yosys/passes/sat/clk2fflogic.cc

262 lines
10 KiB
C++
Raw Normal View History

2016-10-14 07:55:07 -05:00
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com>
2016-10-14 07:55:07 -05:00
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
2020-07-18 20:25:41 -05:00
#include "kernel/ffinit.h"
#include "kernel/ff.h"
2020-10-16 18:39:22 -05:00
#include "kernel/mem.h"
2016-10-14 07:55:07 -05:00
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct SampledSig {
SigSpec sampled, current;
SigSpec &operator[](bool get_current) { return get_current ? current : sampled; }
};
2016-10-14 07:55:07 -05:00
struct Clk2fflogicPass : public Pass {
Clk2fflogicPass() : Pass("clk2fflogic", "convert clocked FFs to generic $ff cells") { }
2020-06-18 18:34:52 -05:00
void help() override
2016-10-14 07:55:07 -05:00
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" clk2fflogic [options] [selection]\n");
log("\n");
log("This command replaces clocked flip-flops with generic $ff cells that use the\n");
log("implicit global clock. This is useful for formal verification of designs with\n");
log("multiple clocks.\n");
log("\n");
log("This pass assumes negative hold time for the async FF inputs. For example when\n");
log("a reset deasserts with the clock edge, then the FF output will still drive the\n");
log("reset value in the next cycle regardless of the data-in value at the time of\n");
log("the clock edge.\n");
log("\n");
2016-10-14 07:55:07 -05:00
}
// Active-high sampled and current value of a level-triggered control signal. Initial sampled values is low/non-asserted.
SampledSig sample_control(Module *module, SigSpec sig, bool polarity, bool is_fine) {
if (!polarity) {
if (is_fine)
sig = module->NotGate(NEW_ID, sig);
else
sig = module->Not(NEW_ID, sig);
}
std::string sig_str = log_signal(sig);
sig_str.erase(std::remove(sig_str.begin(), sig_str.end(), ' '), sig_str.end());
Wire *sampled_sig = module->addWire(NEW_ID_SUFFIX(stringf("%s#sampled", sig_str.c_str())), GetSize(sig));
sampled_sig->attributes[ID::init] = RTLIL::Const(State::S0, GetSize(sig));
if (is_fine)
module->addFfGate(NEW_ID, sig, sampled_sig);
else
module->addFf(NEW_ID, sig, sampled_sig);
return {sampled_sig, sig};
}
// Active-high trigger signal for an edge-triggered control signal. Initial values is low/non-edge.
SigSpec sample_control_edge(Module *module, SigSpec sig, bool polarity, bool is_fine) {
std::string sig_str = log_signal(sig);
sig_str.erase(std::remove(sig_str.begin(), sig_str.end(), ' '), sig_str.end());
Wire *sampled_sig = module->addWire(NEW_ID_SUFFIX(stringf("%s#sampled", sig_str.c_str())), GetSize(sig));
sampled_sig->attributes[ID::init] = RTLIL::Const(polarity ? State::S1 : State::S0, GetSize(sig));
if (is_fine)
module->addFfGate(NEW_ID, sig, sampled_sig);
else
module->addFf(NEW_ID, sig, sampled_sig);
return module->Eqx(NEW_ID, {sampled_sig, sig}, polarity ? SigSpec {State::S0, State::S1} : SigSpec {State::S1, State::S0});
}
// Sampled and current value of a data signal.
