Merge remote-tracking branch 'origin/xc7mux' into xaig

This commit is contained in:
Eddie Hung 2019-06-12 08:52:46 -07:00
commit 513c962a71
34 changed files with 1437 additions and 521 deletions

View File

@ -17,7 +17,9 @@ Yosys 0.8 .. Yosys 0.8-dev
- Added "rename -src"
- Added "equiv_opt" pass
- Added "read_aiger" frontend
- Added "muxpack" pass
- "synth_xilinx" to now infer hard shift registers, using new "shregmap -tech xilinx"
- "synth_xilinx" to now infer wide multiplexers
Yosys 0.7 .. Yosys 0.8

View File

@ -122,7 +122,7 @@ OBJS = kernel/version_$(GIT_REV).o
# is just a symlink to your actual ABC working directory, as 'make mrproper'
# will remove the 'abc' directory and you do not want to accidentally
# delete your work on ABC..
ABCREV = 3709744
ABCREV = 62487de
ABCPULL = 1
ABCURL ?= https://github.com/berkeley-abc/abc
ABCMKARGS = CC="$(CXX)" CXX="$(CXX)" ABC_USE_LIBSTDCXX=1

View File

@ -49,7 +49,8 @@ struct XAigerWriter
dict<SigBit, SigBit> not_map, ff_map, alias_map;
dict<SigBit, pair<SigBit, SigBit>> and_map;
//pool<SigBit> initstate_bits;
vector<std::pair<SigBit,int>> ci_bits, co_bits;
vector<std::tuple<SigBit,RTLIL::Cell*,RTLIL::IdString,int>> ci_bits;
vector<std::tuple<SigBit,RTLIL::Cell*,RTLIL::IdString,int,int>> co_bits;
vector<std::pair<SigBit,SigBit>> ff_bits;
vector<pair<int, int>> aig_gates;
@ -152,10 +153,11 @@ struct XAigerWriter
undriven_bits.insert(bit);
unused_bits.insert(bit);
if (wire->port_input)
input_bits.insert(bit);
else if (keep)
if (wire->port_input || keep) {
if (bit != wirebit)
alias_map[bit] = wirebit;
input_bits.insert(wirebit);
}
if (wire->port_output || keep) {
if (bit != wirebit)
@ -166,7 +168,7 @@ struct XAigerWriter
}
for (auto bit : input_bits)
undriven_bits.erase(bit);
undriven_bits.erase(sigmap(bit));
for (auto bit : output_bits)
if (!bit.wire->port_input)
@ -179,15 +181,17 @@ struct XAigerWriter
for (auto cell : module->cells())
{
RTLIL::Module* inst_module = module->design->module(cell->type);
bool inst_flop = inst_module ? inst_module->attributes.count("\\abc_flop") : false;
bool known_type = yosys_celltypes.cell_known(cell->type);
bool builtin_type = yosys_celltypes.cell_known(cell->type);
bool abc_type = inst_module && inst_module->attributes.count("\\abc_box_id");
if (!holes_mode) {
toposort.node(cell->name);
for (const auto &conn : cell->connections())
{
for (const auto &conn : cell->connections()) {
if (!builtin_type && !abc_type)
continue;
if (!cell->type.in("$_NOT_", "$_AND_")) {
if (known_type) {
if (builtin_type) {
if (conn.first.in("\\Q", "\\CTRL_OUT", "\\RD_DATA"))
continue;
if (cell->type == "$memrd" && conn.first == "\\DATA")
@ -198,8 +202,8 @@ struct XAigerWriter
RTLIL::Wire* inst_module_port = inst_module->wire(conn.first);
log_assert(inst_module_port);
if (inst_module_port->attributes.count("\\abc_flop_q"))
continue;
if (inst_module_port->port_output && inst_module_port->attributes.count("\\abc_flop_q"))
continue;
}
}
@ -256,22 +260,28 @@ struct XAigerWriter
// continue;
//}
bool inst_flop = inst_module ? inst_module->attributes.count("\\abc_flop") : false;
if (inst_flop) {
SigBit d, q;
for (const auto &c : cell->connections()) {
auto is_input = cell->input(c.first);
auto is_output = cell->output(c.first);
log_assert(is_input || is_output);
RTLIL::Wire* port = inst_module->wire(c.first);
for (auto b : c.second.bits()) {
auto is_input = cell->input(c.first);
auto is_output = cell->output(c.first);
log_assert(is_input || is_output);
if (is_input && inst_module->wire(c.first)->attributes.count("\\abc_flop_d")) {
SigBit I = sigmap(b);
if (I != b)
alias_map[b] = I;
if (is_input && port->attributes.count("\\abc_flop_d")) {
d = b;
SigBit I = sigmap(d);
if (I != d)
alias_map[I] = d;
unused_bits.erase(d);
}
if (is_output && inst_module->wire(c.first)->attributes.count("\\abc_flop_q")) {
SigBit O = sigmap(b);
q = O;
if (is_output && port->attributes.count("\\abc_flop_q")) {
q = b;
SigBit O = sigmap(q);
if (O != q)
alias_map[O] = q;
undriven_bits.erase(O);
}
}
}
@ -279,7 +289,6 @@ struct XAigerWriter
abc_box_seen = inst_module->attributes.count("\\abc_box_id");
ff_bits.emplace_back(d, q);
undriven_bits.erase(q);
}
else if (inst_module && inst_module->attributes.count("\\abc_box_id")) {
abc_box_seen = true;
@ -303,8 +312,10 @@ struct XAigerWriter
}
}
if (is_output) {
input_bits.insert(b);
SigBit O = sigmap(b);
input_bits.insert(O);
if (O != b)
alias_map[O] = b;
undriven_bits.erase(O);
}
}
@ -321,19 +332,22 @@ struct XAigerWriter
for (auto user_cell : it.second)
toposort.edge(driver_cell, user_cell);
#ifndef NDEBUG
pool<RTLIL::Module*> abc_carry_modules;
#if 0
toposort.analyze_loops = true;
#endif
toposort.sort();
#ifndef NDEBUG
bool no_loops = toposort.sort();
#if 0
unsigned i = 0;
for (auto &it : toposort.loops) {
log(" loop");
log(" loop %d", i++);
for (auto cell : it)
log(" %s", log_id(cell));
log("\n");
}
#endif
log_assert(!toposort.found_loops);
log_assert(no_loops);
for (auto cell_name : toposort.sorted) {
RTLIL::Cell *cell = module->cell(cell_name);
@ -341,26 +355,100 @@ struct XAigerWriter
if (!box_module || !box_module->attributes.count("\\abc_box_id"))
continue;
// Box ordering is alphabetical
cell->connections_.sort(RTLIL::sort_by_id_str());
for (const auto &c : cell->connections()) {
for (auto b : c.second.bits()) {
auto is_input = cell->input(c.first);
auto is_output = cell->output(c.first);
log_assert(is_input || is_output);
if (is_input) {
SigBit I = sigmap(b);
if (I != b)
alias_map[b] = I;
co_bits.emplace_back(b, 0);
if (box_module->attributes.count("\\abc_carry") && !abc_carry_modules.count(box_module)) {
RTLIL::Wire* carry_in = nullptr, *carry_out = nullptr;
RTLIL::Wire* last_in = nullptr, *last_out = nullptr;
for (const auto &port_name : box_module->ports) {
RTLIL::Wire* w = box_module->wire(port_name);
log_assert(w);
if (w->port_input) {
if (w->attributes.count("\\abc_carry_in")) {
log_assert(!carry_in);
carry_in = w;
}
log_assert(!last_in || last_in->port_id < w->port_id);
last_in = w;
}
if (is_output) {
SigBit O = sigmap(b);
ci_bits.emplace_back(O, 0);
if (w->port_output) {
if (w->attributes.count("\\abc_carry_out")) {
log_assert(!carry_out);
carry_out = w;
}
log_assert(!last_out || last_out->port_id < w->port_id);
last_out = w;
}
}
if (carry_in) {
log_assert(last_in);
std::swap(box_module->ports[carry_in->port_id-1], box_module->ports[last_in->port_id-1]);
std::swap(carry_in->port_id, last_in->port_id);
}
if (carry_out) {
log_assert(last_out);
std::swap(box_module->ports[carry_out->port_id-1], box_module->ports[last_out->port_id-1]);
std::swap(carry_out->port_id, last_out->port_id);
}
}
// Fully pad all unused input connections of this box cell with S0
// Fully pad all undriven output connections of this box cell with anonymous wires
// NB: Assume box_module->ports are sorted alphabetically
// (as RTLIL::Module::fixup_ports() would do)
for (const auto &port_name : box_module->ports) {
RTLIL::Wire* w = box_module->wire(port_name);
log_assert(w);
auto it = cell->connections_.find(port_name);
if (w->port_input) {
RTLIL::SigSpec rhs;
if (it != cell->connections_.end()) {
if (GetSize(it->second) < GetSize(w))
it->second.append(RTLIL::SigSpec(RTLIL::S0, GetSize(w)-GetSize(it->second)));
rhs = it->second;
}
else {
rhs = RTLIL::SigSpec(RTLIL::S0, GetSize(w));
cell->setPort(port_name, rhs);
}
int offset = 0;
for (const auto &b : rhs.bits()) {
SigBit I = sigmap(b);
if (I != b)
alias_map[b] = I;
co_bits.emplace_back(b, cell, port_name, offset++, 0);
unused_bits.erase(b);
}
}
if (w->port_output) {
RTLIL::SigSpec rhs;
auto it = cell->connections_.find(w->name);
if (it != cell->connections_.end()) {
if (GetSize(it->second) < GetSize(w))
it->second.append(module->addWire(NEW_ID, GetSize(w)-GetSize(it->second)));
rhs = it->second;
}
else {
rhs = module->addWire(NEW_ID, GetSize(w));
cell->setPort(port_name, rhs);
}
int offset = 0;
for (const auto &b : rhs.bits()) {
ci_bits.emplace_back(b, cell, port_name, offset++);
SigBit O = sigmap(b);
if (O != b)
alias_map[O] = b;
undriven_bits.erase(O);
auto jt = input_bits.find(b);
if (jt != input_bits.end()) {
log_assert(b.wire->attributes.count("\\keep"));
input_bits.erase(b);
}
}
}
}
box_list.emplace_back(cell);
}
@ -375,9 +463,10 @@ struct XAigerWriter
if ((wire->port_input && wire->port_output && !undriven_bits.count(bit))
|| wire->attributes.count("\\keep")) {
log_assert(input_bits.count(bit) && output_bits.count(bit));
RTLIL::Wire *new_wire = module->wire(wire->name.str() + "$inout.out");
RTLIL::IdString wire_name = wire->name.str() + "$inout.out";
RTLIL::Wire *new_wire = module->wire(wire_name);
if (!new_wire)
new_wire = module->addWire(wire->name.str() + "$inout.out", GetSize(wire));
new_wire = module->addWire(wire_name, GetSize(wire));
SigBit new_bit(new_wire, bit.offset);
module->connect(new_bit, bit);
if (not_map.count(bit))
@ -394,13 +483,10 @@ struct XAigerWriter
}
}
// Do some CI/CO post-processing:
// Erase all POs that are undriven
for (auto bit : undriven_bits)
output_bits.erase(bit);
// CIs cannot be undriven
for (const auto &c : ci_bits)
undriven_bits.erase(c.first);
if (!holes_mode)
for (auto bit : undriven_bits)
output_bits.erase(bit);
for (auto bit : unused_bits)
undriven_bits.erase(bit);
@ -414,8 +500,20 @@ struct XAigerWriter
}
init_map.sort();
input_bits.sort();
output_bits.sort();
if (holes_mode) {
struct sort_by_port_id {
bool operator()(const RTLIL::SigBit& a, const RTLIL::SigBit& b) const {
return a.wire->port_id < b.wire->port_id;
}
};
input_bits.sort(sort_by_port_id());
output_bits.sort(sort_by_port_id());
}
else {
input_bits.sort();
output_bits.sort();
}
not_map.sort();
ff_map.sort();
and_map.sort();
@ -425,23 +523,24 @@ struct XAigerWriter
for (auto bit : input_bits) {
aig_m++, aig_i++;
log_assert(!aig_map.count(bit));
aig_map[bit] = 2*aig_m;
}
for (auto &f : ff_bits) {
auto bit = f.second;
RTLIL::SigBit bit = f.second;
aig_m++, aig_i++;
log_assert(!aig_map.count(bit));
aig_map[bit] = 2*aig_m;
}
dict<SigBit, int> ff_aig_map;
for (auto &c : ci_bits) {
RTLIL::SigBit bit = std::get<0>(c);
aig_m++, aig_i++;
c.second = 2*aig_m;
auto r = aig_map.insert(std::make_pair(c.first, c.second));
if (!r.second) {
ff_aig_map[c.first] = c.second;
}
auto r = aig_map.insert(std::make_pair(bit, 2*aig_m));
if (!r.second)
ff_aig_map[bit] = 2*aig_m;
}
if (imode && input_bits.empty()) {
@ -505,9 +604,8 @@ struct XAigerWriter
// aig_latchin.push_back(1);
for (auto &c : co_bits) {
RTLIL::SigBit bit = c.first;
c.second = aig_o++;
ordered_outputs[bit] = c.second;
RTLIL::SigBit bit = std::get<0>(c);
std::get<4>(c) = ordered_outputs[bit] = aig_o++;
aig_outputs.push_back(bit2aig(bit));
}
@ -518,7 +616,8 @@ struct XAigerWriter
for (auto &f : ff_bits) {
aig_o++;
aig_outputs.push_back(ff_aig_map.at(f.second));
RTLIL::SigBit bit = f.second;
aig_outputs.push_back(ff_aig_map.at(bit));
}
if (omode && output_bits.empty()) {
@ -693,49 +792,79 @@ struct XAigerWriter
if (omode && num_outputs == 0)
num_outputs = 1;
write_h_buffer(1);
log_debug("ciNum = %zu\n", input_bits.size() + ff_bits.size() + ci_bits.size());
write_h_buffer(input_bits.size() + ff_bits.size() + ci_bits.size());
write_h_buffer(num_outputs + ff_bits.size() + co_bits.size());
write_h_buffer(input_bits.size() + ff_bits.size());
log_debug("coNum = %zu\n", num_outputs + ff_bits.size() + co_bits.size());
write_h_buffer(num_outputs + ff_bits.size()+ co_bits.size());
log_debug("piNum = %zu\n", input_bits.size() + ff_bits.size());
write_h_buffer(input_bits.size()+ ff_bits.size());
log_debug("poNum = %zu\n", num_outputs + ff_bits.size());
write_h_buffer(num_outputs + ff_bits.size());
log_debug("boxNum = %zu\n", box_list.size());
write_h_buffer(box_list.size());
RTLIL::Module *holes_module = nullptr;
holes_module = module->design->addModule("\\__holes__");
log_assert(holes_module);
int port_id = 1;
int box_count = 0;
for (auto cell : box_list) {
RTLIL::Module* box_module = module->design->module(cell->type);
int box_inputs = 0, box_outputs = 0;
int box_id = module->design->module(cell->type)->attributes.at("\\abc_box_id").as_int();
Cell *holes_cell = nullptr;
if (holes_module && !holes_module->cell(stringf("\\u%d", box_id)))
holes_cell = holes_module->addCell(stringf("\\u%d", box_id), cell->type);
RTLIL::Wire *holes_wire;
// NB: cell->connections_ already sorted from before
for (const auto &c : cell->connections()) {
log_assert(c.second.size() == 1);
if (cell->input(c.first)) {
box_inputs += c.second.size();
if (holes_cell) {
if (box_module->get_bool_attribute("\\whitebox")) {
holes_cell = holes_module->addCell(cell->name, cell->type);
holes_cell->parameters = cell->parameters;
}
// NB: Assume box_module->ports are sorted alphabetically
// (as RTLIL::Module::fixup_ports() would do)
for (const auto &port_name : box_module->ports) {
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
RTLIL::Wire *holes_wire;
RTLIL::SigSpec port_wire;
if (w->port_input) {
for (int i = 0; i < GetSize(w); i++) {
box_inputs++;
holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
if (!holes_wire) {
holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
holes_wire->port_input = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
}
holes_cell->setPort(c.first, holes_wire);
if (holes_cell)
port_wire.append(holes_wire);
}
if (!port_wire.empty())
holes_cell->setPort(w->name, port_wire);
}
if (cell->output(c.first)) {
box_outputs += c.second.size();
if (holes_cell) {
holes_wire = holes_module->addWire(stringf("\\%s.%s", cell->type.c_str(), c.first.c_str()));
if (w->port_output) {
box_outputs += GetSize(w);
for (int i = 0; i < GetSize(w); i++) {
if (GetSize(w) == 1)
holes_wire = holes_module->addWire(stringf("%s.%s", cell->name.c_str(), w->name.c_str()));
else
holes_wire = holes_module->addWire(stringf("%s.%s[%d]", cell->name.c_str(), w->name.c_str(), i));
holes_wire->port_output = true;
holes_cell->setPort(c.first, holes_wire);
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
if (holes_cell)
port_wire.append(holes_wire);
else
holes_module->connect(holes_wire, RTLIL::S0);
}
if (!port_wire.empty())
holes_cell->setPort(w->name, port_wire);
}
}
write_h_buffer(box_inputs);
write_h_buffer(box_outputs);
write_h_buffer(box_id);
write_h_buffer(0 /* OldBoxNum */);
write_h_buffer(box_module->attributes.at("\\abc_box_id").as_int());
write_h_buffer(box_count++);
}
f << "h";
@ -749,7 +878,7 @@ struct XAigerWriter
f.write(reinterpret_cast<const char*>(&buffer_size_be), sizeof(buffer_size_be));
f.write(buffer_str.data(), buffer_str.size());
if (!ff_bits.empty()) {
/*if (!ff_bits.empty())*/ {
std::stringstream r_buffer;
auto write_r_buffer = [&r_buffer](int i32) {
// TODO: Don't assume we're on little endian
@ -760,6 +889,7 @@ struct XAigerWriter
#endif
r_buffer.write(reinterpret_cast<const char*>(&i32_be), sizeof(i32_be));
};
log_debug("flopNum = %zu\n", ff_bits.size());
write_r_buffer(ff_bits.size());
int mergeability_class = 1;
for (auto cell : ff_bits)
@ -778,13 +908,25 @@ struct XAigerWriter
}
if (holes_module) {
holes_module->fixup_ports();
// NB: fixup_ports() will sort ports by name
//holes_module->fixup_ports();
holes_module->check();
holes_module->design->selection_stack.emplace_back(false);
RTLIL::Selection& sel = holes_module->design->selection_stack.back();
sel.select(holes_module);
Pass::call(holes_module->design, "flatten -wb; aigmap; clean -purge");
// TODO: Should not need to opt_merge if we only instantiate
// each box type once...
Pass::call(holes_module->design, "opt_merge -share_all");
Pass::call(holes_module->design, "flatten -wb");
// TODO: Should techmap all lib_whitebox-es once
//Pass::call(holes_module->design, "techmap");
Pass::call(holes_module->design, "aigmap");
Pass::call(holes_module->design, "clean -purge");
holes_module->design->selection_stack.pop_back();
@ -835,7 +977,7 @@ struct XAigerWriter
if (output_bits.count(b)) {
int o = ordered_outputs.at(b);
output_lines[o] += stringf("output %d %d %s\n", o, i, log_id(wire));
output_lines[o] += stringf("output %lu %d %s\n", o - co_bits.size(), i, log_id(wire));
continue;
}
@ -865,38 +1007,23 @@ struct XAigerWriter
}
}
for (const auto &c : ci_bits) {
RTLIL::SigBit b = c.first;
RTLIL::Wire *wire = b.wire;
int i = b.offset;
int a = bit2aig(b);
log_assert((a & 1) == 0);
input_lines[a] += stringf("input %d %d %s\n", (a >> 1)-1, i, log_id(wire));
}
for (const auto &c : co_bits) {
RTLIL::SigBit b = c.first;
RTLIL::Wire *wire = b.wire;
int o = c.second;
if (wire)
output_lines[o] += stringf("output %d %d %s\n", o, b.offset, log_id(wire));
else
output_lines[o] += stringf("output %d %d __const%d__\n", o, 0, b.data);
}
input_lines.sort();
for (auto &it : input_lines)
f << it.second;
log_assert(input_lines.size() == input_bits.size() + ci_bits.size());
log_assert(input_lines.size() == input_bits.size());
init_lines.sort();
for (auto &it : init_lines)
f << it.second;
int box_count = 0;
for (auto cell : box_list)
f << stringf("box %d %d %s\n", box_count++, 0, log_id(cell->name));
output_lines.sort();
for (auto &it : output_lines)
f << it.second;
log_assert(output_lines.size() == output_bits.size() + co_bits.size());
log_assert(output_lines.size() == output_bits.size());
if (omode && output_bits.empty())
f << "output " << output_lines.size() << " 0 __dummy_o__\n";

