yosys/tests/openmsp430/rtl/omsp_dbg.v

828 lines
32 KiB
Coq
Raw Normal View History

2013-01-05 04:13:26 -06:00
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_dbg.v
//
// *Module Description:
// Debug interface
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 149 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2012-07-19 22:21:12 +0200 (Thu, 19 Jul 2012) $
//----------------------------------------------------------------------------
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_defines.v"
`endif
module omsp_dbg (
// OUTPUTs
dbg_freeze, // Freeze peripherals
dbg_halt_cmd, // Halt CPU command
dbg_mem_addr, // Debug address for rd/wr access
dbg_mem_dout, // Debug unit data output
dbg_mem_en, // Debug unit memory enable
dbg_mem_wr, // Debug unit memory write
dbg_reg_wr, // Debug unit CPU register write
dbg_cpu_reset, // Reset CPU from debug interface
dbg_uart_txd, // Debug interface: UART TXD
// INPUTs
cpu_en_s, // Enable CPU code execution (synchronous)
cpu_id, // CPU ID
dbg_clk, // Debug unit clock
dbg_en_s, // Debug interface enable (synchronous)
dbg_halt_st, // Halt/Run status from CPU
dbg_mem_din, // Debug unit Memory data input
dbg_reg_din, // Debug unit CPU register data input
dbg_rst, // Debug unit reset
dbg_uart_rxd, // Debug interface: UART RXD (asynchronous)
decode_noirq, // Frontend decode instruction
eu_mab, // Execution-Unit Memory address bus
eu_mb_en, // Execution-Unit Memory bus enable
eu_mb_wr, // Execution-Unit Memory bus write transfer
eu_mdb_in, // Memory data bus input
eu_mdb_out, // Memory data bus output
exec_done, // Execution completed
fe_mb_en, // Frontend Memory bus enable
fe_mdb_in, // Frontend Memory data bus input
pc, // Program counter
puc_pnd_set // PUC pending set for the serial debug interface
);
// OUTPUTs
//=========
output dbg_freeze; // Freeze peripherals
output dbg_halt_cmd; // Halt CPU command
output [15:0] dbg_mem_addr; // Debug address for rd/wr access
output [15:0] dbg_mem_dout; // Debug unit data output
output dbg_mem_en; // Debug unit memory enable
output [1:0] dbg_mem_wr; // Debug unit memory write
output dbg_reg_wr; // Debug unit CPU register write
output dbg_cpu_reset; // Reset CPU from debug interface
output dbg_uart_txd; // Debug interface: UART TXD
// INPUTs
//=========
input cpu_en_s; // Enable CPU code execution (synchronous)
input [31:0] cpu_id; // CPU ID
input dbg_clk; // Debug unit clock
input dbg_en_s; // Debug interface enable (synchronous)
input dbg_halt_st; // Halt/Run status from CPU
input [15:0] dbg_mem_din; // Debug unit Memory data input
input [15:0] dbg_reg_din; // Debug unit CPU register data input
input dbg_rst; // Debug unit reset
input dbg_uart_rxd; // Debug interface: UART RXD (asynchronous)
input decode_noirq; // Frontend decode instruction
input [15:0] eu_mab; // Execution-Unit Memory address bus
input eu_mb_en; // Execution-Unit Memory bus enable
input [1:0] eu_mb_wr; // Execution-Unit Memory bus write transfer
input [15:0] eu_mdb_in; // Memory data bus input
input [15:0] eu_mdb_out; // Memory data bus output
input exec_done; // Execution completed
input fe_mb_en; // Frontend Memory bus enable
input [15:0] fe_mdb_in; // Frontend Memory data bus input
input [15:0] pc; // Program counter
input puc_pnd_set; // PUC pending set for the serial debug interface
//=============================================================================
// 1) WIRE & PARAMETER DECLARATION
//=============================================================================
