slice,
// zero_extend(a: unsigned bit[in_width], out_width: int): unsigned bit[out_width] = a (zero extended)
// required: out_width > in_width
zero_extend,
// sign_extend(a: signed bit[in_width], out_width: int): signed bit[out_width] = a (sign extended)
// required: out_width > in_width
sign_extend,
// concat(a: bit[N], b: bit[M]): bit[N+M] = {b, a} (verilog syntax)
// concatenates two bitvectors, with a in the least significant position and b in the more significant position
concat,
// add(a: bit[N], b: bit[N]): bit[N] = a + b
add,
// sub(a: bit[N], b: bit[N]): bit[N] = a - b
sub,
// mul(a: bit[N], b: bit[N]): bit[N] = a * b
mul,
// unsigned_div(a: unsigned bit[N], b: unsigned bit[N]): bit[N] = a / b
unsigned_div,
// unsigned_mod(a: signed bit[N], b: signed bit[N]): bit[N] = a % b
unsigned_mod,
// bitwise_and(a: bit[N], b: bit[N]): bit[N] = a & b
bitwise_and,
// bitwise_or(a: bit[N], b: bit[N]): bit[N] = a | b
bitwise_or,
// bitwise_xor(a: bit[N], b: bit[N]): bit[N] = a ^ b
bitwise_xor,
// bitwise_not(a: bit[N]): bit[N] = ~a
bitwise_not,
// reduce_and(a: bit[N]): bit[1] = &a
reduce_and,
// reduce_or(a: bit[N]): bit[1] = |a
reduce_or,
// reduce_xor(a: bit[N]): bit[1] = ^a
reduce_xor,
// unary_minus(a: bit[N]): bit[N] = -a
unary_minus,
// equal(a: bit[N], b: bit[N]): bit[1] = (a == b)
equal,
// not_equal(a: bit[N], b: bit[N]): bit[1] = (a != b)
not_equal,
// signed_greater_than(a: signed bit[N], b: signed bit[N]): bit[1] = (a > b)
signed_greater_than,
// signed_greater_equal(a: signed bit[N], b: signed bit[N]): bit[1] = (a >= b)
signed_greater_equal,
// unsigned_greater_than(a: unsigned bit[N], b: unsigned bit[N]): bit[1] = (a > b)
unsigned_greater_than,
// unsigned_greater_equal(a: unsigned bit[N], b: unsigned bit[N]): bit[1] = (a >= b)
unsigned_greater_equal,
// logical_shift_left(a: bit[N], b: unsigned bit[M]): bit[N] = a << b
// required: M <= clog2(N + 1)
logical_shift_left,
// logical_shift_right(a: unsigned bit[N], b: unsigned bit[M]): unsigned bit[N] = a >> b
// required: M <= clog2(N + 1)
logical_shift_right,
// arithmetic_shift_right(a: signed bit[N], b: unsigned bit[M]): signed bit[N] = a >> b
// required: M <= clog2(N + 1)
arithmetic_shift_right,
// mux(a: bit[N], b: bit[N], s: bit[1]): bit[N] = s ? b : a
mux,
// pmux(a: bit[N], b: bit[N*M], s: bit[M]): bit[N]
// required: no more than one bit in b is set
// if s[i] = 1 for any i, then returns b[i * N +: N]
// returns a if s == 0
pmux,
// constant(a: Const[N]): bit[N] = a
constant,
// input(a: IdString): any
// returns the current value of the input with the specified name
input,
// state(a: IdString): any
// returns the current value of the state variable with the specified name
state,
// multiple(a: any, b: any, c: any, ...): any
// indicates a value driven by multiple inputs
multiple,
// undriven(width: int): bit[width]
// indicates an undriven value
undriven,
// memory_read(memory: memory[addr_width, data_width], addr: bit[addr_width]): bit[data_width] = memory[addr]
memory_read,
// memory_write(memory: memory[addr_width, data_width], addr: bit[addr_width], data: bit[data_width]): memory[addr_width, data_width]
// returns a copy of `memory` but with the value at `addr` changed to `data`
memory_write
};
// returns the name of a FunctionalIR::Fn value, as a string literal
static const char *fn_to_string(Fn);
// FunctionalIR::Sort represents the sort or type of a node
// currently the only two types are signal/bit and memory
class Sort {