View File

@ -130,75 +130,72 @@ struct JsonWriter
f << stringf(" }");
first = false;
}
f << stringf("\n }");
f << stringf("\n },\n");
if (!module->get_blackbox_attribute()) {
f << stringf(",\n \"cells\": {");
first = true;
for (auto c : module->cells()) {
if (use_selection && !module->selected(c))
continue;
f << stringf("%s\n", first ? "" : ",");
f << stringf(" %s: {\n", get_name(c->name).c_str());
f << stringf(" \"hide_name\": %s,\n", c->name[0] == '$' ? "1" : "0");
f << stringf(" \"type\": %s,\n", get_name(c->type).c_str());
if (aig_mode) {
Aig aig(c);
if (!aig.name.empty()) {
f << stringf(" \"model\": \"%s\",\n", aig.name.c_str());
aig_models.insert(aig);
}
f << stringf(" \"cells\": {");
first = true;
for (auto c : module->cells()) {
if (use_selection && !module->selected(c))
continue;
f << stringf("%s\n", first ? "" : ",");
f << stringf(" %s: {\n", get_name(c->name).c_str());
f << stringf(" \"hide_name\": %s,\n", c->name[0] == '$' ? "1" : "0");
f << stringf(" \"type\": %s,\n", get_name(c->type).c_str());
if (aig_mode) {
Aig aig(c);
if (!aig.name.empty()) {
f << stringf(" \"model\": \"%s\",\n", aig.name.c_str());
aig_models.insert(aig);
}
f << stringf(" \"parameters\": {");
write_parameters(c->parameters);
f << stringf("\n },\n");
f << stringf(" \"attributes\": {");
write_parameters(c->attributes);
f << stringf("\n },\n");
if (c->known()) {
f << stringf(" \"port_directions\": {");
bool first2 = true;
for (auto &conn : c->connections()) {
string direction = "output";
if (c->input(conn.first))
direction = c->output(conn.first) ? "inout" : "input";
f << stringf("%s\n", first2 ? "" : ",");
f << stringf(" %s: \"%s\"", get_name(conn.first).c_str(), direction.c_str());
first2 = false;
}
f << stringf("\n },\n");
}
f << stringf(" \"connections\": {");
}
f << stringf(" \"parameters\": {");
write_parameters(c->parameters);
f << stringf("\n },\n");
f << stringf(" \"attributes\": {");
write_parameters(c->attributes);
f << stringf("\n },\n");
if (c->known()) {
f << stringf(" \"port_directions\": {");
bool first2 = true;
for (auto &conn : c->connections()) {
string direction = "output";
if (c->input(conn.first))
direction = c->output(conn.first) ? "inout" : "input";
f << stringf("%s\n", first2 ? "" : ",");
f << stringf(" %s: %s", get_name(conn.first).c_str(), get_bits(conn.second).c_str());
f << stringf(" %s: \"%s\"", get_name(conn.first).c_str(), direction.c_str());
first2 = false;
}
f << stringf("\n }\n");
f << stringf(" }");
first = false;
f << stringf("\n },\n");
}
f << stringf("\n },\n");
f << stringf(" \"netnames\": {");
first = true;
for (auto w : module->wires()) {
if (use_selection && !module->selected(w))
continue;
f << stringf("%s\n", first ? "" : ",");
f << stringf(" %s: {\n", get_name(w->name).c_str());
f << stringf(" \"hide_name\": %s,\n", w->name[0] == '$' ? "1" : "0");
f << stringf(" \"bits\": %s,\n", get_bits(w).c_str());
f << stringf(" \"attributes\": {");
write_parameters(w->attributes);
f << stringf("\n }\n");
f << stringf(" }");
first = false;
f << stringf(" \"connections\": {");
bool first2 = true;
for (auto &conn : c->connections()) {
f << stringf("%s\n", first2 ? "" : ",");
f << stringf(" %s: %s", get_name(conn.first).c_str(), get_bits(conn.second).c_str());
first2 = false;
}
f << stringf("\n }");
f << stringf("\n }\n");
f << stringf(" }");
first = false;
}
f << stringf("\n");
f << stringf("\n },\n");
f << stringf(" \"netnames\": {");
first = true;
for (auto w : module->wires()) {
if (use_selection && !module->selected(w))
continue;
f << stringf("%s\n", first ? "" : ",");
f << stringf(" %s: {\n", get_name(w->name).c_str());
f << stringf(" \"hide_name\": %s,\n", w->name[0] == '$' ? "1" : "0");
f << stringf(" \"bits\": %s,\n", get_bits(w).c_str());
f << stringf(" \"attributes\": {");
write_parameters(w->attributes);
f << stringf("\n }\n");
f << stringf(" }");
first = false;
}
f << stringf("\n }\n");
f << stringf(" }");
}