SampledSig sample_data(Module *module, SigSpec sig, RTLIL::Const init, bool is_fine) {
std::string sig_str = log_signal(sig);
sig_str.erase(std::remove(sig_str.begin(), sig_str.end(), ' '), sig_str.end());
Wire *sampled_sig = module->addWire(NEW_ID_SUFFIX(stringf("%s#sampled", sig_str.c_str())), GetSize(sig));
sampled_sig->attributes[ID::init] = init;
if (is_fine)
module->addFfGate(NEW_ID, sig, sampled_sig);
else
module->addFf(NEW_ID, sig, sampled_sig);
return {sampled_sig, sig};
}
SigSpec mux(Module *module, SigSpec a, SigSpec b, SigSpec s, bool is_fine) {
if (is_fine)
return module->MuxGate(NEW_ID, a, b, s);
else
return module->Mux(NEW_ID, a, b, s);
}
SigSpec bitwise_sr(Module *module, SigSpec a, SigSpec s, SigSpec r, bool is_fine) {
if (is_fine)
return module->AndGate(NEW_ID, module->OrGate(NEW_ID, a, s), module->NotGate(NEW_ID, r));
else
return module->And(NEW_ID, module->Or(NEW_ID, a, s), module->Not(NEW_ID, r));
}
2020-06-18 18:34:52 -05:00
void execute(std::vector<std::string> args, RTLIL::Design *design) override
2016-10-14 07:55:07 -05:00
{
// bool flag_noinit = false;
log_header(design, "Executing CLK2FFLOGIC pass (convert clocked FFs to generic $ff cells).\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
// if (args[argidx] == "-noinit") {
// flag_noinit = true;
// continue;
// }
break;
}
extra_args(args, argidx, design);
for (auto module : design->selected_modules())
{
SigMap sigmap(module);
2020-07-18 20:25:41 -05:00
FfInitVals initvals(&sigmap, module);
2016-10-14 07:55:07 -05:00
2020-10-16 18:39:22 -05:00
for (auto &mem : Mem::get_selected_memories(module))
2016-10-14 07:55:07 -05:00
{
2020-10-16 18:39:22 -05:00
for (int i = 0; i < GetSize(mem.rd_ports); i++) {
auto &port = mem.rd_ports[i];
if (port.clk_enable)
log_error("Read port %d of memory %s.%s is clocked. This is not supported by \"clk2fflogic\"! "
"Call \"memory\" with -nordff to avoid this error.\n", i, log_id(mem.memid), log_id(module));
}
2017-12-13 19:07:31 -06:00
2020-10-16 18:39:22 -05:00
for (int i = 0; i < GetSize(mem.wr_ports); i++)
{
auto &port = mem.wr_ports[i];
2017-12-13 19:07:31 -06:00
2020-10-16 18:39:22 -05:00
if (!port.clk_enable)
continue;
2017-12-13 19:07:31 -06:00
2020-10-16 18:39:22 -05:00
log("Modifying write port %d on memory %s.%s: CLK=%s, A=%s, D=%s\n",
i, log_id(module), log_id(mem.memid), log_signal(port.clk),
log_signal(port.addr), log_signal(port.data));
2017-12-13 19:07:31 -06:00
Wire *past_clk = module->addWire(NEW_ID_SUFFIX(stringf("%s#%d#past_clk#%s", log_id(mem.memid), i, log_signal(port.clk))));
2020-10-16 18:39:22 -05:00
past_clk->attributes[ID::init] = port.clk_polarity ? State::S1 : State::S0;
module->addFf(NEW_ID, port.clk, past_clk);
2017-12-13 19:07:31 -06:00
2020-10-16 18:39:22 -05:00
SigSpec clock_edge_pattern;
2017-12-13 19:07:31 -06:00
2020-10-16 18:39:22 -05:00
if (port.clk_polarity) {
clock_edge_pattern.append(State::S0);
clock_edge_pattern.append(State::S1);
} else {
clock_edge_pattern.append(State::S1);
clock_edge_pattern.append(State::S0);
}
2017-12-13 19:07:31 -06:00
2020-10-16 18:39:22 -05:00
SigSpec clock_edge = module->Eqx(NEW_ID, {port.clk, SigSpec(past_clk)}, clock_edge_pattern);
2017-12-13 19:07:31 -06:00
SigSpec en_q = module->addWire(NEW_ID_SUFFIX(stringf("%s#%d#en_q", log_id(mem.memid), i)), GetSize(port.en));
2020-10-16 18:39:22 -05:00
module->addFf(NEW_ID, port.en, en_q);
2017-12-13 19:07:31 -06:00
SigSpec addr_q = module->addWire(NEW_ID_SUFFIX(stringf("%s#%d#addr_q", log_id(mem.memid), i)), GetSize(port.addr));
2020-10-16 18:39:22 -05:00
module->addFf(NEW_ID, port.addr, addr_q);
2017-12-13 19:07:31 -06:00
SigSpec data_q = module->addWire(NEW_ID_SUFFIX(stringf("%s#%d#data_q", log_id(mem.memid), i)), GetSize(port.data));
2020-10-16 18:39:22 -05:00
module->addFf(NEW_ID, port.data, data_q);
2017-12-13 19:07:31 -06:00
2020-10-16 18:39:22 -05:00
port.clk = State::S0;
port.en = module->Mux(NEW_ID, Const(0, GetSize(en_q)), en_q, clock_edge);
port.addr = addr_q;
port.data = data_q;
2017-12-13 19:07:31 -06:00
2020-10-16 18:39:22 -05:00
port.clk_enable = false;
port.clk_polarity = false;
2017-12-13 12:14:34 -06:00
}
2020-10-16 18:39:22 -05:00
mem.emit();
}
for (auto cell : vector<Cell*>(module->selected_cells()))
{
2020-07-18 20:25:41 -05:00
SigSpec qval;
if (RTLIL::builtin_ff_cell_types().count(cell->type)) {
FfData ff(&initvals, cell);
2018-02-26 05:20:28 -06:00
if (ff.has_gclk) {
2020-07-18 20:25:41 -05:00
// Already a $ff or $_FF_ cell.