// Diverse wires and registers
wire [5:0] dbg_addr;
wire [15:0] dbg_din;
wire dbg_wr;
reg mem_burst;
wire dbg_reg_rd;
wire dbg_mem_rd;
reg dbg_mem_rd_dly;
wire dbg_swbrk;
wire dbg_rd;
reg dbg_rd_rdy;
wire mem_burst_rd;
wire mem_burst_wr;
wire brk0_halt;
wire brk0_pnd;
wire [15:0] brk0_dout;
wire brk1_halt;
wire brk1_pnd;
wire [15:0] brk1_dout;
wire brk2_halt;
wire brk2_pnd;
wire [15:0] brk2_dout;
wire brk3_halt;
wire brk3_pnd;
wire [15:0] brk3_dout;
// Number of registers
parameter NR_REG = 24;
// Register addresses
parameter CPU_ID_LO = 6'h00;
parameter CPU_ID_HI = 6'h01;
parameter CPU_CTL = 6'h02;
parameter CPU_STAT = 6'h03;
parameter MEM_CTL = 6'h04;
parameter MEM_ADDR = 6'h05;
parameter MEM_DATA = 6'h06;
parameter MEM_CNT = 6'h07;
`ifdef DBG_HWBRK_0
parameter BRK0_CTL = 6'h08;
parameter BRK0_STAT = 6'h09;
parameter BRK0_ADDR0 = 6'h0A;
parameter BRK0_ADDR1 = 6'h0B;
`endif
`ifdef DBG_HWBRK_1
parameter BRK1_CTL = 6'h0C;
parameter BRK1_STAT = 6'h0D;
parameter BRK1_ADDR0 = 6'h0E;
parameter BRK1_ADDR1 = 6'h0F;
`endif
`ifdef DBG_HWBRK_2
parameter BRK2_CTL = 6'h10;
parameter BRK2_STAT = 6'h11;
parameter BRK2_ADDR0 = 6'h12;
parameter BRK2_ADDR1 = 6'h13;
`endif
`ifdef DBG_HWBRK_3
parameter BRK3_CTL = 6'h14;
parameter BRK3_STAT = 6'h15;
parameter BRK3_ADDR0 = 6'h16;
parameter BRK3_ADDR1 = 6'h17;
`endif
// Register one-hot decoder
parameter BASE_D = {{NR_REG-1{1'b0}}, 1'b1};
parameter CPU_ID_LO_D = (BASE_D << CPU_ID_LO);
parameter CPU_ID_HI_D = (BASE_D << CPU_ID_HI);
parameter CPU_CTL_D = (BASE_D << CPU_CTL);
parameter CPU_STAT_D = (BASE_D << CPU_STAT);
parameter MEM_CTL_D = (BASE_D << MEM_CTL);
parameter MEM_ADDR_D = (BASE_D << MEM_ADDR);
parameter MEM_DATA_D = (BASE_D << MEM_DATA);
parameter MEM_CNT_D = (BASE_D << MEM_CNT);
`ifdef DBG_HWBRK_0
parameter BRK0_CTL_D = (BASE_D << BRK0_CTL);
parameter BRK0_STAT_D = (BASE_D << BRK0_STAT);
parameter BRK0_ADDR0_D = (BASE_D << BRK0_ADDR0);
parameter BRK0_ADDR1_D = (BASE_D << BRK0_ADDR1);
`endif
`ifdef DBG_HWBRK_1
parameter BRK1_CTL_D = (BASE_D << BRK1_CTL);
parameter BRK1_STAT_D = (BASE_D << BRK1_STAT);
parameter BRK1_ADDR0_D = (BASE_D << BRK1_ADDR0);
parameter BRK1_ADDR1_D = (BASE_D << BRK1_ADDR1);
`endif
`ifdef DBG_HWBRK_2
parameter BRK2_CTL_D = (BASE_D << BRK2_CTL);
parameter BRK2_STAT_D = (BASE_D << BRK2_STAT);
parameter BRK2_ADDR0_D = (BASE_D << BRK2_ADDR0);
parameter BRK2_ADDR1_D = (BASE_D << BRK2_ADDR1);
`endif
`ifdef DBG_HWBRK_3
parameter BRK3_CTL_D = (BASE_D << BRK3_CTL);
parameter BRK3_STAT_D = (BASE_D << BRK3_STAT);
parameter BRK3_ADDR0_D = (BASE_D << BRK3_ADDR0);
parameter BRK3_ADDR1_D = (BASE_D << BRK3_ADDR1);
`endif
//============================================================================
// 2) REGISTER DECODER
//============================================================================
// Select Data register during a burst
wire [5:0] dbg_addr_in = mem_burst ? MEM_DATA : dbg_addr;
// Register address decode
reg [NR_REG-1:0] reg_dec;
always @(dbg_addr_in)
case (dbg_addr_in)
CPU_ID_LO : reg_dec = CPU_ID_LO_D;
CPU_ID_HI : reg_dec = CPU_ID_HI_D;
CPU_CTL : reg_dec = CPU_CTL_D;
CPU_STAT : reg_dec = CPU_STAT_D;
MEM_CTL : reg_dec = MEM_CTL_D;
MEM_ADDR : reg_dec = MEM_ADDR_D;
MEM_DATA : reg_dec = MEM_DATA_D;
MEM_CNT : reg_dec = MEM_CNT_D;
`ifdef DBG_HWBRK_0
BRK0_CTL : reg_dec = BRK0_CTL_D;
BRK0_STAT : reg_dec = BRK0_STAT_D;
BRK0_ADDR0: reg_dec = BRK0_ADDR0_D;
BRK0_ADDR1: reg_dec = BRK0_ADDR1_D;
`endif
`ifdef DBG_HWBRK_1