View File

@ -339,6 +339,9 @@ struct StatPass : public Pass {
if (mod->get_bool_attribute("\\top"))
top_mod = mod;
if (mod->attributes.count("\\abc_box_id"))
continue;
statdata_t data(design, mod, width_mode, cell_area, techname);
mod_stat[mod->name] = data;

View File

@ -14,5 +14,6 @@ OBJS += passes/opt/opt_demorgan.o
OBJS += passes/opt/rmports.o
OBJS += passes/opt/opt_lut.o
OBJS += passes/opt/pmux2shiftx.o
OBJS += passes/opt/muxpack.o
endif

270
passes/opt/muxpack.cc Normal file
View File

@ -0,0 +1,270 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* 2019 Eddie Hung <eddie@fpgeh.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct MuxpackWorker
{
Module *module;
SigMap sigmap;
int mux_count, pmux_count;
pool<Cell*> remove_cells;
dict<SigSpec, Cell*> sig_chain_next;
dict<SigSpec, Cell*> sig_chain_prev;
pool<SigBit> sigbit_with_non_chain_users;
pool<Cell*> chain_start_cells;
pool<Cell*> candidate_cells;
void make_sig_chain_next_prev()
{
for (auto wire : module->wires())
{
if (wire->port_output || wire->get_bool_attribute("\\keep")) {
for (auto bit : sigmap(wire))
sigbit_with_non_chain_users.insert(bit);
}
}
for (auto cell : module->cells())
{
if (cell->type.in("$mux", "$pmux") && !cell->get_bool_attribute("\\keep"))
{
SigSpec a_sig = sigmap(cell->getPort("\\A"));
SigSpec b_sig;
if (cell->type == "$mux")
b_sig = sigmap(cell->getPort("\\B"));
SigSpec y_sig = sigmap(cell->getPort("\\Y"));
if (sig_chain_next.count(a_sig))
for (auto a_bit : a_sig.bits())
sigbit_with_non_chain_users.insert(a_bit);
else {
sig_chain_next[a_sig] = cell;
candidate_cells.insert(cell);
}
if (!b_sig.empty()) {
if (sig_chain_next.count(b_sig))
for (auto b_bit : b_sig.bits())
sigbit_with_non_chain_users.insert(b_bit);
else {
sig_chain_next[b_sig] = cell;
candidate_cells.insert(cell);
}
}
sig_chain_prev[y_sig] = cell;
continue;
}
for (auto conn : cell->connections())
if (cell->input(conn.first))
for (auto bit : sigmap(conn.second))
sigbit_with_non_chain_users.insert(bit);
}
}
void find_chain_start_cells()
{
for (auto cell : candidate_cells)
{
log_debug("Considering %s (%s)\n", log_id(cell), log_id(cell->type));
SigSpec a_sig = cell->getPort("\\A");
if (cell->type == "$mux") {
SigSpec b_sig = cell->getPort("\\B");
if (sig_chain_prev.count(a_sig) + sig_chain_prev.count(b_sig) != 1)
goto start_cell;
if (!sig_chain_prev.count(a_sig))
a_sig = b_sig;
}
else if (cell->type == "$pmux") {
if (!sig_chain_prev.count(a_sig))
goto start_cell;
}
else log_abort();
{
for (auto bit : a_sig.bits())
if (sigbit_with_non_chain_users.count(bit))
goto start_cell;
Cell *c1 = sig_chain_prev.at(a_sig);
Cell *c2 = cell;
if (c1->getParam("\\WIDTH") != c2->getParam("\\WIDTH"))
goto start_cell;
}
continue;
start_cell:
chain_start_cells.insert(cell);
}
}
vector<Cell*> create_chain(Cell *start_cell)
{
vector<Cell*> chain;
Cell *c = start_cell;
while (c != nullptr)
{
chain.push_back(c);
SigSpec y_sig = sigmap(c->getPort("\\Y"));
if (sig_chain_next.count(y_sig) == 0)
break;
c = sig_chain_next.at(y_sig);
if (chain_start_cells.count(c) != 0)
break;
}
return chain;
}
void process_chain(vector<Cell*> &chain)
{
if (GetSize(chain) < 2)
return;
int cursor = 0;
while (cursor < GetSize(chain))
{
int cases = GetSize(chain) - cursor;
Cell *first_cell = chain[cursor];
dict<int, SigBit> taps_dict;
if (cases < 2) {
cursor++;
continue;
}
Cell *last_cell = chain[cursor+cases-1];
log("Converting %s.%s ... %s.%s to a pmux with %d cases.\n",
log_id(module), log_id(first_cell), log_id(module), log_id(last_cell), cases);
mux_count += cases;
pmux_count += 1;
first_cell->type = "$pmux";
SigSpec b_sig = first_cell->getPort("\\B");
SigSpec s_sig = first_cell->getPort("\\S");
for (int i = 1; i < cases; i++) {
Cell* prev_cell = chain[cursor+i-1];
Cell* cursor_cell = chain[cursor+i];
if (sigmap(prev_cell->getPort("\\Y")) == sigmap(cursor_cell->getPort("\\A"))) {
b_sig.append(cursor_cell->getPort("\\B"));
s_sig.append(cursor_cell->getPort("\\S"));
}
else {
b_sig.append(cursor_cell->getPort("\\A"));
s_sig.append(module->LogicNot(NEW_ID, cursor_cell->getPort("\\S")));
}
remove_cells.insert(cursor_cell);
}
first_cell->setPort("\\B", b_sig);
first_cell->setPort("\\S", s_sig);
first_cell->setParam("\\S_WIDTH", GetSize(s_sig));
first_cell->setPort("\\Y", last_cell->getPort("\\Y"));
cursor += cases;
}
}
void cleanup()
{
for (auto cell : remove_cells)
module->remove(cell);
remove_cells.clear();
sig_chain_next.clear();
sig_chain_prev.clear();
chain_start_cells.clear();
candidate_cells.clear();
}
MuxpackWorker(Module *module) :
module(module), sigmap(module), mux_count(0), pmux_count(0)
{
make_sig_chain_next_prev();
find_chain_start_cells();
for (auto c : chain_start_cells) {
vector<Cell*> chain = create_chain(c);
process_chain(chain);
}
cleanup();
}
};
struct MuxpackPass : public Pass {
MuxpackPass() : Pass("muxpack", "$mux/$pmux cascades to $pmux") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" muxpack [selection]\n");
log("\n");
log("This pass converts cascaded chains of $pmux cells (e.g. those create from case\n");
log("constructs) and $mux cells (e.g. those created by if-else constructs) into \n");
log("into $pmux cells.\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
log_header(design, "Executing MUXPACK pass ($mux cell cascades to $pmux).\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
break;
}
extra_args(args, argidx, design);
int mux_count = 0;
int pmux_count = 0;
for (auto module : design->selected_modules()) {
MuxpackWorker worker(module);
mux_count += worker.mux_count;
pmux_count += worker.pmux_count;
}
log("Converted %d (p)mux cells into %d pmux cells.\n", mux_count, pmux_count);
}
} MuxpackPass;
PRIVATE_NAMESPACE_END

View File

@ -42,7 +42,7 @@ struct dff_map_bit_info_t {
bool consider_wire(RTLIL::Wire *wire, std::map<RTLIL::IdString, dff_map_info_t> &dff_dq_map)
{
if (/*wire->name[0] == '$' ||*/ dff_dq_map.count(wire->name))
if (wire->name[0] == '$' || dff_dq_map.count(wire->name))
return false;
if (wire->port_input)
return false;