std::variant<int, std::pair<int, int>> _v;
public:
@ -77,13 +155,18 @@ public:
Sort(int addr_width, int data_width) : _v(std::make_pair(addr_width, data_width)) { }
bool is_signal() const { return _v.index() == 0; }
bool is_memory() const { return _v.index() == 1; }
// returns the width of a bitvector type, errors out for other types
int width() const { return std::get<0>(_v); }
// returns the address width of a bitvector type, errors out for other types
int addr_width() const { return std::get<1>(_v).first; }
// returns the data width of a bitvector type, errors out for other types
int data_width() const { return std::get<1>(_v).second; }
bool operator==(Sort const& other) const { return _v == other._v; }
unsigned int hash() const { return mkhash(_v); }
};
private:
// one NodeData is stored per Node, containing the function and non-node arguments
// note that NodeData is deduplicated by ComputeGraph
class NodeData {
Fn _fn;
std::variant<
@ -107,9 +190,14 @@ private:
return _fn == other._fn && _extra == other._extra;
}
};
// Attr contains all the information about a note that should not be deduplicated
struct Attr {
Sort sort;
};
// our specialised version of ComputeGraph
// the sparse_attr IdString stores a naming suggestion, retrieved with name()
// the key is currently used to identify the nodes that represent output and next state values
// the bool is true for next state values
using Graph = ComputeGraph<NodeData, Attr, IdString, std::pair<IdString, bool>>;
Graph _graph;
dict<IdString, Sort> _inputs;
@ -132,53 +220,17 @@ private:
}
public:
class Factory;
// Node is an immutable reference to a FunctionalIR node
class Node {
friend class Factory;
friend class FunctionalIR;
Graph::Ref _ref;
explicit Node(Graph::Ref ref) : _ref(ref) { }
operator Graph::Ref() { return _ref; }
template<class NodePrinter> struct PrintVisitor {
NodePrinter np;
PrintVisitor(NodePrinter np) : np(np) { }
std::string buf(Node, Node n) { return "buf(" + np(n) + ")"; }
std::string slice(Node, Node a, int, int offset, int out_width) { return "slice(" + np(a) + ", " + std::to_string(offset) + ", " + std::to_string(out_width) + ")"; }
std::string zero_extend(Node, Node a, int, int out_width) { return "zero_extend(" + np(a) + ", " + std::to_string(out_width) + ")"; }
std::string sign_extend(Node, Node a, int, int out_width) { return "sign_extend(" + np(a) + ", " + std::to_string(out_width) + ")"; }
std::string concat(Node, Node a, int, Node b, int) { return "concat(" + np(a) + ", " + np(b) + ")"; }
std::string add(Node, Node a, Node b, int) { return "add(" + np(a) + ", " + np(b) + ")"; }
std::string sub(Node, Node a, Node b, int) { return "sub(" + np(a) + ", " + np(b) + ")"; }
std::string mul(Node, Node a, Node b, int) { return "mul(" + np(a) + ", " + np(b) + ")"; }
std::string unsigned_div(Node, Node a, Node b, int) { return "unsigned_div(" + np(a) + ", " + np(b) + ")"; }
std::string unsigned_mod(Node, Node a, Node b, int) { return "unsigned_mod(" + np(a) + ", " + np(b) + ")"; }
std::string bitwise_and(Node, Node a, Node b, int) { return "bitwise_and(" + np(a) + ", " + np(b) + ")"; }
std::string bitwise_or(Node, Node a, Node b, int) { return "bitwise_or(" + np(a) + ", " + np(b) + ")"; }
std::string bitwise_xor(Node, Node a, Node b, int) { return "bitwise_xor(" + np(a) + ", " + np(b) + ")"; }
std::string bitwise_not(Node, Node a, int) { return "bitwise_not(" + np(a) + ")"; }
std::string unary_minus(Node, Node a, int) { return "unary_minus(" + np(a) + ")"; }