BRK1_CTL : reg_dec = BRK1_CTL_D;
BRK1_STAT : reg_dec = BRK1_STAT_D;
BRK1_ADDR0: reg_dec = BRK1_ADDR0_D;
BRK1_ADDR1: reg_dec = BRK1_ADDR1_D;
`endif
`ifdef DBG_HWBRK_2
BRK2_CTL : reg_dec = BRK2_CTL_D;
BRK2_STAT : reg_dec = BRK2_STAT_D;
BRK2_ADDR0: reg_dec = BRK2_ADDR0_D;
BRK2_ADDR1: reg_dec = BRK2_ADDR1_D;
`endif
`ifdef DBG_HWBRK_3
BRK3_CTL : reg_dec = BRK3_CTL_D;
BRK3_STAT : reg_dec = BRK3_STAT_D;
BRK3_ADDR0: reg_dec = BRK3_ADDR0_D;
BRK3_ADDR1: reg_dec = BRK3_ADDR1_D;
`endif
// pragma coverage off
default: reg_dec = {NR_REG{1'b0}};
// pragma coverage on
endcase
// Read/Write probes
wire reg_write = dbg_wr;
wire reg_read = 1'b1;
// Read/Write vectors
wire [NR_REG-1:0] reg_wr = reg_dec & {NR_REG{reg_write}};
wire [NR_REG-1:0] reg_rd = reg_dec & {NR_REG{reg_read}};
//=============================================================================
// 3) REGISTER: CORE INTERFACE
//=============================================================================
// CPU_ID Register
//-----------------
// -------------------------------------------------------------------
// CPU_ID_LO: | 15 14 13 12 11 10 9 | 8 7 6 5 4 | 3 | 2 1 0 |
// |----------------------------+-----------------+------+-------------|
// | PER_SPACE | USER_VERSION | ASIC | CPU_VERSION |
// --------------------------------------------------------------------
// CPU_ID_HI: | 15 14 13 12 11 10 | 9 8 7 6 5 4 3 2 1 | 0 |
// |----------------------------+-------------------------------+------|
// | PMEM_SIZE | DMEM_SIZE | MPY |
// -------------------------------------------------------------------
// This register is assigned in the SFR module
// CPU_CTL Register
//-----------------------------------------------------------------------------
// 7 6 5 4 3 2 1 0
// Reserved CPU_RST RST_BRK_EN FRZ_BRK_EN SW_BRK_EN ISTEP RUN HALT
//-----------------------------------------------------------------------------
reg [6:3] cpu_ctl;
wire cpu_ctl_wr = reg_wr[CPU_CTL];
always @ (posedge dbg_clk or posedge dbg_rst)
`ifdef DBG_RST_BRK_EN
if (dbg_rst) cpu_ctl <= 4'h6;
`else
if (dbg_rst) cpu_ctl <= 4'h2;
`endif
else if (cpu_ctl_wr) cpu_ctl <= dbg_din[6:3];
wire [7:0] cpu_ctl_full = {1'b0, cpu_ctl, 3'b000};
wire halt_cpu = cpu_ctl_wr & dbg_din[`HALT] & ~dbg_halt_st;
wire run_cpu = cpu_ctl_wr & dbg_din[`RUN] & dbg_halt_st;
wire istep = cpu_ctl_wr & dbg_din[`ISTEP] & dbg_halt_st;
// CPU_STAT Register
//------------------------------------------------------------------------------------
// 7 6 5 4 3 2 1 0
// HWBRK3_PND HWBRK2_PND HWBRK1_PND HWBRK0_PND SWBRK_PND PUC_PND Res. HALT_RUN
//------------------------------------------------------------------------------------
reg [3:2] cpu_stat;
wire cpu_stat_wr = reg_wr[CPU_STAT];
wire [3:2] cpu_stat_set = {dbg_swbrk, puc_pnd_set};
wire [3:2] cpu_stat_clr = ~dbg_din[3:2];
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) cpu_stat <= 2'b00;
else if (cpu_stat_wr) cpu_stat <= ((cpu_stat & cpu_stat_clr) | cpu_stat_set);
else cpu_stat <= (cpu_stat | cpu_stat_set);
wire [7:0] cpu_stat_full = {brk3_pnd, brk2_pnd, brk1_pnd, brk0_pnd,
cpu_stat, 1'b0, dbg_halt_st};
//=============================================================================
// 4) REGISTER: MEMORY INTERFACE
//=============================================================================
// MEM_CTL Register
//-----------------------------------------------------------------------------
// 7 6 5 4 3 2 1 0
// Reserved B/W MEM/REG RD/WR START
//
// START : - 0 : Do nothing.