View File

@ -25,8 +25,7 @@
#define ABC_COMMAND_LIB "strash; ifraig; scorr; dc2; dretime; strash; &get -n; &dch -f; &nf {D}; &put"
#define ABC_COMMAND_CTR "strash; ifraig; scorr; dc2; dretime; strash; &get -n; &dch -f; &nf {D}; &put; buffer; upsize {D}; dnsize {D}; stime -p"
//#define ABC_COMMAND_LUT "strash; ifraig; scorr; dc2; dretime; strash; dch -f; if; mfs2"
//#define ABC_COMMAND_LUT "&st; &sweep; &scorr; &dc2; &retime; &dch -f; &if; &mfs; &ps"
#define ABC_COMMAND_LUT "&st; &scorr; &dc2; &retime; &dch -f; &if; &ps -l -m"
#define ABC_COMMAND_LUT "&st; &sweep; &scorr; "/*"&dc2; */"&retime; &dch -f; &ps -l; &if {W} -v; &ps -l"
#define ABC_COMMAND_SOP "strash; ifraig; scorr; dc2; dretime; strash; dch -f; cover {I} {P}"
#define ABC_COMMAND_DFL "strash; ifraig; scorr; dc2; dretime; strash; &get -n; &dch -f; &nf {D}; &put"
@ -273,7 +272,8 @@ failed:
void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::string script_file, std::string exe_file,
std::string liberty_file, std::string constr_file, bool cleanup, vector<int> lut_costs, bool dff_mode, std::string clk_str,
bool keepff, std::string delay_target, std::string sop_inputs, std::string sop_products, std::string lutin_shared, bool fast_mode,
const std::vector<RTLIL::Cell*> &cells, bool show_tempdir, bool sop_mode, std::string box_file, std::string lut_file)
const std::vector<RTLIL::Cell*> &cells, bool show_tempdir, bool sop_mode, std::string box_file, std::string lut_file,
std::string wire_delay)
{
module = current_module;
map_autoidx = autoidx++;
@ -388,6 +388,9 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
for (size_t pos = abc_script.find("{S}"); pos != std::string::npos; pos = abc_script.find("{S}", pos))
abc_script = abc_script.substr(0, pos) + lutin_shared + abc_script.substr(pos+3);
for (size_t pos = abc_script.find("{W}"); pos != std::string::npos; pos = abc_script.find("{W}", pos))
abc_script = abc_script.substr(0, pos) + wire_delay + abc_script.substr(pos+3);
abc_script += stringf("; &write %s/output.aig", tempdir_name.c_str());
abc_script = add_echos_to_abc_cmd(abc_script);
@ -424,6 +427,21 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
Pass::call(design, stringf("write_xaiger -O -map %s/input.sym %s/input.xaig; ", tempdir_name.c_str(), tempdir_name.c_str()));
#if 0
std::string buffer = stringf("%s/%s", tempdir_name.c_str(), "input.xaig");
std::ifstream ifs;
ifs.open(buffer);
if (ifs.fail())
log_error("Can't open ABC output file `%s'.\n", buffer.c_str());
buffer = stringf("%s/%s", tempdir_name.c_str(), "input.sym");
log_assert(!design->module("$__abc9__"));
AigerReader reader(design, ifs, "$__abc9__", "" /* clk_name */, buffer.c_str() /* map_filename */, false /* wideports */);
reader.parse_xaiger();
ifs.close();
Pass::call(design, stringf("write_verilog -noexpr -norename %s/%s", tempdir_name.c_str(), "input.v"));
design->remove(design->module("$__abc9__"));
#endif
design->selection_stack.pop_back();
// Now 'unexpose' those wires by undoing
@ -453,48 +471,7 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
{
log_header(design, "Executing ABC9.\n");
std::string buffer = stringf("%s/stdcells.genlib", tempdir_name.c_str());
f = fopen(buffer.c_str(), "wt");
if (f == NULL)
log_error("Opening %s for writing failed: %s\n", buffer.c_str(), strerror(errno));
fprintf(f, "GATE ZERO 1 Y=CONST0;\n");
fprintf(f, "GATE ONE 1 Y=CONST1;\n");
fprintf(f, "GATE BUF %d Y=A; PIN * NONINV 1 999 1 0 1 0\n", get_cell_cost("$_BUF_"));
fprintf(f, "GATE NOT %d Y=!A; PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_NOT_"));
if (enabled_gates.empty() || enabled_gates.count("AND"))
fprintf(f, "GATE AND %d Y=A*B; PIN * NONINV 1 999 1 0 1 0\n", get_cell_cost("$_AND_"));
if (enabled_gates.empty() || enabled_gates.count("NAND"))
fprintf(f, "GATE NAND %d Y=!(A*B); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_NAND_"));
if (enabled_gates.empty() || enabled_gates.count("OR"))
fprintf(f, "GATE OR %d Y=A+B; PIN * NONINV 1 999 1 0 1 0\n", get_cell_cost("$_OR_"));
if (enabled_gates.empty() || enabled_gates.count("NOR"))
fprintf(f, "GATE NOR %d Y=!(A+B); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_NOR_"));
if (enabled_gates.empty() || enabled_gates.count("XOR"))
fprintf(f, "GATE XOR %d Y=(A*!B)+(!A*B); PIN * UNKNOWN 1 999 1 0 1 0\n", get_cell_cost("$_XOR_"));
if (enabled_gates.empty() || enabled_gates.count("XNOR"))
fprintf(f, "GATE XNOR %d Y=(A*B)+(!A*!B); PIN * UNKNOWN 1 999 1 0 1 0\n", get_cell_cost("$_XNOR_"));
if (enabled_gates.empty() || enabled_gates.count("ANDNOT"))
fprintf(f, "GATE ANDNOT %d Y=A*!B; PIN * UNKNOWN 1 999 1 0 1 0\n", get_cell_cost("$_ANDNOT_"));
if (enabled_gates.empty() || enabled_gates.count("ORNOT"))
fprintf(f, "GATE ORNOT %d Y=A+!B; PIN * UNKNOWN 1 999 1 0 1 0\n", get_cell_cost("$_ORNOT_"));
if (enabled_gates.empty() || enabled_gates.count("AOI3"))
fprintf(f, "GATE AOI3 %d Y=!((A*B)+C); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_AOI3_"));
if (enabled_gates.empty() || enabled_gates.count("OAI3"))
fprintf(f, "GATE OAI3 %d Y=!((A+B)*C); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_OAI3_"));
if (enabled_gates.empty() || enabled_gates.count("AOI4"))
fprintf(f, "GATE AOI4 %d Y=!((A*B)+(C*D)); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_AOI4_"));
if (enabled_gates.empty() || enabled_gates.count("OAI4"))
fprintf(f, "GATE OAI4 %d Y=!((A+B)*(C+D)); PIN * INV 1 999 1 0 1 0\n", get_cell_cost("$_OAI4_"));
if (enabled_gates.empty() || enabled_gates.count("MUX"))
fprintf(f, "GATE MUX %d Y=(A*B)+(S*B)+(!S*A); PIN * UNKNOWN 1 999 1 0 1 0\n", get_cell_cost("$_MUX_"));
if (map_mux4)
fprintf(f, "GATE MUX4 %d Y=(!S*!T*A)+(S*!T*B)+(!S*T*C)+(S*T*D); PIN * UNKNOWN 1 999 1 0 1 0\n", 2*get_cell_cost("$_MUX_"));
if (map_mux8)
fprintf(f, "GATE MUX8 %d Y=(!S*!T*!U*A)+(S*!T*!U*B)+(!S*T*!U*C)+(S*T*!U*D)+(!S*!T*U*E)+(S*!T*U*F)+(!S*T*U*G)+(S*T*U*H); PIN * UNKNOWN 1 999 1 0 1 0\n", 4*get_cell_cost("$_MUX_"));
if (map_mux16)
fprintf(f, "GATE MUX16 %d Y=(!S*!T*!U*!V*A)+(S*!T*!U*!V*B)+(!S*T*!U*!V*C)+(S*T*!U*!V*D)+(!S*!T*U*!V*E)+(S*!T*U*!V*F)+(!S*T*U*!V*G)+(S*T*U*!V*H)+(!S*!T*!U*V*I)+(S*!T*!U*V*J)+(!S*T*!U*V*K)+(S*T*!U*V*L)+(!S*!T*U*V*M)+(S*!T*U*V*N)+(!S*T*U*V*O)+(S*T*U*V*P); PIN * UNKNOWN 1 999 1 0 1 0\n", 8*get_cell_cost("$_MUX_"));
fclose(f);
std::string buffer;
if (!lut_costs.empty()) {
buffer = stringf("%s/lutdefs.txt", tempdir_name.c_str());
f = fopen(buffer.c_str(), "wt");
@ -536,19 +513,21 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
log_error("Can't open ABC output file `%s'.\n", buffer.c_str());
bool builtin_lib = liberty_file.empty();
RTLIL::Design *mapped_design = new RTLIL::Design;
//parse_blif(mapped_design, ifs, builtin_lib ? "\\DFF" : "\\_dff_", false, sop_mode);
buffer = stringf("%s/%s", tempdir_name.c_str(), "input.sym");
AigerReader reader(mapped_design, ifs, "\\netlist", "" /* clk_name */, buffer.c_str() /* map_filename */, true /* wideports */);
log_assert(!design->module("$__abc9__"));
AigerReader reader(design, ifs, "$__abc9__", "" /* clk_name */, buffer.c_str() /* map_filename */, false /* wideports */);
reader.parse_xaiger();
ifs.close();
#if 0
Pass::call(design, stringf("write_verilog -noexpr -norename %s/%s", tempdir_name.c_str(), "output.v"));
#endif
log_header(design, "Re-integrating ABC9 results.\n");
RTLIL::Module *mapped_mod = mapped_design->modules_["\\netlist"];
RTLIL::Module *mapped_mod = design->module("$__abc9__");
if (mapped_mod == NULL)
log_error("ABC output file does not contain a module `netlist'.\n");
Pass::call(mapped_design, "clean");
log_error("ABC output file does not contain a module `$__abc9__'.\n");
pool<RTLIL::SigBit> output_bits;
for (auto &it : mapped_mod->wires_) {
@ -564,7 +543,7 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
else {
// Attempt another wideports_split here because there
// exists the possibility that different bits of a port
// could be an input and output, therefore parse_xiager()
// could be an input and output, therefore parse_xaiger()
// could not combine it into a wideport
auto r = wideports_split(w->name.str());
wire = module->wire(r.first);
@ -575,6 +554,33 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
}
}
// Remove all AND, NOT, and ABC box instances
// in preparation for stitching mapped_mod in
dict<IdString, decltype(RTLIL::Cell::parameters)> erased_boxes;
for (auto it = module->cells_.begin(); it != module->cells_.end(); ) {
RTLIL::Cell* cell = it->second;
if (cell->type.in("$_AND_", "$_NOT_")) {
it = module->cells_.erase(it);
continue;
}
RTLIL::Module* box_module = design->module(cell->type);
if (box_module && box_module->attributes.count("\\abc_box_id")) {
erased_boxes.insert(std::make_pair(it->first, std::move(cell->parameters)));
it = module->cells_.erase(it);
continue;
}
++it;
}
// Do the same for module connections
for (auto &it : module->connections_) {
auto &signal = it.first;
auto bits = signal.bits();
for (auto &b : bits)
if (output_bits.count(b))
b = module->addWire(NEW_ID);
signal = std::move(bits);
}
std::map<std::string, int> cell_stats;
for (auto c : mapped_mod->cells())
{
@ -584,31 +590,39 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
RTLIL::Cell *cell;
RTLIL::SigBit a_bit = c->getPort("\\A").as_bit();
RTLIL::SigBit y_bit = c->getPort("\\Y").as_bit();
if (!lut_costs.empty() || !lut_file.empty()) {
if (!a_bit.wire) {
c->setPort("\\Y", module->addWire(NEW_ID));
module->connect(module->wires_[remap_name(y_bit.wire->name)], RTLIL::S1);
}
else if (!lut_costs.empty() || !lut_file.empty()) {
RTLIL::Cell* driving_lut = nullptr;
// ABC can return NOT gates that drive POs
if (a_bit.wire->port_input) {
// If it's a NOT gate that comes from a primary input directly
// then implement it using a LUT
cell = module->addLut(remap_name(stringf("%s$lut", c->name.c_str())),
RTLIL::SigBit(module->wires_[remap_name(a_bit.wire->name)], a_bit.offset),
RTLIL::SigBit(module->wires_[remap_name(y_bit.wire->name)], y_bit.offset),
1);
}
else {
// Otherwise, clone the driving LUT to guarantee that we
// won't increase the max logic depth
if (!a_bit.wire->port_input) {
// If it's not a NOT gate that that comes from a PI directly,
// find the driving LUT and clone that to guarantee that we won't
// increase the max logic depth
// (TODO: Optimise by not cloning unless will increase depth)
RTLIL::IdString driver_name;
if (GetSize(a_bit.wire) == 1)
driver_name = stringf("%s$lut", a_bit.wire->name.c_str());
else
driver_name = stringf("%s[%d]$lut", a_bit.wire->name.c_str(), a_bit.offset);
RTLIL::Cell* driver = mapped_mod->cell(driver_name);
log_assert(driver);
auto driver_a = driver->getPort("\\A").chunks();
driving_lut = mapped_mod->cell(driver_name);
}
if (!driving_lut) {
// If a driver couldn't be found (could be from PI,
// or from a box) then implement using a LUT
cell = module->addLut(remap_name(stringf("%s$lut", c->name.c_str())),
RTLIL::SigBit(module->wires_[remap_name(a_bit.wire->name)], a_bit.offset),
RTLIL::SigBit(module->wires_[remap_name(y_bit.wire->name)], y_bit.offset),
1);
}
else {
auto driver_a = driving_lut->getPort("\\A").chunks();
for (auto &chunk : driver_a)
chunk.wire = module->wires_[remap_name(chunk.wire->name)];
RTLIL::Const driver_lut = driver->getParam("\\LUT");
RTLIL::Const driver_lut = driving_lut->getParam("\\LUT");
for (auto &b : driver_lut.bits) {
if (b == RTLIL::State::S0) b = RTLIL::State::S1;
else if (b == RTLIL::State::S1) b = RTLIL::State::S0;
@ -618,7 +632,6 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
RTLIL::SigBit(module->wires_[remap_name(y_bit.wire->name)], y_bit.offset),
driver_lut);
}
cell_stats["$lut"]++;
}
else {
cell = module->addCell(remap_name(c->name), "$_NOT_");
@ -629,168 +642,24 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx;
continue;
}
}
cell_stats[RTLIL::unescape_id(c->type)]++;
cell_stats[RTLIL::unescape_id(c->type)]++;
if (c->type == "\\ZERO" || c->type == "\\ONE") {
RTLIL::SigSig conn;
conn.first = RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]);
conn.second = RTLIL::SigSpec(c->type == "\\ZERO" ? 0 : 1, 1);
module->connect(conn);
continue;
}
if (c->type == "\\BUF") {
RTLIL::SigSig conn;
conn.first = RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]);
conn.second = RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)]);
module->connect(conn);
continue;
}
if (c->type == "\\AND" || c->type == "\\OR" || c->type == "\\XOR" || c->type == "\\NAND" || c->type == "\\NOR" ||
c->type == "\\XNOR" || c->type == "\\ANDNOT" || c->type == "\\ORNOT") {
RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_" + c->type.substr(1) + "_");
if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx;
cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)]));
cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)]));
cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]));
continue;
}
if (c->type == "\\MUX") {
RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_MUX_");
if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx;
cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)]));
cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)]));
cell->setPort("\\S", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\S").as_wire()->name)]));
cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]));
continue;
}
if (c->type == "\\MUX4") {
RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_MUX4_");
if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx;
cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)]));
cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)]));
cell->setPort("\\C", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\C").as_wire()->name)]));
cell->setPort("\\D", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\D").as_wire()->name)]));
cell->setPort("\\S", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\S").as_wire()->name)]));
cell->setPort("\\T", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\T").as_wire()->name)]));
cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]));
continue;
}
if (c->type == "\\MUX8") {
RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_MUX8_");
if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx;
cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)]));
cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)]));
cell->setPort("\\C", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\C").as_wire()->name)]));
cell->setPort("\\D", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\D").as_wire()->name)]));
cell->setPort("\\E", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\E").as_wire()->name)]));
cell->setPort("\\F", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\F").as_wire()->name)]));
cell->setPort("\\G", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\G").as_wire()->name)]));
cell->setPort("\\H", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\H").as_wire()->name)]));
cell->setPort("\\S", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\S").as_wire()->name)]));
cell->setPort("\\T", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\T").as_wire()->name)]));
cell->setPort("\\U", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\U").as_wire()->name)]));
cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]));
continue;
}
if (c->type == "\\MUX16") {
RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_MUX16_");
if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx;
cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)]));
cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)]));
cell->setPort("\\C", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\C").as_wire()->name)]));
cell->setPort("\\D", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\D").as_wire()->name)]));
cell->setPort("\\E", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\E").as_wire()->name)]));
cell->setPort("\\F", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\F").as_wire()->name)]));
cell->setPort("\\G", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\G").as_wire()->name)]));
cell->setPort("\\H", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\H").as_wire()->name)]));
cell->setPort("\\I", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\I").as_wire()->name)]));
cell->setPort("\\J", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\J").as_wire()->name)]));
cell->setPort("\\K", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\K").as_wire()->name)]));
cell->setPort("\\L", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\L").as_wire()->name)]));
cell->setPort("\\M", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\M").as_wire()->name)]));
cell->setPort("\\N", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\N").as_wire()->name)]));
cell->setPort("\\O", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\O").as_wire()->name)]));
cell->setPort("\\P", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\P").as_wire()->name)]));
cell->setPort("\\S", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\S").as_wire()->name)]));
cell->setPort("\\T", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\T").as_wire()->name)]));
cell->setPort("\\U", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\U").as_wire()->name)]));
cell->setPort("\\V", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\V").as_wire()->name)]));
cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]));
continue;
}
if (c->type == "\\AOI3" || c->type == "\\OAI3") {
RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_" + c->type.substr(1) + "_");
if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx;
cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)]));
cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)]));
cell->setPort("\\C", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\C").as_wire()->name)]));
cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]));
continue;
}
if (c->type == "\\AOI4" || c->type == "\\OAI4") {
RTLIL::Cell *cell = module->addCell(remap_name(c->name), "$_" + c->type.substr(1) + "_");
if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx;
cell->setPort("\\A", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\A").as_wire()->name)]));
cell->setPort("\\B", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\B").as_wire()->name)]));
cell->setPort("\\C", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\C").as_wire()->name)]));
cell->setPort("\\D", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\D").as_wire()->name)]));
cell->setPort("\\Y", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)]));
continue;
}
if (c->type == "\\DFF") {
log_assert(clk_sig.size() == 1);
RTLIL::Cell *cell;
if (en_sig.size() == 0) {
cell = module->addCell(remap_name(c->name), clk_polarity ? "$_DFF_P_" : "$_DFF_N_");
} else {
log_assert(en_sig.size() == 1);
cell = module->addCell(remap_name(c->name), stringf("$_DFFE_%c%c_", clk_polarity ? 'P' : 'N', en_polarity ? 'P' : 'N'));
cell->setPort("\\E", en_sig);
}
if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx;
cell->setPort("\\D", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\D").as_wire()->name)]));
cell->setPort("\\Q", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Q").as_wire()->name)]));
cell->setPort("\\C", clk_sig);
if (c->type == "$lut") {
if (GetSize(c->getPort("\\A")) == 1 && c->getParam("\\LUT").as_int() == 2) {
SigSpec my_a = module->wires_[remap_name(c->getPort("\\A").as_wire()->name)];
SigSpec my_y = module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)];
module->connect(my_y, my_a);
continue;
}
}
else
cell_stats[RTLIL::unescape_id(c->type)]++;
else {
auto it = erased_boxes.find(c->name);
log_assert(it != erased_boxes.end());
c->parameters = std::move(it->second);
}
if (c->type == "\\_const0_" || c->type == "\\_const1_") {
RTLIL::SigSig conn;
conn.first = RTLIL::SigSpec(module->wires_[remap_name(c->connections().begin()->second.as_wire()->name)]);
conn.second = RTLIL::SigSpec(c->type == "\\_const0_" ? 0 : 1, 1);
module->connect(conn);
continue;
}
if (c->type == "\\_dff_") {
log_assert(clk_sig.size() == 1);
RTLIL::Cell *cell;
if (en_sig.size() == 0) {
cell = module->addCell(remap_name(c->name), clk_polarity ? "$_DFF_P_" : "$_DFF_N_");
} else {
log_assert(en_sig.size() == 1);
cell = module->addCell(remap_name(c->name), stringf("$_DFFE_%c%c_", clk_polarity ? 'P' : 'N', en_polarity ? 'P' : 'N'));
cell->setPort("\\E", en_sig);
}
if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx;
cell->setPort("\\D", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\D").as_wire()->name)]));
cell->setPort("\\Q", RTLIL::SigSpec(module->wires_[remap_name(c->getPort("\\Q").as_wire()->name)]));
cell->setPort("\\C", clk_sig);
continue;
}
if (c->type == "$lut" && GetSize(c->getPort("\\A")) == 1 && c->getParam("\\LUT").as_int() == 2) {
SigSpec my_a = module->wires_[remap_name(c->getPort("\\A").as_wire()->name)];
SigSpec my_y = module->wires_[remap_name(c->getPort("\\Y").as_wire()->name)];
module->connect(my_y, my_a);
continue;
}
RTLIL::Cell *cell = module->addCell(remap_name(c->name), c->type);
RTLIL::Cell* cell = module->addCell(remap_name(c->name), c->type);
if (markgroups) cell->attributes["\\abcgroup"] = map_autoidx;
cell->parameters = c->parameters;
for (auto &conn : c->connections()) {
@ -799,7 +668,8 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
if (c.width == 0)
continue;
//log_assert(c.width == 1);
c.wire = module->wires_[remap_name(c.wire->name)];
if (c.wire)
c.wire = module->wires_[remap_name(c.wire->name)];
newsig.append(c);
}
cell->setPort(conn.first, newsig);
@ -836,49 +706,6 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
for (auto &it : cell_stats)
log("ABC RESULTS: %15s cells: %8d\n", it.first.c_str(), it.second);
int in_wires = 0, out_wires = 0;
//for (auto &si : signal_list)
// if (si.is_port) {
// char buffer[100];
// snprintf(buffer, 100, "\\n%d", si.id);
// RTLIL::SigSig conn;
// if (si.type != G(NONE)) {
// conn.first = si.bit;
// conn.second = RTLIL::SigSpec(module->wires_[remap_name(buffer)]);
// out_wires++;
// } else {
// conn.first = RTLIL::SigSpec(module->wires_[remap_name(buffer)]);
// conn.second = si.bit;
// in_wires++;
// }
// module->connect(conn);
// }
// Go through all AND and NOT output connections,
// and for those output ports driving wires
// also driven by mapped_mod, disconnect them
for (auto cell : module->cells()) {
if (!cell->type.in("$_AND_", "$_NOT_"))
continue;
for (auto &it : cell->connections_) {
auto port_name = it.first;
if (!cell->output(port_name)) continue;
auto &signal = it.second;
auto bits = signal.bits();
for (auto &b : bits)
if (output_bits.count(b))
b = module->addWire(NEW_ID);
signal = std::move(bits);
}
}
// Do the same for module connections
for (auto &it : module->connections_) {
auto &signal = it.first;
auto bits = signal.bits();
for (auto &b : bits)
if (output_bits.count(b))
b = module->addWire(NEW_ID);
signal = std::move(bits);
}
// Stitch in mapped_mod's inputs/outputs into module
for (auto &it : mapped_mod->wires_) {
@ -894,7 +721,7 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
else {
// Attempt another wideports_split here because there
// exists the possibility that different bits of a port
// could be an input and output, therefore parse_xiager()
// could be an input and output, therefore parse_xaiger()
// could not combine it into a wideport
auto r = wideports_split(w->name.str());
wire = module->wire(r.first);
@ -924,7 +751,7 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
log("ABC RESULTS: input signals: %8d\n", in_wires);
log("ABC RESULTS: output signals: %8d\n", out_wires);
delete mapped_design;
design->remove(mapped_mod);
}
//else
//{
@ -1137,12 +964,17 @@ struct Abc9Pass : public Pass {
std::string exe_file = proc_self_dirname() + "yosys-abc";
#endif
std::string script_file, liberty_file, constr_file, clk_str, box_file, lut_file;
std::string delay_target, sop_inputs, sop_products, lutin_shared = "-S 1";
std::string delay_target, sop_inputs, sop_products, lutin_shared = "-S 1", wire_delay;
bool fast_mode = false, dff_mode = false, keepff = false, cleanup = true;
bool show_tempdir = false, sop_mode = false;
vector<int> lut_costs;
markgroups = false;
#if 0
cleanup = false;
show_tempdir = true;
#endif
map_mux4 = false;
map_mux8 = false;
map_mux16 = false;
@ -1386,6 +1218,10 @@ struct Abc9Pass : public Pass {
box_file = std::string(pwd) + "/" + box_file;
continue;
}
if (arg == "-W" && argidx+1 < args.size()) {
wire_delay = "-S " + args[++argidx];
continue;
}
break;
}
extra_args(args, argidx, design);
@ -1428,7 +1264,7 @@ struct Abc9Pass : public Pass {
if (!dff_mode || !clk_str.empty()) {
abc9_module(design, mod, script_file, exe_file, liberty_file, constr_file, cleanup, lut_costs, dff_mode, clk_str, keepff,
delay_target, sop_inputs, sop_products, lutin_shared, fast_mode, mod->selected_cells(), show_tempdir, sop_mode,
box_file, lut_file);
box_file, lut_file, wire_delay);
continue;
}
@ -1574,7 +1410,7 @@ struct Abc9Pass : public Pass {
en_sig = assign_map(std::get<3>(it.first));
abc9_module(design, mod, script_file, exe_file, liberty_file, constr_file, cleanup, lut_costs, !clk_sig.empty(), "$",
keepff, delay_target, sop_inputs, sop_products, lutin_shared, fast_mode, it.second, show_tempdir, sop_mode,
box_file, lut_file);
box_file, lut_file, wire_delay);
assign_map.set(mod);
}
}