std::string reduce_and(Node, Node a, int) { return "reduce_and(" + np(a) + ")"; }
std::string reduce_or(Node, Node a, int) { return "reduce_or(" + np(a) + ")"; }
std::string reduce_xor(Node, Node a, int) { return "reduce_xor(" + np(a) + ")"; }
std::string equal(Node, Node a, Node b, int) { return "equal(" + np(a) + ", " + np(b) + ")"; }
std::string not_equal(Node, Node a, Node b, int) { return "not_equal(" + np(a) + ", " + np(b) + ")"; }
std::string signed_greater_than(Node, Node a, Node b, int) { return "signed_greater_than(" + np(a) + ", " + np(b) + ")"; }
std::string signed_greater_equal(Node, Node a, Node b, int) { return "signed_greater_equal(" + np(a) + ", " + np(b) + ")"; }
std::string unsigned_greater_than(Node, Node a, Node b, int) { return "unsigned_greater_than(" + np(a) + ", " + np(b) + ")"; }
std::string unsigned_greater_equal(Node, Node a, Node b, int) { return "unsigned_greater_equal(" + np(a) + ", " + np(b) + ")"; }
std::string logical_shift_left(Node, Node a, Node b, int, int) { return "logical_shift_left(" + np(a) + ", " + np(b) + ")"; }
std::string logical_shift_right(Node, Node a, Node b, int, int) { return "logical_shift_right(" + np(a) + ", " + np(b) + ")"; }
std::string arithmetic_shift_right(Node, Node a, Node b, int, int) { return "arithmetic_shift_right(" + np(a) + ", " + np(b) + ")"; }
std::string mux(Node, Node a, Node b, Node s, int) { return "mux(" + np(a) + ", " + np(b) + ", " + np(s) + ")"; }
std::string pmux(Node, Node a, Node b, Node s, int, int) { return "pmux(" + np(a) + ", " + np(b) + ", " + np(s) + ")"; }
std::string constant(Node, RTLIL::Const value) { return "constant(" + value.as_string() + ")"; }
std::string input(Node, IdString name) { return "input(" + name.str() + ")"; }
std::string state(Node, IdString name) { return "state(" + name.str() + ")"; }
std::string memory_read(Node, Node mem, Node addr, int, int) { return "memory_read(" + np(mem) + ", " + np(addr) + ")"; }
std::string memory_write(Node, Node mem, Node addr, Node data, int, int) { return "memory_write(" + np(mem) + ", " + np(addr) + ", " + np(data) + ")"; }
std::string undriven(Node, int width) { return "undriven(" + std::to_string(width) + ")"; }
};
Graph::ConstRef _ref;
explicit Node(Graph::ConstRef ref) : _ref(ref) { }
explicit operator Graph::ConstRef() { return _ref; }
public:
// the node's index. may change if nodes are added or removed
int id() const { return _ref.index(); }
// a name suggestion for the node, which need not be unique
IdString name() const {
if(_ref.has_sparse_attr())
return _ref.sparse_attr();
@ -187,55 +239,135 @@ public:
}
Fn fn() const { return _ref.function().fn(); }
Sort sort() const { return _ref.attr().sort; }
// returns the width of a bitvector node, errors out for other nodes
int width() const { return sort().width(); }
size_t arg_count() const { return _ref.size(); }
Node arg(int n) const { return Node(_ref.arg(n)); }
// visit calls the appropriate visitor method depending on the type of the node
template<class Visitor> auto visit(Visitor v) const
{
// currently templated but could be switched to AbstractVisitor &
switch(_ref.function().fn()) {
case Fn::invalid: log_error("invalid node in visit"); break;
case Fn::buf: return v.buf(*this, arg(0)); break;
case Fn::slice: return v.slice(*this, arg(0), arg(0).width(), _ref.function().as_int(), sort().width()); break;
case Fn::zero_extend: return v.zero_extend(*this, arg(0), arg(0).width(), width()); break;
