Merge pull request #1304 from YosysHQ/eddie/abc9_refactor

Refactor abc9 to use port attributes, not module attributes
This commit is contained in:
Eddie Hung 2019-08-20 11:59:31 -07:00 committed by GitHub
commit 14c03861b6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 138 additions and 104 deletions

View File

@ -405,6 +405,23 @@ Verilog Attributes and non-standard features
blackboxes and whiteboxes. Use ``read_verilog -specify`` to enable this blackboxes and whiteboxes. Use ``read_verilog -specify`` to enable this
functionality. (By default specify .. endspecify blocks are ignored.) functionality. (By default specify .. endspecify blocks are ignored.)
- The module attribute ``abc_box_id`` specifies a positive integer linking a
blackbox or whitebox definition to a corresponding entry in a `abc9`
box-file.
- The port attribute ``abc_scc_break`` indicates a module input port that will
be treated as a primary output during `abc9` techmapping. Doing so eliminates
the possibility of a strongly-connected component (i.e. a combinatorial loop)
existing. Typically, this is specified for sequential inputs on otherwise
combinatorial boxes -- for example, applying ``abc_scc_break`` onto the `D`
port of a LUTRAM cell prevents `abc9` from interpreting any `Q` -> `D` paths
as a combinatorial loop.
- The port attribute ``abc_carry`` marks the carry-in (if an input port) and
carry-out (if output port) ports of a box. This information is necessary for
`abc9` to preserve the integrity of carry-chains. Specifying this attribute
onto a bus port will affect only its most significant bit.
Non-standard or SystemVerilog features for formal verification Non-standard or SystemVerilog features for formal verification
============================================================== ==============================================================

View File

@ -326,7 +326,6 @@ struct XAigerWriter
#endif #endif
log_assert(no_loops); log_assert(no_loops);
pool<IdString> seen_boxes;
for (auto cell_name : toposort.sorted) { for (auto cell_name : toposort.sorted) {
RTLIL::Cell *cell = module->cell(cell_name); RTLIL::Cell *cell = module->cell(cell_name);
log_assert(cell); log_assert(cell);
@ -335,47 +334,6 @@ struct XAigerWriter
if (!box_module || !box_module->attributes.count("\\abc_box_id")) if (!box_module || !box_module->attributes.count("\\abc_box_id"))
continue; continue;
if (seen_boxes.insert(cell->type).second) {
auto it = box_module->attributes.find("\\abc_carry");
if (it != box_module->attributes.end()) {
RTLIL::Wire *carry_in = nullptr, *carry_out = nullptr;
auto carry_in_out = it->second.decode_string();
auto pos = carry_in_out.find(',');
if (pos == std::string::npos)
log_error("'abc_carry' attribute on module '%s' does not contain ','.\n", log_id(cell->type));
auto carry_in_name = RTLIL::escape_id(carry_in_out.substr(0, pos));
carry_in = box_module->wire(carry_in_name);
if (!carry_in || !carry_in->port_input)
log_error("'abc_carry' on module '%s' contains '%s' which does not exist or is not an input port.\n", log_id(cell->type), carry_in_name.c_str());
auto carry_out_name = RTLIL::escape_id(carry_in_out.substr(pos+1));
carry_out = box_module->wire(carry_out_name);
if (!carry_out || !carry_out->port_output)
log_error("'abc_carry' on module '%s' contains '%s' which does not exist or is not an output port.\n", log_id(cell->type), carry_out_name.c_str());
auto &ports = box_module->ports;
for (auto jt = ports.begin(); jt != ports.end(); ) {
RTLIL::Wire* w = box_module->wire(*jt);
log_assert(w);
if (w == carry_in || w == carry_out) {
jt = ports.erase(jt);
continue;
}
if (w->port_id > carry_in->port_id)
--w->port_id;
if (w->port_id > carry_out->port_id)
--w->port_id;
log_assert(w->port_input || w->port_output);
log_assert(ports[w->port_id-1] == w->name);
++jt;
}
ports.push_back(carry_in->name);
carry_in->port_id = ports.size();
ports.push_back(carry_out->name);
carry_out->port_id = ports.size();
}
}
// Fully pad all unused input connections of this box cell with S0 // Fully pad all unused input connections of this box cell with S0
// Fully pad all undriven output connections of this box cell with anonymous wires // Fully pad all undriven output connections of this box cell with anonymous wires
// NB: Assume box_module->ports are sorted alphabetically // NB: Assume box_module->ports are sorted alphabetically