View File

@ -293,10 +293,13 @@ struct ShregmapWorker
if (opts.init || sigbit_init.count(q_bit) == 0)
{
if (sigbit_chain_next.count(d_bit)) {
auto r = sigbit_chain_next.insert(std::make_pair(d_bit, cell));
if (!r.second) {
sigbit_with_non_chain_users.insert(d_bit);
} else
sigbit_chain_next[d_bit] = cell;
Wire *wire = module->addWire(NEW_ID);
module->connect(wire, d_bit);
sigbit_chain_next.insert(std::make_pair(wire, cell));
}
sigbit_chain_prev[q_bit] = cell;
continue;

View File

@ -4,7 +4,7 @@
# Inputs: C D
# Outputs: Q
SB_DFF 1 1 2 1
SB_DFF 1 0 2 1
- -
# Inputs: C D E
@ -109,5 +109,5 @@ SB_CARRY 21 1 3 1
# Inputs: I0 I1 I2 I3
# Outputs: O
SB_LUT4 22 0 4 1
SB_LUT4 22 1 4 1
449 400 379 316

View File

@ -4,7 +4,7 @@
# Inputs: C D
# Outputs: Q
SB_DFF 1 1 2 1
SB_DFF 1 0 2 1
- -
# Inputs: C D E
@ -109,5 +109,5 @@ SB_CARRY 21 1 3 1
# Inputs: I0 I1 I2 I3
# Outputs: O
SB_LUT4 22 0 4 1
SB_LUT4 22 1 4 1
465 558 589 661

View File

@ -4,7 +4,7 @@
# Inputs: C D
# Outputs: Q
SB_DFF 1 1 2 1
SB_DFF 1 0 2 1
- -
# Inputs: C D E
@ -109,5 +109,5 @@ SB_CARRY 21 1 3 1
# Inputs: I0 I1 I2 I3
# Outputs: O
SB_LUT4 22 0 4 1
SB_LUT4 22 1 4 1
1285 1231 1205 874

View File

@ -53,7 +53,7 @@ module \$lut (A, Y);
end else
if (WIDTH == 4) begin
localparam [15:0] INIT = {LUT[15], LUT[7], LUT[11], LUT[3], LUT[13], LUT[5], LUT[9], LUT[1], LUT[14], LUT[6], LUT[10], LUT[2], LUT[12], LUT[4], LUT[8], LUT[0]};
SB_LUT4 #(.LUT_INIT(LUT)) _TECHMAP_REPLACE_ (.O(Y),
SB_LUT4 #(.LUT_INIT(INIT)) _TECHMAP_REPLACE_ (.O(Y),
.I0(A[3]), .I1(A[2]), .I2(A[1]), .I3(A[0]));
end else begin
wire _TECHMAP_FAIL_ = 1;

View File

@ -127,7 +127,7 @@ endmodule
// SiliconBlue Logic Cells
(* abc_box_id = 22 *)
(* abc_box_id = 22, lib_whitebox *)
module SB_LUT4 (output O, input I0, I1, I2, I3);
parameter [15:0] LUT_INIT = 0;
wire [7:0] s3 = I3 ? LUT_INIT[15:8] : LUT_INIT[7:0];
@ -136,8 +136,8 @@ module SB_LUT4 (output O, input I0, I1, I2, I3);
assign O = I0 ? s1[1] : s1[0];
endmodule
(* abc_box_id = 21, lib_whitebox *)
module SB_CARRY (output CO, input I0, I1, CI);
(* abc_box_id = 21, abc_carry, lib_whitebox *)
module SB_CARRY ((* abc_carry_out *) output CO, input I0, I1, (* abc_carry_in *) input CI);
assign CO = (I0 && I1) || ((I0 || I1) && CI);
endmodule
@ -145,7 +145,7 @@ endmodule
(* abc_box_id = 1, abc_flop, lib_whitebox *)
module SB_DFF ((* abc_flop_q *) output `SB_DFF_REG, input C, (* abc_flop_d *) input D);
`ifndef ABC_MODEL
`ifndef _ABC
always @(posedge C)
Q <= D;
`else

View File

@ -240,7 +240,7 @@ struct SynthIce40Pass : public ScriptPass
{
if (check_label("begin"))
{
run("read_verilog -lib -D ABC_MODEL +/ice40/cells_sim.v");
run("read_verilog -lib -D_ABC +/ice40/cells_sim.v");
run(stringf("hierarchy -check %s", help_mode ? "-top <top>" : top_opt.c_str()));
run("proc");
}
@ -334,7 +334,7 @@ struct SynthIce40Pass : public ScriptPass
if (abc == "abc9")
run(abc + stringf(" -dress -lut +/ice40/abc_%s.lut -box +/ice40/abc_%s.box", device_opt.c_str(), device_opt.c_str()), "(skip if -noabc)");
else
run(abc + " -lut 4", "(skip if -noabc)");
run(abc + " -dress -lut 4", "(skip if -noabc)");
}
run("clean");
if (relut || help_mode) {