case Fn::sign_extend: return v.sign_extend(*this, arg(0), arg(0).width(), width()); break;
case Fn::concat: return v.concat(*this, arg(0), arg(0).width(), arg(1), arg(1).width()); break;
case Fn::add: return v.add(*this, arg(0), arg(1), sort().width()); break;
case Fn::sub: return v.sub(*this, arg(0), arg(1), sort().width()); break;
case Fn::mul: return v.mul(*this, arg(0), arg(1), sort().width()); break;
case Fn::unsigned_div: return v.unsigned_div(*this, arg(0), arg(1), sort().width()); break;
case Fn::unsigned_mod: return v.unsigned_mod(*this, arg(0), arg(1), sort().width()); break;
case Fn::bitwise_and: return v.bitwise_and(*this, arg(0), arg(1), sort().width()); break;
case Fn::bitwise_or: return v.bitwise_or(*this, arg(0), arg(1), sort().width()); break;
case Fn::bitwise_xor: return v.bitwise_xor(*this, arg(0), arg(1), sort().width()); break;
case Fn::bitwise_not: return v.bitwise_not(*this, arg(0), sort().width()); break;
case Fn::unary_minus: return v.unary_minus(*this, arg(0), sort().width()); break;
case Fn::reduce_and: return v.reduce_and(*this, arg(0), arg(0).width()); break;
case Fn::reduce_or: return v.reduce_or(*this, arg(0), arg(0).width()); break;
case Fn::reduce_xor: return v.reduce_xor(*this, arg(0), arg(0).width()); break;
case Fn::equal: return v.equal(*this, arg(0), arg(1), arg(0).width()); break;
case Fn::not_equal: return v.not_equal(*this, arg(0), arg(1), arg(0).width()); break;
case Fn::signed_greater_than: return v.signed_greater_than(*this, arg(0), arg(1), arg(0).width()); break;
case Fn::signed_greater_equal: return v.signed_greater_equal(*this, arg(0), arg(1), arg(0).width()); break;
case Fn::unsigned_greater_than: return v.unsigned_greater_than(*this, arg(0), arg(1), arg(0).width()); break;
case Fn::unsigned_greater_equal: return v.unsigned_greater_equal(*this, arg(0), arg(1), arg(0).width()); break;
case Fn::logical_shift_left: return v.logical_shift_left(*this, arg(0), arg(1), arg(0).width(), arg(1).width()); break;
case Fn::logical_shift_right: return v.logical_shift_right(*this, arg(0), arg(1), arg(0).width(), arg(1).width()); break;
case Fn::arithmetic_shift_right: return v.arithmetic_shift_right(*this, arg(0), arg(1), arg(0).width(), arg(1).width()); break;
case Fn::mux: return v.mux(*this, arg(0), arg(1), arg(2), arg(0).width()); break;
case Fn::pmux: return v.pmux(*this, arg(0), arg(1), arg(2), arg(0).width(), arg(2).width()); break;
case Fn::slice: return v.slice(*this, arg(0), _ref.function().as_int(), sort().width()); break;
case Fn::zero_extend: return v.zero_extend(*this, arg(0), width()); break;
case Fn::sign_extend: return v.sign_extend(*this, arg(0), width()); break;
case Fn::concat: return v.concat(*this, arg(0), arg(1)); break;
case Fn::add: return v.add(*this, arg(0), arg(1)); break;
case Fn::sub: return v.sub(*this, arg(0), arg(1)); break;
case Fn::mul: return v.mul(*this, arg(0), arg(1)); break;
case Fn::unsigned_div: return v.unsigned_div(*this, arg(0), arg(1)); break;
case Fn::unsigned_mod: return v.unsigned_mod(*this, arg(0), arg(1)); break;
case Fn::bitwise_and: return v.bitwise_and(*this, arg(0), arg(1)); break;
case Fn::bitwise_or: return v.bitwise_or(*this, arg(0), arg(1)); break;
case Fn::bitwise_xor: return v.bitwise_xor(*this, arg(0), arg(1)); break;
case Fn::bitwise_not: return v.bitwise_not(*this, arg(0)); break;
case Fn::unary_minus: return v.unary_minus(*this, arg(0)); break;
case Fn::reduce_and: return v.reduce_and(*this, arg(0)); break;
case Fn::reduce_or: return v.reduce_or(*this, arg(0)); break;