View File

@ -76,12 +76,11 @@ inline std::string remap_name(RTLIL::IdString abc_name)
return stringf("$abc$%d$%s", map_autoidx, abc_name.c_str()+1); return stringf("$abc$%d$%s", map_autoidx, abc_name.c_str()+1);
} }
void handle_loops(RTLIL::Design *design) void handle_loops(RTLIL::Design *design,
const dict<IdString,pool<IdString>> &scc_break_inputs)
{ {
Pass::call(design, "scc -set_attr abc_scc_id {}"); Pass::call(design, "scc -set_attr abc_scc_id {}");
dict<IdString, vector<IdString>> abc_scc_break;
// For every unique SCC found, (arbitrarily) find the first // For every unique SCC found, (arbitrarily) find the first
// cell in the component, and select (and mark) all its output // cell in the component, and select (and mark) all its output
// wires // wires
@ -116,44 +115,29 @@ void handle_loops(RTLIL::Design *design)
cell->attributes.erase(it); cell->attributes.erase(it);
} }
auto jt = abc_scc_break.find(cell->type); auto jt = scc_break_inputs.find(cell->type);
if (jt == abc_scc_break.end()) { if (jt != scc_break_inputs.end())
std::vector<IdString> ports; for (auto port_name : jt->second) {
RTLIL::Module* box_module = design->module(cell->type); RTLIL::SigSpec sig;
if (box_module) { auto &rhs = cell->connections_.at(port_name);
auto ports_csv = box_module->attributes.at(ID(abc_scc_break), RTLIL::Const::from_string("")).decode_string(); for (auto b : rhs) {
for (const auto &port_name : split_tokens(ports_csv, ",")) { Wire *w = b.wire;
auto port_id = RTLIL::escape_id(port_name); if (!w) continue;
auto kt = cell->connections_.find(port_id); w->port_output = true;
if (kt == cell->connections_.end()) w->set_bool_attribute(ID(abc_scc_break));
log_error("abc_scc_break attribute value '%s' does not exist as port on module '%s'\n", port_name.c_str(), log_id(box_module)); w = module->wire(stringf("%s.abci", w->name.c_str()));
ports.push_back(port_id); if (!w) {
w = module->addWire(stringf("%s.abci", b.wire->name.c_str()), GetSize(b.wire));
w->port_input = true;
}
else {
log_assert(b.offset < GetSize(w));
log_assert(w->port_input);
}
sig.append(RTLIL::SigBit(w, b.offset));
} }
rhs = sig;
} }
jt = abc_scc_break.insert(std::make_pair(cell->type, std::move(ports))).first;
}
for (auto port_name : jt->second) {
RTLIL::SigSpec sig;
auto &rhs = cell->connections_.at(port_name);
for (auto b : rhs) {
Wire *w = b.wire;
if (!w) continue;
w->port_output = true;
w->set_bool_attribute(ID(abc_scc_break));
w = module->wire(stringf("%s.abci", w->name.c_str()));
if (!w) {
w = module->addWire(stringf("%s.abci", b.wire->name.c_str()), GetSize(b.wire));
w->port_input = true;
}
else {
log_assert(b.offset < GetSize(w));
log_assert(w->port_input);
}
sig.append(RTLIL::SigBit(w, b.offset));
}
rhs = sig;
}
} }
module->fixup_ports(); module->fixup_ports();
@ -288,7 +272,9 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
bool cleanup, vector<int> lut_costs, bool dff_mode, std::string clk_str, bool cleanup, vector<int> lut_costs, bool dff_mode, std::string clk_str,
bool /*keepff*/, std::string delay_target, std::string /*lutin_shared*/, bool fast_mode, bool /*keepff*/, std::string delay_target, std::string /*lutin_shared*/, bool fast_mode,
bool show_tempdir, std::string box_file, std::string lut_file, bool show_tempdir, std::string box_file, std::string lut_file,
std::string wire_delay, const dict<int,IdString> &box_lookup) std::string wire_delay, const dict<int,IdString> &box_lookup,
const dict<IdString,pool<IdString>> &scc_break_inputs
)
{ {
module = current_module; module = current_module;
map_autoidx = autoidx++; map_autoidx = autoidx++;
@ -427,7 +413,7 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *current_module, std::stri