continue;
2018-02-26 05:20:28 -06:00
}
if (ff.has_clk) {
log("Replacing %s.%s (%s): CLK=%s, D=%s, Q=%s\n",
log_id(module), log_id(cell), log_id(cell->type),
log_signal(ff.sig_clk), log_signal(ff.sig_d), log_signal(ff.sig_q));
} else if (ff.has_aload) {
log("Replacing %s.%s (%s): EN=%s, D=%s, Q=%s\n",
log_id(module), log_id(cell), log_id(cell->type),
log_signal(ff.sig_aload), log_signal(ff.sig_ad), log_signal(ff.sig_q));
} else {
// $sr.
log("Replacing %s.%s (%s): SET=%s, CLR=%s, Q=%s\n",
log_id(module), log_id(cell), log_id(cell->type),
log_signal(ff.sig_set), log_signal(ff.sig_clr), log_signal(ff.sig_q));
}
ff.remove();
if (ff.has_clk)
ff.unmap_ce_srst();
2016-10-14 07:55:07 -05:00
auto next_q = sample_data(module, ff.sig_q, ff.val_init, ff.is_fine).sampled;
2016-10-14 07:55:07 -05:00
if (ff.has_clk) {
// The init value for the sampled d is never used, so we can set it to fixed zero, reducing uninit'd FFs
auto sampled_d = sample_data(module, ff.sig_d, RTLIL::Const(State::S0, ff.width), ff.is_fine);
auto clk_edge = sample_control_edge(module, ff.sig_clk, ff.pol_clk, ff.is_fine);
next_q = mux(module, next_q, sampled_d.sampled, clk_edge, ff.is_fine);
}
SampledSig sampled_aload, sampled_ad, sampled_set, sampled_clr, sampled_arst;
// The check for a constant sig_aload is also done by opt_dff, but when using verific and running
// clk2fflogic before opt_dff (which does more and possibly unwanted optimizations) this check avoids
// generating a lot of extra logic.
bool has_nonconst_aload = ff.has_aload && ff.sig_aload != (ff.pol_aload ? State::S0 : State::S1);
if (has_nonconst_aload) {
sampled_aload = sample_control(module, ff.sig_aload, ff.pol_aload, ff.is_fine);
// The init value for the sampled ad is never used, so we can set it to fixed zero, reducing uninit'd FFs
sampled_ad = sample_data(module, ff.sig_ad, RTLIL::Const(State::S0, ff.width), ff.is_fine);
2016-10-14 07:55:07 -05:00
}
2020-07-18 20:25:41 -05:00
if (ff.has_sr) {
sampled_set = sample_control(module, ff.sig_set, ff.pol_set, ff.is_fine);
sampled_clr = sample_control(module, ff.sig_clr, ff.pol_clr, ff.is_fine);
}
if (ff.has_arst)
sampled_arst = sample_control(module, ff.sig_arst, ff.pol_arst, ff.is_fine);
// First perform updates using _only_ sampled values, then again using _only_ current values. Unlike the previous
// implementation, this approach correctly handles all the cases of multiple signals changing simultaneously.
for (int current = 0; current < 2; current++) {
if (has_nonconst_aload)
next_q = mux(module, next_q, sampled_ad[current], sampled_aload[current], ff.is_fine);
if (ff.has_sr)
next_q = bitwise_sr(module, next_q, sampled_set[current], sampled_clr[current], ff.is_fine);
if (ff.has_arst)
next_q = mux(module, next_q, ff.val_arst, sampled_arst[current], ff.is_fine);
2016-10-14 07:55:07 -05:00
}
module->connect(ff.sig_q, next_q);
2016-10-14 07:55:07 -05:00
}
}
}
}
} Clk2fflogicPass;
PRIVATE_NAMESPACE_END