case Fn::reduce_xor: return v.reduce_xor(*this, arg(0)); break;
case Fn::equal: return v.equal(*this, arg(0), arg(1)); break;
case Fn::not_equal: return v.not_equal(*this, arg(0), arg(1)); break;
case Fn::signed_greater_than: return v.signed_greater_than(*this, arg(0), arg(1)); break;
case Fn::signed_greater_equal: return v.signed_greater_equal(*this, arg(0), arg(1)); break;
case Fn::unsigned_greater_than: return v.unsigned_greater_than(*this, arg(0), arg(1)); break;
case Fn::unsigned_greater_equal: return v.unsigned_greater_equal(*this, arg(0), arg(1)); break;
case Fn::logical_shift_left: return v.logical_shift_left(*this, arg(0), arg(1)); break;
case Fn::logical_shift_right: return v.logical_shift_right(*this, arg(0), arg(1)); break;
case Fn::arithmetic_shift_right: return v.arithmetic_shift_right(*this, arg(0), arg(1)); break;
case Fn::mux: return v.mux(*this, arg(0), arg(1), arg(2)); break;
case Fn::pmux: return v.pmux(*this, arg(0), arg(1), arg(2)); break;
case Fn::constant: return v.constant(*this, _ref.function().as_const()); break;
case Fn::input: return v.input(*this, _ref.function().as_idstring()); break;
case Fn::state: return v.state(*this, _ref.function().as_idstring()); break;
case Fn::memory_read: return v.memory_read(*this, arg(0), arg(1), arg(1).width(), width()); break;
case Fn::memory_write: return v.memory_write(*this, arg(0), arg(1), arg(2), arg(1).width(), arg(2).width()); break;
case Fn::memory_read: return v.memory_read(*this, arg(0), arg(1)); break;
case Fn::memory_write: return v.memory_write(*this, arg(0), arg(1), arg(2)); break;
case Fn::multiple: log_error("multiple in visit"); break;
case Fn::undriven: return v.undriven(*this, width()); break;
}
}
template<class NodePrinter> std::string to_string(NodePrinter np)
{
return visit(PrintVisitor(np));
}
std::string to_string();
std::string to_string(std::function<std::string(Node)>);
};
// AbstractVisitor provides an abstract base class for visitors
template<class T> struct AbstractVisitor {
virtual T buf(Node self, Node n) = 0;
virtual T slice(Node self, Node a, int offset, int out_width) = 0;
virtual T zero_extend(Node self, Node a, int out_width) = 0;
virtual T sign_extend(Node self, Node a, int out_width) = 0;
virtual T concat(Node self, Node a, Node b) = 0;
virtual T add(Node self, Node a, Node b) = 0;
virtual T sub(Node self, Node a, Node b) = 0;
virtual T mul(Node self, Node a, Node b) = 0;
virtual T unsigned_div(Node self, Node a, Node b) = 0;
virtual T unsigned_mod(Node self, Node a, Node b) = 0;
virtual T bitwise_and(Node self, Node a, Node b) = 0;
virtual T bitwise_or(Node self, Node a, Node b) = 0;
virtual T bitwise_xor(Node self, Node a, Node b) = 0;
virtual T bitwise_not(Node self, Node a) = 0;
virtual T unary_minus(Node self, Node a) = 0;
virtual T reduce_and(Node self, Node a) = 0;
virtual T reduce_or(Node self, Node a) = 0;
virtual T reduce_xor(Node self, Node a) = 0;
virtual T equal(Node self, Node a, Node b) = 0;
virtual T not_equal(Node self, Node a, Node b) = 0;
virtual T signed_greater_than(Node self, Node a, Node b) = 0;
virtual T signed_greater_equal(Node self, Node a, Node b) = 0;
virtual T unsigned_greater_than(Node self, Node a, Node b) = 0;
virtual T unsigned_greater_equal(Node self, Node a, Node b) = 0;
virtual T logical_shift_left(Node self, Node a, Node b) = 0;
virtual T logical_shift_right(Node self, Node a, Node b) = 0;
virtual T arithmetic_shift_right(Node self, Node a, Node b) = 0;
virtual T mux(Node self, Node a, Node b, Node s) = 0;