RTLIL::Selection& sel = design->selection_stack.back(); RTLIL::Selection& sel = design->selection_stack.back();
sel.select(module); sel.select(module);
handle_loops(design); handle_loops(design, scc_break_inputs);
Pass::call(design, "aigmap"); Pass::call(design, "aigmap");
@ -1081,6 +1067,7 @@ struct Abc9Pass : public Pass {
extra_args(args, argidx, design); extra_args(args, argidx, design);
dict<int,IdString> box_lookup; dict<int,IdString> box_lookup;
dict<IdString,pool<IdString>> scc_break_inputs;
for (auto m : design->modules()) { for (auto m : design->modules()) {
auto it = m->attributes.find(ID(abc_box_id)); auto it = m->attributes.find(ID(abc_box_id));
if (it == m->attributes.end()) if (it == m->attributes.end())
@ -1093,6 +1080,56 @@ struct Abc9Pass : public Pass {
log_error("Module '%s' has the same abc_box_id = %d value as '%s'.\n", log_error("Module '%s' has the same abc_box_id = %d value as '%s'.\n",
log_id(m), id, log_id(r.first->second)); log_id(m), id, log_id(r.first->second));
log_assert(r.second); log_assert(r.second);
RTLIL::Wire *carry_in = nullptr, *carry_out = nullptr;
for (auto p : m->ports) {
auto w = m->wire(p);
log_assert(w);
if (w->port_input) {
if (w->attributes.count(ID(abc_scc_break)))
scc_break_inputs[m->name].insert(p);
if (w->attributes.count(ID(abc_carry))) {
if (carry_in)
log_error("Module '%s' contains more than one 'abc_carry' input port.\n", log_id(m));
carry_in = w;
}
}
if (w->port_output) {
if (w->attributes.count(ID(abc_carry))) {
if (carry_out)
log_error("Module '%s' contains more than one 'abc_carry' input port.\n", log_id(m));
carry_out = w;
}
}
}
if (carry_in || carry_out) {
if (carry_in && !carry_out)
log_error("Module '%s' contains an 'abc_carry' input port but no output port.\n", log_id(m));
if (!carry_in && carry_out)
log_error("Module '%s' contains an 'abc_carry' output port but no input port.\n", log_id(m));
// Make carry_in the last PI, and carry_out the last PO
// since ABC requires it this way
auto &ports = m->ports;
for (auto it = ports.begin(); it != ports.end(); ) {
RTLIL::Wire* w = m->wire(*it);
log_assert(w);
if (w == carry_in || w == carry_out) {
it = ports.erase(it);
continue;
}
if (w->port_id > carry_in->port_id)
--w->port_id;
if (w->port_id > carry_out->port_id)
--w->port_id;
log_assert(w->port_input || w->port_output);
log_assert(ports[w->port_id-1] == w->name);
++it;
}
ports.push_back(carry_in->name);
carry_in->port_id = ports.size();
ports.push_back(carry_out->name);
carry_out->port_id = ports.size();
}
} }
for (auto mod : design->selected_modules()) for (auto mod : design->selected_modules())
@ -1110,7 +1147,7 @@ struct Abc9Pass : public Pass {
if (!dff_mode || !clk_str.empty()) { if (!dff_mode || !clk_str.empty()) {
abc9_module(design, mod, script_file, exe_file, cleanup, lut_costs, dff_mode, clk_str, keepff, abc9_module(design, mod, script_file, exe_file, cleanup, lut_costs, dff_mode, clk_str, keepff,
delay_target, lutin_shared, fast_mode, show_tempdir, delay_target, lutin_shared, fast_mode, show_tempdir,
box_file, lut_file, wire_delay, box_lookup); box_file, lut_file, wire_delay, box_lookup, scc_break_inputs);
continue; continue;
} }
@ -1256,7 +1293,7 @@ struct Abc9Pass : public Pass {
en_sig = assign_map(std::get<3>(it.first)); en_sig = assign_map(std::get<3>(it.first));
abc9_module(design, mod, script_file, exe_file, cleanup, lut_costs, !clk_sig.empty(), "$", abc9_module(design, mod, script_file, exe_file, cleanup, lut_costs, !clk_sig.empty(), "$",
keepff, delay_target, lutin_shared, fast_mode, show_tempdir, keepff, delay_target, lutin_shared, fast_mode, show_tempdir,
box_file, lut_file, wire_delay, box_lookup); box_file, lut_file, wire_delay, box_lookup, scc_break_inputs);
assign_map.set(mod); assign_map.set(mod);
} }
} }