View File

@ -30,6 +30,9 @@ $(eval $(call add_share_file,share/xilinx,techlibs/xilinx/drams_map.v))
$(eval $(call add_share_file,share/xilinx,techlibs/xilinx/arith_map.v))
$(eval $(call add_share_file,share/xilinx,techlibs/xilinx/ff_map.v))
$(eval $(call add_share_file,share/xilinx,techlibs/xilinx/lut_map.v))
$(eval $(call add_share_file,share/xilinx,techlibs/xilinx/mux_map.v))
$(eval $(call add_share_file,share/xilinx,techlibs/xilinx/abc.box))
$(eval $(call add_share_file,share/xilinx,techlibs/xilinx/abc.lut))
$(eval $(call add_gen_share_file,share/xilinx,techlibs/xilinx/brams_init_36.vh))
$(eval $(call add_gen_share_file,share/xilinx,techlibs/xilinx/brams_init_32.vh))

62
techlibs/xilinx/abc.box Normal file
View File

@ -0,0 +1,62 @@
# Max delays from https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf
# F7BMUX slower than F7AMUX
# Inputs: I0 I1 S0
# Outputs: O
F7BMUX 1 1 3 1
217 223 296
# Inputs: I0 I1 S0
# Outputs: O
MUXF8 2 1 3 1
104 94 273
# CARRY4 + CARRY4_[ABCD]X
# Inputs: S0 S1 S2 S3 CYINIT DI0 DI1 DI2 DI3 CI
# Outputs: O0 O1 O2 O3 CO0 CO1 CO2 CO3
# (NB: carry chain input/output must be last input/output,
# swapped with what normally would have been the last
# output, here: CI <-> S, CO <-> O
CARRY4 3 1 10 8
223 - - - 482 - - - - 222
400 205 - - 598 407 - - - 334
523 558 226 - 584 556 537 - - 239
582 618 330 227 642 615 596 438 - 313
340 - - - 536 379 - - - 271
433 469 - - 494 465 445 - - 157
512 548 292 - 592 540 520 356 - 228
508 528 378 380 580 526 507 398 385 114
# SLICEM/A6LUT
# Inputs: A0 A1 A2 A3 A4 A5 D DPRA0 DPRA1 DPRA2 DPRA3 DPRA4 DPRA5 WCLK WE
# Outputs: DPO SPO
RAM64X1D 4 0 15 2
- - - - - - - 124 124 124 124 124 124 - -
124 124 124 124 124 124 - - - - - - 124 - -
# SLICEM/A6LUT + F7[AB]MUX
# Inputs: A0 A1 A2 A3 A4 A5 A6 D DPRA0 DPRA1 DPRA2 DPRA3 DPRA4 DPRA5 DPRA6 WCLK WE
# Outputs: DPO SPO
RAM128X1D 5 0 17 2
- - - - - - - - 314 314 314 314 314 314 292 - -
347 347 347 347 347 347 296 - - - - - - - - - -
# Inputs: C CE D R
# Outputs: Q
FDRE 6 0 4 1
- - - -
# Inputs: C CE D S
# Outputs: Q
FDSE 7 0 4 1
- - - -
# Inputs: C CE CLR D
# Outputs: Q
FDCE 8 0 4 1
- - 404 -
# Inputs: C CE D PRE
# Outputs: Q
FDPE 9 0 4 1
- - - 404

14
techlibs/xilinx/abc.lut Normal file
View File

@ -0,0 +1,14 @@
# Max delays from https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf
# K area delay
1 1 124
2 2 124 235
3 3 124 235 399
4 3 124 235 399 490
5 3 124 235 399 490 620
6 5 124 235 399 490 620 632
# F7BMUX
7 10 296 420 531 695 756 916 928
# F8MUX
# F8MUX+F7BMUX
8 20 273 569 693 804 968 1029 1189 1201

View File

@ -180,7 +180,7 @@ module _80_xilinx_alu (A, B, CI, BI, X, Y, CO);
// First one
if (i == 0) begin
CARRY4 #(.IS_INITIALIZED(1'd1)) carry4_1st_part
CARRY4 carry4_1st_part
(
.CYINIT(CI),
.CI (1'd0),
@ -207,7 +207,7 @@ module _80_xilinx_alu (A, B, CI, BI, X, Y, CO);
// First one
if (i == 0) begin
CARRY4 #(.IS_INITIALIZED(1'd1)) carry4_1st_full
CARRY4 carry4_1st_full
(
.CYINIT(CI),
.CI (1'd0),

View File

@ -19,10 +19,10 @@ module RAMB18E1 (
input [1:0] WEA,
input [3:0] WEBWE,
output [15:0] DOADO,
output [15:0] DOBDO,
output [1:0] DOPADOP,
output [1:0] DOPBDOP
(* abc_flop_q *) output [15:0] DOADO,
(* abc_flop_q *) output [15:0] DOBDO,
(* abc_flop_q *) output [1:0] DOPADOP,
(* abc_flop_q *) output [1:0] DOPBDOP
);
parameter INITP_00 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INITP_01 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
@ -143,10 +143,10 @@ module RAMB36E1 (
input [3:0] WEA,
input [7:0] WEBWE,
output [31:0] DOADO,
output [31:0] DOBDO,
output [3:0] DOPADOP,
output [3:0] DOPBDOP
(* abc_flop_q *) output [31:0] DOADO,
(* abc_flop_q *) output [31:0] DOBDO,
(* abc_flop_q *) output [3:0] DOPADOP,
(* abc_flop_q *) output [3:0] DOPBDOP
);
parameter INITP_00 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INITP_01 = 256'h0000000000000000000000000000000000000000000000000000000000000000;

View File

@ -2,6 +2,7 @@
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* 2019 Eddie Hung <eddie@fpgeh.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
@ -17,16 +18,6 @@
*
*/
// Convert negative-polarity reset to positive-polarity
(* techmap_celltype = "$_DFF_NN0_" *)
module _90_dff_nn0_to_np0 (input D, C, R, output Q); \$_DFF_NP0_ _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
(* techmap_celltype = "$_DFF_PN0_" *)
module _90_dff_pn0_to_pp0 (input D, C, R, output Q); \$_DFF_PP0_ _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
(* techmap_celltype = "$_DFF_NN1_" *)
module _90_dff_nn1_to_np1 (input D, C, R, output Q); \$_DFF_NP1 _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
(* techmap_celltype = "$_DFF_PN1_" *)
module _90_dff_pn1_to_pp1 (input D, C, R, output Q); \$_DFF_PP1 _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
module \$__SHREG_ (input C, input D, input E, output Q);
parameter DEPTH = 0;
parameter [DEPTH-1:0] INIT = 0;
@ -88,7 +79,7 @@ module \$__XILINX_SHREG_ (input C, input D, input [31:0] L, input E, output Q, o
end else
if (DEPTH > 65 && DEPTH <= 96) begin
wire T0, T1, T2, T3, T4, T5, T6;
SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1));
SRLC32E #(.INIT(INIT_R[32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
\$__XILINX_SHREG_ #(.DEPTH(DEPTH-64), .INIT(INIT[DEPTH-64-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_2 (.C(C), .D(T3), .L(L[4:0]), .E(E), .Q(T4));
if (&_TECHMAP_CONSTMSK_L_)
@ -101,7 +92,7 @@ module \$__XILINX_SHREG_ (input C, input D, input [31:0] L, input E, output Q, o
end else
if (DEPTH > 97 && DEPTH < 128) begin
wire T0, T1, T2, T3, T4, T5, T6, T7, T8;
SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1));
SRLC32E #(.INIT(INIT_R[32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
SRLC32E #(.INIT(INIT_R[96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5));
\$__XILINX_SHREG_ #(.DEPTH(DEPTH-96), .INIT(INIT[DEPTH-96-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_3 (.C(C), .D(T5), .L(L[4:0]), .E(E), .Q(T6));
@ -115,9 +106,9 @@ module \$__XILINX_SHREG_ (input C, input D, input [31:0] L, input E, output Q, o
end
else if (DEPTH == 128) begin
wire T0, T1, T2, T3, T4, T5, T6;
SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1));
SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
SRLC32E #(.INIT(INIT_R[96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5));
SRLC32E #(.INIT(INIT_R[ 32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
SRLC32E #(.INIT(INIT_R[ 64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
SRLC32E #(.INIT(INIT_R[ 96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5));
SRLC32E #(.INIT(INIT_R[128-1:96]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_3 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T5), .Q(T6), .Q31(SO));
if (&_TECHMAP_CONSTMSK_L_)
assign Q = T6;
@ -152,5 +143,122 @@ module \$__XILINX_SHREG_ (input C, input D, input [31:0] L, input E, output Q, o
endgenerate
endmodule
`ifndef SRL_ONLY
`endif
module \$__XILINX_SHIFTX (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
parameter [A_WIDTH-1:0] _TECHMAP_CONSTMSK_A_ = 0;
parameter [A_WIDTH-1:0] _TECHMAP_CONSTVAL_A_ = 0;
parameter [B_WIDTH-1:0] _TECHMAP_CONSTMSK_B_ = 0;
parameter [B_WIDTH-1:0] _TECHMAP_CONSTVAL_B_ = 0;
function integer compute_num_leading_X_in_A;
integer i, c;
begin
compute_num_leading_X_in_A = 0;
c = 1;
for (i = A_WIDTH-1; i >= 0; i=i-1) begin
if (!_TECHMAP_CONSTMSK_A_[i] || _TECHMAP_CONSTVAL_A_[i] !== 1'bx)
c = 0;
compute_num_leading_X_in_A = compute_num_leading_X_in_A + c;
end
end
endfunction
localparam num_leading_X_in_A = compute_num_leading_X_in_A();
generate
genvar i, j;
// Bit-blast
if (Y_WIDTH > 1) begin
for (i = 0; i < Y_WIDTH; i++)
\$__XILINX_SHIFTX #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH-Y_WIDTH+1), .B_WIDTH(B_WIDTH), .Y_WIDTH(1'd1)) bitblast (.A(A[A_WIDTH-Y_WIDTH+i:i]), .B(B), .Y(Y[i]));
end
// If the LSB of B is constant zero (and Y_WIDTH is 1) then
// we can optimise by removing every other entry from A
// and popping the constant zero from B
else if (_TECHMAP_CONSTMSK_B_[0] && !_TECHMAP_CONSTVAL_B_[0]) begin
wire [(A_WIDTH+1)/2-1:0] A_i;
for (i = 0; i < (A_WIDTH+1)/2; i++)
assign A_i[i] = A[i*2];
\$__XILINX_SHIFTX #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH((A_WIDTH+1'd1)/2'd2), .B_WIDTH(B_WIDTH-1'd1), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A_i), .B(B[B_WIDTH-1:1]), .Y(Y));
end
// Trim off any leading 1'bx -es in A, and resize B accordingly
else if (num_leading_X_in_A > 0) begin
localparam A_WIDTH_new = A_WIDTH - num_leading_X_in_A;
localparam B_WIDTH_new = $clog2(A_WIDTH_new);
\$__XILINX_SHIFTX #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH_new), .B_WIDTH(B_WIDTH_new), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A[A_WIDTH_new-1:0]), .B(B[B_WIDTH_new-1:0]), .Y(Y));
end
else if (B_WIDTH < 3 || A_WIDTH <= 4) begin
\$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A), .B(B), .Y(Y));
end
else if (B_WIDTH == 3) begin
localparam a_width0 = 2 ** 2;
localparam a_widthN = A_WIDTH - a_width0;
wire T0, T1;
\$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_width0), .B_WIDTH(2), .Y_WIDTH(Y_WIDTH)) fpga_soft_mux (.A(A[a_width0-1:0]), .B(B[2-1:0]), .Y(T0));
if (a_widthN > 1)
\$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_widthN), .B_WIDTH($clog2(a_widthN)), .Y_WIDTH(Y_WIDTH)) fpga_soft_mux_last (.A(A[A_WIDTH-1:a_width0]), .B(B[$clog2(a_widthN)-1:0]), .Y(T1));
else
assign T1 = A[A_WIDTH-1];
MUXF7 fpga_hard_mux (.I0(T0), .I1(T1), .S(B[B_WIDTH-1]), .O(Y));
end
else if (B_WIDTH == 4) begin
localparam a_width0 = 2 ** 2;
localparam num_mux8 = A_WIDTH / a_width0;
localparam a_widthN = A_WIDTH - num_mux8*a_width0;
wire [4-1:0] T;
wire T0, T1;
for (i = 0; i < 4; i++)
if (i < num_mux8)
\$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_width0), .B_WIDTH(2), .Y_WIDTH(Y_WIDTH)) fpga_soft_mux (.A(A[i*a_width0+:a_width0]), .B(B[2-1:0]), .Y(T[i]));
else if (i == num_mux8 && a_widthN > 0) begin
if (a_widthN > 1)
\$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_widthN), .B_WIDTH($clog2(a_widthN)), .Y_WIDTH(Y_WIDTH)) fpga_soft_mux_last (.A(A[A_WIDTH-1:i*a_width0]), .B(B[$clog2(a_widthN)-1:0]), .Y(T[i]));
else
assign T[i] = A[A_WIDTH-1];
end
else
assign T[i] = 1'bx;
MUXF7 fpga_hard_mux_0 (.I0(T[0]), .I1(T[1]), .S(B[2]), .O(T0));
MUXF7 fpga_hard_mux_1 (.I0(T[2]), .I1(T[3]), .S(B[2]), .O(T1));
MUXF8 fpga_hard_mux_2 (.I0(T0), .I1(T1), .S(B[3]), .O(Y));
end
else begin
localparam a_width0 = 2 ** 4;
localparam num_mux16 = A_WIDTH / a_width0;
localparam a_widthN = A_WIDTH - num_mux16*a_width0;
wire [(2**(B_WIDTH-4))-1:0] T;
for (i = 0; i < 2 ** (B_WIDTH-4); i++)
if (i < num_mux16)
\$__XILINX_SHIFTX #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_width0), .B_WIDTH(4), .Y_WIDTH(Y_WIDTH)) fpga_soft_mux (.A(A[i*a_width0+:a_width0]), .B(B[4-1:0]), .Y(T[i]));
else if (i == num_mux16 && a_widthN > 0) begin
if (a_widthN > 1)
\$__XILINX_SHIFTX #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_widthN), .B_WIDTH($clog2(a_widthN)), .Y_WIDTH(Y_WIDTH)) fpga_soft_mux_last (.A(A[A_WIDTH-1:i*a_width0]), .B(B[$clog2(a_widthN)-1:0]), .Y(T[i]));
else
assign T[i] = A[A_WIDTH-1];
end
else
assign T[i] = 1'bx;
\$__XILINX_SHIFTX #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(2**(B_WIDTH-4)), .B_WIDTH(B_WIDTH-4), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(T), .B(B[B_WIDTH-1:4]), .Y(Y));
end
endgenerate
endmodule
module \$_MUX8_ (A, B, C, D, E, F, G, H, S, T, U, Y);
input A, B, C, D, E, F, G, H, S, T, U;
output Y;
\$__XILINX_SHIFTX #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(8), .B_WIDTH(3), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({H,G,F,E,D,C,B,A}), .B({U,T,S}), .Y(Y));
endmodule
module \$_MUX16_ (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, S, T, U, V, Y);
input A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, S, T, U, V;
output Y;
\$__XILINX_SHIFTX #(.A_SIGNED(0), .B_SIGNED(0), .A_WIDTH(16), .B_WIDTH(4), .Y_WIDTH(1)) _TECHMAP_REPLACE_ (.A({P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A}), .B({V,U,T,S}), .Y(Y));
endmodule