virtual T pmux(Node self, Node a, Node b, Node s) = 0;
virtual T constant(Node self, RTLIL::Const value) = 0;
virtual T input(Node self, IdString name) = 0;
virtual T state(Node self, IdString name) = 0;
virtual T memory_read(Node self, Node mem, Node addr) = 0;
virtual T memory_write(Node self, Node mem, Node addr, Node data) = 0;
virtual T undriven(Node self, int width) = 0;
};
// DefaultVisitor provides defaults for all visitor methods which just calls default_handler
template<class T> struct DefaultVisitor : public AbstractVisitor<T> {
virtual T default_handler(Node self) = 0;
T buf(Node self, Node) override { return default_handler(self); }
T slice(Node self, Node, int, int) override { return default_handler(self); }
T zero_extend(Node self, Node, int) override { return default_handler(self); }
T sign_extend(Node self, Node, int) override { return default_handler(self); }
T concat(Node self, Node, Node) override { return default_handler(self); }
T add(Node self, Node, Node) override { return default_handler(self); }
T sub(Node self, Node, Node) override { return default_handler(self); }
T mul(Node self, Node, Node) override { return default_handler(self); }
T unsigned_div(Node self, Node, Node) override { return default_handler(self); }
T unsigned_mod(Node self, Node, Node) override { return default_handler(self); }
T bitwise_and(Node self, Node, Node) override { return default_handler(self); }
T bitwise_or(Node self, Node, Node) override { return default_handler(self); }
T bitwise_xor(Node self, Node, Node) override { return default_handler(self); }
T bitwise_not(Node self, Node) override { return default_handler(self); }
T unary_minus(Node self, Node) override { return default_handler(self); }
T reduce_and(Node self, Node) override { return default_handler(self); }
T reduce_or(Node self, Node) override { return default_handler(self); }
T reduce_xor(Node self, Node) override { return default_handler(self); }
T equal(Node self, Node, Node) override { return default_handler(self); }
T not_equal(Node self, Node, Node) override { return default_handler(self); }
T signed_greater_than(Node self, Node, Node) override { return default_handler(self); }
T signed_greater_equal(Node self, Node, Node) override { return default_handler(self); }
T unsigned_greater_than(Node self, Node, Node) override { return default_handler(self); }
T unsigned_greater_equal(Node self, Node, Node) override { return default_handler(self); }
T logical_shift_left(Node self, Node, Node) override { return default_handler(self); }
T logical_shift_right(Node self, Node, Node) override { return default_handler(self); }
T arithmetic_shift_right(Node self, Node, Node) override { return default_handler(self); }
T mux(Node self, Node, Node, Node) override { return default_handler(self); }
T pmux(Node self, Node, Node, Node) override { return default_handler(self); }
T constant(Node self, RTLIL::Const) override { return default_handler(self); }
T input(Node self, IdString) override { return default_handler(self); }
T state(Node self, IdString) override { return default_handler(self); }
T memory_read(Node self, Node, Node) override { return default_handler(self); }
T memory_write(Node self, Node, Node, Node) override { return default_handler(self); }
T undriven(Node self, int) override { return default_handler(self); }
};
// a factory is used to modify a FunctionalIR. it creates new nodes and allows for some modification of existing nodes.