View File

@ -15,10 +15,13 @@ module L6MUX21 (input D0, D1, SD, output Z);
endmodule endmodule
// --------------------------------------- // ---------------------------------------
(* abc_box_id=1, abc_carry="CIN,COUT", lib_whitebox *) (* abc_box_id=1, lib_whitebox *)
module CCU2C(input CIN, A0, B0, C0, D0, A1, B1, C1, D1, module CCU2C(
output S0, S1, COUT); (* abc_carry *) input CIN,
input A0, B0, C0, D0, A1, B1, C1, D1,
output S0, S1,
(* abc_carry *) output COUT
);
parameter [15:0] INIT0 = 16'h0000; parameter [15:0] INIT0 = 16'h0000;
parameter [15:0] INIT1 = 16'h0000; parameter [15:0] INIT1 = 16'h0000;
parameter INJECT1_0 = "YES"; parameter INJECT1_0 = "YES";
@ -104,12 +107,13 @@ module PFUMX (input ALUT, BLUT, C0, output Z);
endmodule endmodule
// --------------------------------------- // ---------------------------------------
//(* abc_box_id=2, abc_scc_break="DI,WAD,WRE" *) //(* abc_box_id=2 *)
module TRELLIS_DPR16X4 ( module TRELLIS_DPR16X4 (
input [3:0] DI, (* abc_scc_break *) input [3:0] DI,
input [3:0] WAD, (* abc_scc_break *) input [3:0] WAD,
input WRE, WCK, (* abc_scc_break *) input WRE,
input [3:0] RAD, input WCK,
input [3:0] RAD,
output [3:0] DO output [3:0] DO
); );
parameter WCKMUX = "WCK"; parameter WCKMUX = "WCK";

View File

@ -141,8 +141,14 @@ module SB_CARRY (output CO, input I0, I1, CI);
assign CO = (I0 && I1) || ((I0 || I1) && CI); assign CO = (I0 && I1) || ((I0 || I1) && CI);
endmodule endmodule
(* abc_box_id = 1, abc_carry="CI,CO", lib_whitebox *) (* abc_box_id = 1, lib_whitebox *)
module \$__ICE40_FULL_ADDER (output CO, O, input A, B, CI); module \$__ICE40_FULL_ADDER (
(* abc_carry *) output CO,
output O,
input A,
input B,
(* abc_carry *) input CI
);
SB_CARRY carry ( SB_CARRY carry (
.I0(A), .I0(A),
.I1(B), .I1(B),

View File

@ -181,8 +181,14 @@ module XORCY(output O, input CI, LI);
assign O = CI ^ LI; assign O = CI ^ LI;
endmodule endmodule
(* abc_box_id = 4, abc_carry="CI,CO", lib_whitebox *) (* abc_box_id = 4, lib_whitebox *)
module CARRY4(output [3:0] CO, O, input CI, CYINIT, input [3:0] DI, S); module CARRY4(
(* abc_carry *) output [3:0] CO,
output [3:0] O,
(* abc_carry *) input CI,
input CYINIT,
input [3:0] DI, S
);
assign O = S ^ {CO[2:0], CI | CYINIT}; assign O = S ^ {CO[2:0], CI | CYINIT};
assign CO[0] = S[0] ? CI | CYINIT : DI[0]; assign CO[0] = S[0] ? CI | CYINIT : DI[0];
assign CO[1] = S[1] ? CO[0] : DI[1]; assign CO[1] = S[1] ? CO[0] : DI[1];
@ -289,10 +295,12 @@ module FDPE_1 (output reg Q, input C, CE, D, PRE);
always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D; always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D;
endmodule endmodule
(* abc_box_id = 5, abc_scc_break="D,WE" *) (* abc_box_id = 5 *)
module RAM32X1D ( module RAM32X1D (
output DPO, SPO, output DPO, SPO,
input D, WCLK, WE, (* abc_scc_break *) input D,
input WCLK,
(* abc_scc_break *) input WE,
input A0, A1, A2, A3, A4, input A0, A1, A2, A3, A4,
input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4 input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4
); );
@ -307,10 +315,12 @@ module RAM32X1D (
always @(posedge clk) if (WE) mem[a] <= D; always @(posedge clk) if (WE) mem[a] <= D;
endmodule endmodule
(* abc_box_id = 6, abc_scc_break="D,WE" *) (* abc_box_id = 6 *)
module RAM64X1D ( module RAM64X1D (
output DPO, SPO, output DPO, SPO,
input D, WCLK, WE, (* abc_scc_break *) input D,
input WCLK,
(* abc_scc_break *) input WE,
input A0, A1, A2, A3, A4, A5, input A0, A1, A2, A3, A4, A5,
input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5 input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5
); );
@ -325,10 +335,12 @@ module RAM64X1D (
always @(posedge clk) if (WE) mem[a] <= D; always @(posedge clk) if (WE) mem[a] <= D;
endmodule endmodule
(* abc_box_id = 7, abc_scc_break="D,WE" *) (* abc_box_id = 7 *)
module RAM128X1D ( module RAM128X1D (
output DPO, SPO, output DPO, SPO,
input D, WCLK, WE, (* abc_scc_break *) input D,
input WCLK,
(* abc_scc_break *) input WE,
input [6:0] A, DPRA input [6:0] A, DPRA
); );
parameter INIT = 128'h0; parameter INIT = 128'h0;