View File

@ -159,10 +159,12 @@ module MUXCY(output O, input CI, DI, S);
assign O = S ? CI : DI;
endmodule
(* abc_box_id = 1, lib_whitebox *)
module MUXF7(output O, input I0, I1, S);
assign O = S ? I1 : I0;
endmodule
(* abc_box_id = 2, lib_whitebox *)
module MUXF8(output O, input I0, I1, S);
assign O = S ? I1 : I0;
endmodule
@ -171,7 +173,8 @@ module XORCY(output O, input CI, LI);
assign O = CI ^ LI;
endmodule
module CARRY4(output [3:0] CO, O, input CI, CYINIT, input [3:0] DI, S);
(* abc_box_id = 3, abc_carry, lib_whitebox *)
module CARRY4((* abc_carry_out *) output [3:0] CO, output [3:0] O, (* abc_carry_in *) input CI, input CYINIT, input [3:0] DI, S);
assign O = S ^ {CO[2:0], CI | CYINIT};
assign CO[0] = S[0] ? CI | CYINIT : DI[0];
assign CO[1] = S[1] ? CO[0] : DI[1];
@ -202,7 +205,7 @@ endmodule
`endif
module FDRE (output reg Q, input C, CE, D, R);
module FDRE ((* abc_flop_q *) output reg Q, input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
@ -214,7 +217,7 @@ module FDRE (output reg Q, input C, CE, D, R);
endcase endgenerate
endmodule
module FDSE (output reg Q, input C, CE, D, S);
module FDSE ((* abc_flop_q *) output reg Q, input C, CE, D, S);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
@ -226,7 +229,7 @@ module FDSE (output reg Q, input C, CE, D, S);
endcase endgenerate
endmodule
module FDCE (output reg Q, input C, CE, D, CLR);
module FDCE ((* abc_flop_q *) output reg Q, input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
@ -240,7 +243,7 @@ module FDCE (output reg Q, input C, CE, D, CLR);
endcase endgenerate
endmodule
module FDPE (output reg Q, input C, CE, D, PRE);
module FDPE ((* abc_flop_q *) output reg Q, input C, CE, D, PRE);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
@ -254,30 +257,31 @@ module FDPE (output reg Q, input C, CE, D, PRE);
endcase endgenerate
endmodule
module FDRE_1 (output reg Q, input C, CE, D, R);
module FDRE_1 ((* abc_flop_q *) output reg Q, input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
always @(negedge C) if (R) Q <= 1'b0; else if(CE) Q <= D;
endmodule
module FDSE_1 (output reg Q, input C, CE, D, S);
module FDSE_1 ((* abc_flop_q *) output reg Q, input C, CE, D, S);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
always @(negedge C) if (S) Q <= 1'b1; else if(CE) Q <= D;
endmodule
module FDCE_1 (output reg Q, input C, CE, D, CLR);
module FDCE_1 ((* abc_flop_q *) output reg Q, input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D;
endmodule
module FDPE_1 (output reg Q, input C, CE, D, PRE);
module FDPE_1 ((* abc_flop_q *) output reg Q, input C, CE, D, PRE);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D;
endmodule
//(* abc_box_id = 4 /*, lib_whitebox*/ *)
module RAM64X1D (
output DPO, SPO,
input D, WCLK, WE,
@ -295,6 +299,7 @@ module RAM64X1D (
always @(posedge clk) if (WE) mem[a] <= D;
endmodule
//(* abc_box_id = 5 /*, lib_whitebox*/ *)
module RAM128X1D (
output DPO, SPO,
input D, WCLK, WE,
@ -310,7 +315,7 @@ module RAM128X1D (
endmodule
module SRL16E (
output Q,
(* abc_flop_q *) output Q,
input A0, A1, A2, A3, CE, CLK, D
);
parameter [15:0] INIT = 16'h0000;
@ -328,7 +333,7 @@ module SRL16E (
endmodule
module SRLC32E (
output Q,
(* abc_flop_q *) output Q,
output Q31,
input [4:0] A,
input CE, CLK, D

View File

@ -116,7 +116,7 @@ function xtract_cell_decl()
xtract_cell_decl PS7 "(* keep *)"
xtract_cell_decl PULLDOWN
xtract_cell_decl PULLUP
xtract_cell_decl RAM128X1D
#xtract_cell_decl RAM128X1D
xtract_cell_decl RAM128X1S
xtract_cell_decl RAM256X1S
xtract_cell_decl RAM32M
@ -125,7 +125,7 @@ function xtract_cell_decl()
xtract_cell_decl RAM32X1S_1
xtract_cell_decl RAM32X2S
xtract_cell_decl RAM64M
xtract_cell_decl RAM64X1D
#xtract_cell_decl RAM64X1D
xtract_cell_decl RAM64X1S
xtract_cell_decl RAM64X1S_1
xtract_cell_decl RAM64X2S

View File

@ -3655,17 +3655,6 @@ module PULLUP (...);
output O;
endmodule
module RAM128X1D (...);
parameter [127:0] INIT = 128'h00000000000000000000000000000000;
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
output DPO, SPO;
input [6:0] A;
input [6:0] DPRA;
input D;
input WCLK;
input WE;
endmodule
module RAM128X1S (...);
parameter [127:0] INIT = 128'h00000000000000000000000000000000;
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
@ -3756,13 +3745,6 @@ module RAM64M (...);
input WE;
endmodule
module RAM64X1D (...);
parameter [63:0] INIT = 64'h0000000000000000;
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
output DPO, SPO;
input A0, A1, A2, A3, A4, A5, D, DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5, WCLK, WE;
endmodule
module RAM64X1S (...);
parameter [63:0] INIT = 64'h0000000000000000;
parameter [0:0] IS_WCLK_INVERTED = 1'b0;

52
techlibs/xilinx/mux_map.v Normal file
View File

@ -0,0 +1,52 @@
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* 2019 Eddie Hung <eddie@fpgeh.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
module \$shiftx (A, B, Y);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;
parameter [B_WIDTH-1:0] _TECHMAP_CONSTMSK_B_ = 0;
parameter [B_WIDTH-1:0] _TECHMAP_CONSTVAL_B_ = 0;
generate
genvar i, j;
// TODO: Check if this opt still necessary
if (B_SIGNED) begin
if (_TECHMAP_CONSTMSK_B_[B_WIDTH-1] && _TECHMAP_CONSTVAL_B_[B_WIDTH-1] == 1'b0)
// Optimisation to remove B_SIGNED if sign bit of B is constant-0
\$__XILINX_SHIFTX #(.A_SIGNED(A_SIGNED), .B_SIGNED(0), .A_WIDTH(A_WIDTH), .B_WIDTH(B_WIDTH-1'd1), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A), .B(B[B_WIDTH-2:0]), .Y(Y));
else
wire _TECHMAP_FAIL_ = 1;
end
else if (B_WIDTH < 3 || A_WIDTH <= 4) begin
wire _TECHMAP_FAIL_ = 1;
end
else begin
\$__XILINX_SHIFTX #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A), .B(B), .Y(Y));
end
endgenerate
endmodule

View File

@ -0,0 +1,2 @@
MUXF8 1 0 3 1
1 1 1

View File

@ -142,3 +142,111 @@ assign b = ~a;
(* keep *) reg d;
always @* d <= &c;
endmodule
// Citation: https://github.com/alexforencich/verilog-ethernet
module abc9_test021(clk, rst, s_eth_hdr_valid, s_eth_hdr_ready, s_eth_dest_mac, s_eth_src_mac, s_eth_type, s_eth_payload_axis_tdata, s_eth_payload_axis_tkeep, s_eth_payload_axis_tvalid, s_eth_payload_axis_tready, s_eth_payload_axis_tlast, s_eth_payload_axis_tid, s_eth_payload_axis_tdest, s_eth_payload_axis_tuser, m_eth_hdr_valid, m_eth_hdr_ready, m_eth_dest_mac, m_eth_src_mac, m_eth_type, m_eth_payload_axis_tdata, m_eth_payload_axis_tkeep, m_eth_payload_axis_tvalid, m_eth_payload_axis_tready, m_eth_payload_axis_tlast, m_eth_payload_axis_tid, m_eth_payload_axis_tdest, m_eth_payload_axis_tuser);
input clk;
output [47:0] m_eth_dest_mac;
input m_eth_hdr_ready;
output m_eth_hdr_valid;
output [7:0] m_eth_payload_axis_tdata;
output [7:0] m_eth_payload_axis_tdest;
output [7:0] m_eth_payload_axis_tid;
output m_eth_payload_axis_tkeep;
output m_eth_payload_axis_tlast;
input m_eth_payload_axis_tready;
output m_eth_payload_axis_tuser;
output m_eth_payload_axis_tvalid;
output [47:0] m_eth_src_mac;
output [15:0] m_eth_type;
input rst;
input [191:0] s_eth_dest_mac;
output [3:0] s_eth_hdr_ready;
input [3:0] s_eth_hdr_valid;
input [31:0] s_eth_payload_axis_tdata;
input [31:0] s_eth_payload_axis_tdest;
input [31:0] s_eth_payload_axis_tid;
input [3:0] s_eth_payload_axis_tkeep;
input [3:0] s_eth_payload_axis_tlast;
output [3:0] s_eth_payload_axis_tready;
input [3:0] s_eth_payload_axis_tuser;
input [3:0] s_eth_payload_axis_tvalid;
input [191:0] s_eth_src_mac;
input [63:0] s_eth_type;
(* keep *)
wire [0:0] grant, request;
wire a;
not u0 (
a,
grant[0]
);
and u1 (
request[0],
s_eth_hdr_valid[0],
a
);
(* keep *)
MUXF8 u2 (
.I0(1'bx),
.I1(1'bx),
.O(o),
.S(1'bx)
);
arbiter arb_inst (
.acknowledge(acknowledge),
.clk(clk),
.grant(grant),
.grant_encoded(grant_encoded),
.grant_valid(grant_valid),
.request(request),
.rst(rst)
);
endmodule
module arbiter (clk, rst, request, acknowledge, grant, grant_valid, grant_encoded);
input [3:0] acknowledge;
input clk;
output [3:0] grant;
output [1:0] grant_encoded;
output grant_valid;
input [3:0] request;
input rst;
endmodule
(* abc_box_id=1 *)
module MUXF8(input I0, I1, S, output O);
endmodule
// Citation: https://github.com/alexforencich/verilog-ethernet
// TODO: yosys -p "synth_xilinx -abc9 -top abc9_test022" abc9.v -q
// returns before b4321a31
// Warning: Wire abc9_test022.\m_eth_payload_axis_tkeep [7] is used but has no
// driver.
// Warning: Wire abc9_test022.\m_eth_payload_axis_tkeep [3] is used but has no
// driver.
module abc9_test022
(
input wire clk,
input wire i,
output wire [7:0] m_eth_payload_axis_tkeep
);
reg [7:0] m_eth_payload_axis_tkeep_reg = 8'd0;
assign m_eth_payload_axis_tkeep = m_eth_payload_axis_tkeep_reg;
always @(posedge clk)
m_eth_payload_axis_tkeep_reg <= i ? 8'hff : 8'h0f;
endmodule
// Citation: https://github.com/riscv/riscv-bitmanip
// TODO: yosys -p "synth_xilinx -abc9 -top abc9_test023" abc9.v -q
// returns before 14233843
// Warning: Wire abc9_test023.\dout [1] is used but has no driver.
module abc9_test023 #(
parameter integer N = 2,
parameter integer M = 2
) (
input [7:0] din,
output [M-1:0] dout
);
wire [2*M-1:0] mask = {M{1'b1}};
assign dout = (mask << din[N-1:0]) >> M;
endmodule