class Factory {
FunctionalIR &_ir;
friend class FunctionalIR;
@ -243,19 +375,29 @@ public:
Node add(NodeData &&fn, Sort &&sort, std::initializer_list<Node> args) {
Graph::Ref ref = _ir._graph.add(std::move(fn), {std::move(sort)});
for (auto arg : args)
ref.append_arg(Graph::Ref(arg));
ref.append_arg(Graph::ConstRef(arg));
return Node(ref);
}
Graph::Ref mutate(Node n) {
return _ir._graph[n._ref.index()];
}
void check_basic_binary(Node const &a, Node const &b) { log_assert(a.sort().is_signal() && a.sort() == b.sort()); }
void check_shift(Node const &a, Node const &b) { log_assert(a.sort().is_signal() && b.sort().is_signal()); }
void check_unary(Node const &a) { log_assert(a.sort().is_signal()); }
public:
Node slice(Node a, int, int offset, int out_width) {
log_assert(a.sort().is_signal() && offset + out_width <= a.sort().width());
if(offset == 0 && out_width == a.width())
return a;
return add(NodeData(Fn::slice, offset), Sort(out_width), {a});
}
Node extend(Node a, int, int out_width, bool is_signed) {
log_assert(a.sort().is_signal() && a.sort().width() < out_width);
int in_width = a.sort().width();
log_assert(a.sort().is_signal());
if(in_width == out_width)
return a;
if(in_width < out_width)
return slice(a, in_width, 0, out_width);
if(is_signed)
return add(Fn::sign_extend, Sort(out_width), {a});
else
@ -275,9 +417,24 @@ public:
Node bitwise_xor(Node a, Node b, int) { check_basic_binary(a, b); return add(Fn::bitwise_xor, a.sort(), {a, b}); }
Node bitwise_not(Node a, int) { check_unary(a); return add(Fn::bitwise_not, a.sort(), {a}); }
Node unary_minus(Node a, int) { check_unary(a); return add(Fn::unary_minus, a.sort(), {a}); }
Node reduce_and(Node a, int) { check_unary(a); return add(Fn::reduce_and, Sort(1), {a}); }
Node reduce_or(Node a, int) { check_unary(a); return add(Fn::reduce_or, Sort(1), {a}); }
Node reduce_xor(Node a, int) { check_unary(a); return add(Fn::reduce_xor, Sort(1), {a}); }
Node reduce_and(Node a, int) {
check_unary(a);
if(a.width() == 1)
return a;
return add(Fn::reduce_and, Sort(1), {a});
}
Node reduce_or(Node a, int) {
check_unary(a);
if(a.width() == 1)
return a;
return add(Fn::reduce_or, Sort(1), {a});
}
Node reduce_xor(Node a, int) {
check_unary(a);
if(a.width() == 1)
return a;
return add(Fn::reduce_xor, Sort(1), {a});
}
Node equal(Node a, Node b, int) { check_basic_binary(a, b); return add(Fn::equal, Sort(1), {a, b}); }
Node not_equal(Node a, Node b, int) { check_basic_binary(a, b); return add(Fn::not_equal, Sort(1), {a, b}); }
Node signed_greater_than(Node a, Node b, int) { check_basic_binary(a, b); return add(Fn::signed_greater_than, Sort(1), {a, b}); }
@ -313,7 +470,7 @@ public:
void update_pending(Node node, Node value) {
log_assert(node._ref.function() == Fn::buf && node._ref.size() == 0);
log_assert(node.sort() == value.sort());
node._ref.append_arg(value._ref);
mutate(node).append_arg(value._ref);
}
Node input(IdString name, int width) {
_ir.add_input(name, Sort(width));
@ -333,7 +490,7 @@ public:
Node multiple(vector<Node> args, int width) {
auto node = add(Fn::multiple, Sort(width), {});
for(const auto &arg : args)
node._ref.append_arg(arg._ref);
mutate(node).append_arg(arg._ref);
return node;
}
Node undriven(int width) {
@ -341,18 +498,18 @@ public:
}
void declare_output(Node node, IdString name, int width) {
_ir.add_output(name, Sort(width));
node._ref.assign_key({name, false});
mutate(node).assign_key({name, false});
}
void declare_state(Node node, IdString name, int width) {
_ir.add_state(name, Sort(width));
node._ref.assign_key({name, true});
mutate(node).assign_key({name, true});
}
void declare_state_memory(Node node, IdString name, int addr_width, int data_width) {
_ir.add_state(name, Sort(addr_width, data_width));
node._ref.assign_key({name, true});
mutate(node).assign_key({name, true});
}
void suggest_name(Node node, IdString name) {
node._ref.sparse_attr() = name;
mutate(node).sparse_attr() = name;
}
};
static FunctionalIR from_module(Module *module);