View File

@ -19,4 +19,4 @@ fi
cp ../simple/*.v .
DOLLAR='?'
exec ${MAKE:-make} -f ../tools/autotest.mk $seed *.v EXTRA_FLAGS="-p 'hierarchy; synth -run coarse; techmap; opt -full; abc9 -lut 4; stat; check -assert; select -assert-none t:${DOLLAR}_NOT_ t:${DOLLAR}_AND_ %%'"
exec ${MAKE:-make} -f ../tools/autotest.mk $seed *.v EXTRA_FLAGS="-p 'hierarchy; synth -run coarse; opt -full; techmap; abc9 -lut 4 -box ../abc.box; stat; check -assert; select -assert-none t:${DOLLAR}_NOT_ t:${DOLLAR}_AND_ %%'"

View File

@ -143,6 +143,7 @@ do
fn=$(basename $fn)
bn=$(basename $bn)
rm -f ${bn}_ref.fir
if [[ "$ext" == "v" ]]; then
egrep -v '^\s*`timescale' ../$fn > ${bn}_ref.${ext}
elif [[ "$ext" == "aig" ]] || [[ "$ext" == "aag" ]]; then
@ -150,7 +151,6 @@ do
else
cp ../${fn} ${bn}_ref.${ext}
fi
rm -f ${bn}_ref.fir
if [ ! -f ../${bn}_tb.v ]; then
"$toolsdir"/../../yosys -f "$frontend $include_opts" -b "test_autotb $autotb_opts" -o ${bn}_tb.v ${bn}_ref.v

138
tests/various/muxpack.v Normal file
View File

@ -0,0 +1,138 @@
module mux_if_unbal_4_1 #(parameter N=4, parameter W=1) (input [N*W-1:0] i, input [$clog2(N)-1:0] s, output reg [W-1:0] o);
always @*
if (s == 0) o <= i[0*W+:W];
else if (s == 1) o <= i[1*W+:W];
else if (s == 2) o <= i[2*W+:W];
else if (s == 3) o <= i[3*W+:W];
else o <= {W{1'bx}};
endmodule
module mux_if_unbal_5_3 #(parameter N=5, parameter W=3) (input [N*W-1:0] i, input [$clog2(N)-1:0] s, output reg [W-1:0] o);
always @* begin
o <= {W{1'bx}};
if (s == 0) o <= i[0*W+:W];
if (s == 1) o <= i[1*W+:W];
if (s == 2) o <= i[2*W+:W];
if (s == 3) o <= i[3*W+:W];
if (s == 4) o <= i[4*W+:W];
end
endmodule
module mux_if_unbal_5_3_invert #(parameter N=5, parameter W=3) (input [N*W-1:0] i, input [$clog2(N)-1:0] s, output reg [W-1:0] o);
always @*
if (s != 0)
if (s != 1)
if (s != 2)
if (s != 3)
if (s != 4) o <= i[4*W+:W];
else o <= i[0*W+:W];
else o <= i[3*W+:W];
else o <= i[2*W+:W];
else o <= i[1*W+:W];
else o <= {W{1'bx}};
endmodule
module mux_if_unbal_5_3_width_mismatch #(parameter N=5, parameter W=3) (input [N*W-1:0] i, input [$clog2(N)-1:0] s, output reg [W-1:0] o);
always @* begin
o <= {W{1'bx}};
if (s == 0) o <= i[0*W+:W];
if (s == 1) o <= i[1*W+:W];
if (s == 2) o[W-2:0] <= i[2*W+:W-1];
if (s == 3) o <= i[3*W+:W];
if (s == 4) o <= i[4*W+:W];
end
endmodule
module mux_if_unbal_4_1_missing #(parameter N=5, parameter W=3) (input [N*W-1:0] i, input [$clog2(N)-1:0] s, output reg [W-1:0] o);
always @* begin
if (s == 0) o <= i[0*W+:W];
// else if (s == 1) o <= i[1*W+:W];
// else if (s == 2) o <= i[2*W+:W];
else if (s == 3) o <= i[3*W+:W];
else o <= {W{1'bx}};
end
endmodule
module mux_if_unbal_5_3_order #(parameter N=5, parameter W=3) (input [N*W-1:0] i, input [$clog2(N)-1:0] s, output reg [W-1:0] o);
always @* begin
o <= {W{1'bx}};
if (s == 3) o <= i[3*W+:W];
if (s == 2) o <= i[2*W+:W];
if (s == 1) o <= i[1*W+:W];
if (s == 4) o <= i[4*W+:W];
if (s == 0) o <= i[0*W+:W];
end
endmodule
module mux_if_unbal_4_1_nonexcl #(parameter N=4, parameter W=1) (input [N*W-1:0] i, input [$clog2(N)-1:0] s, output reg [W-1:0] o);
always @*
if (s == 0) o <= i[0*W+:W];
else if (s == 1) o <= i[1*W+:W];
else if (s == 2) o <= i[2*W+:W];
else if (s == 3) o <= i[3*W+:W];
else if (s == 0) o <= {W{1'b0}};
else o <= {W{1'bx}};
endmodule
module mux_if_unbal_5_3_nonexcl #(parameter N=5, parameter W=3) (input [N*W-1:0] i, input [$clog2(N)-1:0] s, output reg [W-1:0] o);
always @* begin
o <= {W{1'bx}};
if (s == 0) o <= i[0*W+:W];
if (s == 1) o <= i[1*W+:W];
if (s == 2) o <= i[2*W+:W];
if (s == 3) o <= i[3*W+:W];
if (s == 4) o <= i[4*W+:W];
if (s == 0) o <= i[2*W+:W];
end
endmodule
module mux_case_unbal_8_7#(parameter N=8, parameter W=7) (input [N*W-1:0] i, input [$clog2(N)-1:0] s, output reg [W-1:0] o);
always @* begin
o <= {W{1'bx}};
case (s)
0: o <= i[0*W+:W];
default:
case (s)
1: o <= i[1*W+:W];
2: o <= i[2*W+:W];
default:
case (s)
3: o <= i[3*W+:W];
4: o <= i[4*W+:W];
5: o <= i[5*W+:W];
default:
case (s)
6: o <= i[6*W+:W];
default: o <= i[7*W+:W];
endcase
endcase
endcase
endcase
end
endmodule
module mux_if_bal_8_2 #(parameter N=8, parameter W=2) (input [N*W-1:0] i, input [$clog2(N)-1:0] s, output reg [W-1:0] o);
always @*
if (s[0] == 1'b0)
if (s[1] == 1'b0)
if (s[2] == 1'b0)
o <= i[0*W+:W];
else
o <= i[1*W+:W];
else
if (s[2] == 1'b0)
o <= i[2*W+:W];
else
o <= i[3*W+:W];
else
if (s[1] == 1'b0)
if (s[2] == 1'b0)
o <= i[4*W+:W];
else
o <= i[5*W+:W];
else
if (s[2] == 1'b0)
o <= i[6*W+:W];
else
o <= i[7*W+:W];
endmodule

150
tests/various/muxpack.ys Normal file
View File

@ -0,0 +1,150 @@
read_verilog muxpack.v
design -save read
hierarchy -top mux_if_unbal_4_1
prep
design -save gold
muxpack
opt
stat
select -assert-count 0 t:$mux
select -assert-count 1 t:$pmux
design -stash gate
design -import gold -as gold
design -import gate -as gate
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -show-ports miter
design -load read
hierarchy -top mux_if_unbal_5_3
prep
design -save gold
muxpack
opt
stat
select -assert-count 0 t:$mux
select -assert-count 1 t:$pmux
design -stash gate
design -import gold -as gold
design -import gate -as gate
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -show-ports miter
design -load read
hierarchy -top mux_if_unbal_5_3_invert
prep
design -save gold
muxpack
opt
stat
select -assert-count 0 t:$mux
select -assert-count 1 t:$pmux
design -stash gate
design -import gold -as gold
design -import gate -as gate
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -show-ports miter
design -load read
hierarchy -top mux_if_unbal_5_3_width_mismatch
prep
design -save gold
muxpack
opt
stat
select -assert-count 0 t:$mux
select -assert-count 2 t:$pmux
design -stash gate
design -import gold -as gold
design -import gate -as gate
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -show-ports miter
design -load read
hierarchy -top mux_if_unbal_4_1_missing
prep
design -save gold
muxpack
opt
stat
select -assert-count 0 t:$mux
select -assert-count 1 t:$pmux
design -stash gate
design -import gold -as gold
design -import gate -as gate
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -show-ports miter
design -load read
hierarchy -top mux_if_unbal_5_3_order
prep
design -save gold
muxpack
opt
stat
select -assert-count 0 t:$mux
select -assert-count 1 t:$pmux
design -stash gate
design -import gold -as gold
design -import gate -as gate
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -show-ports miter
design -load read
hierarchy -top mux_if_unbal_4_1_nonexcl
prep
design -save gold
muxpack
opt
stat
select -assert-count 0 t:$mux
select -assert-count 1 t:$pmux
design -stash gate
design -import gold -as gold
design -import gate -as gate
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -show-ports miter
design -load read
hierarchy -top mux_if_unbal_5_3_nonexcl
prep
design -save gold
muxpack
opt
stat
select -assert-count 0 t:$mux
select -assert-count 1 t:$pmux
design -stash gate
design -import gold -as gold
design -import gate -as gate
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -show-ports miter
design -load read
hierarchy -top mux_case_unbal_8_7
prep
design -save gold
muxpack
opt
stat
select -assert-count 0 t:$mux
select -assert-count 1 t:$pmux
design -stash gate
design -import gold -as gold
design -import gate -as gate
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -show-ports miter
design -load read
hierarchy -top mux_if_bal_8_2
prep
design -save gold
muxpack
opt
stat
select -assert-count 7 t:$mux
select -assert-count 0 t:$pmux
design -stash gate
design -import gold -as gold
design -import gate -as gate
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -show-ports miter

22
tests/various/shregmap.v Normal file
View File

@ -0,0 +1,22 @@
module shregmap_test(input i, clk, output [1:0] q);
reg head = 1'b0;
reg [3:0] shift1 = 4'b0000;
reg [3:0] shift2 = 4'b0000;
always @(posedge clk) begin
head <= i;
shift1 <= {shift1[2:0], head};
shift2 <= {shift2[2:0], head};
end
assign q = {shift2[3], shift1[3]};
endmodule
module $__SHREG_DFF_P_(input C, D, output Q);
parameter DEPTH = 1;
parameter [DEPTH-1:0] INIT = {DEPTH{1'b0}};
reg [DEPTH-1:0] r = INIT;
always @(posedge C)
r <= { r[DEPTH-2:0], D };
assign Q = r[DEPTH-1];
endmodule

31
tests/various/shregmap.ys Normal file
View File

@ -0,0 +1,31 @@
read_verilog shregmap.v
design -copy-to model $__SHREG_DFF_P_
hierarchy -top shregmap_test
prep
design -save gold
techmap
shregmap -init
opt
stat
# show -width
select -assert-count 1 t:$_DFF_P_
select -assert-count 2 t:$__SHREG_DFF_P_
design -stash gate
design -import gold -as gold
design -import gate -as gate
design -copy-from model -as $__SHREG_DFF_P_ \$__SHREG_DFF_P_
prep
miter -equiv -flatten -make_assert -make_outputs gold gate miter
sat -verify -prove-asserts -show-ports -seq 5 miter
design -load gold
stat
design -load gate
stat