// - 1 : Initiate memory transfer.
//
// RD/WR : - 0 : Read access.
// - 1 : Write access.
//
// MEM/REG: - 0 : Memory access.
// - 1 : CPU Register access.
//
// B/W : - 0 : 16 bit access.
// - 1 : 8 bit access (not valid for CPU Registers).
//
//-----------------------------------------------------------------------------
reg [3:1] mem_ctl;
wire mem_ctl_wr = reg_wr[MEM_CTL];
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) mem_ctl <= 3'h0;
else if (mem_ctl_wr) mem_ctl <= dbg_din[3:1];
wire [7:0] mem_ctl_full = {4'b0000, mem_ctl, 1'b0};
reg mem_start;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) mem_start <= 1'b0;
else mem_start <= mem_ctl_wr & dbg_din[0];
wire mem_bw = mem_ctl[3];
// MEM_DATA Register
//------------------
reg [15:0] mem_data;
reg [15:0] mem_addr;
wire mem_access;
wire mem_data_wr = reg_wr[MEM_DATA];
wire [15:0] dbg_mem_din_bw = ~mem_bw ? dbg_mem_din :
mem_addr[0] ? {8'h00, dbg_mem_din[15:8]} :
{8'h00, dbg_mem_din[7:0]};
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) mem_data <= 16'h0000;
else if (mem_data_wr) mem_data <= dbg_din;
else if (dbg_reg_rd) mem_data <= dbg_reg_din;
else if (dbg_mem_rd_dly) mem_data <= dbg_mem_din_bw;
// MEM_ADDR Register
//------------------
reg [15:0] mem_cnt;
wire mem_addr_wr = reg_wr[MEM_ADDR];
wire dbg_mem_acc = (|dbg_mem_wr | (dbg_rd_rdy & ~mem_ctl[2]));
wire dbg_reg_acc = ( dbg_reg_wr | (dbg_rd_rdy & mem_ctl[2]));
wire [15:0] mem_addr_inc = (mem_cnt==16'h0000) ? 16'h0000 :
(dbg_mem_acc & ~mem_bw) ? 16'h0002 :
(dbg_mem_acc | dbg_reg_acc) ? 16'h0001 : 16'h0000;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) mem_addr <= 16'h0000;
else if (mem_addr_wr) mem_addr <= dbg_din;
else mem_addr <= mem_addr + mem_addr_inc;
// MEM_CNT Register
//------------------
wire mem_cnt_wr = reg_wr[MEM_CNT];
wire [15:0] mem_cnt_dec = (mem_cnt==16'h0000) ? 16'h0000 :
(mem_burst & (dbg_mem_acc | dbg_reg_acc)) ? 16'hffff : 16'h0000;
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) mem_cnt <= 16'h0000;
else if (mem_cnt_wr) mem_cnt <= dbg_din;
else mem_cnt <= mem_cnt + mem_cnt_dec;
//=============================================================================
// 5) BREAKPOINTS / WATCHPOINTS
//=============================================================================
`ifdef DBG_HWBRK_0
// Hardware Breakpoint/Watchpoint Register read select
wire [3:0] brk0_reg_rd = {reg_rd[BRK0_ADDR1],
reg_rd[BRK0_ADDR0],
reg_rd[BRK0_STAT],
reg_rd[BRK0_CTL]};
// Hardware Breakpoint/Watchpoint Register write select
wire [3:0] brk0_reg_wr = {reg_wr[BRK0_ADDR1],
reg_wr[BRK0_ADDR0],
reg_wr[BRK0_STAT],
reg_wr[BRK0_CTL]};
omsp_dbg_hwbrk dbg_hwbr_0 (
// OUTPUTs
.brk_halt (brk0_halt), // Hardware breakpoint command
.brk_pnd (brk0_pnd), // Hardware break/watch-point pending
.brk_dout (brk0_dout), // Hardware break/watch-point register data input
// INPUTs
.brk_reg_rd (brk0_reg_rd), // Hardware break/watch-point register read select
.brk_reg_wr (brk0_reg_wr), // Hardware break/watch-point register write select
.dbg_clk (dbg_clk), // Debug unit clock
.dbg_din (dbg_din), // Debug register data input
.dbg_rst (dbg_rst), // Debug unit reset
.eu_mab (eu_mab), // Execution-Unit Memory address bus
.eu_mb_en (eu_mb_en), // Execution-Unit Memory bus enable
.eu_mb_wr (eu_mb_wr), // Execution-Unit Memory bus write transfer
.eu_mdb_in (eu_mdb_in), // Memory data bus input
.eu_mdb_out (eu_mdb_out), // Memory data bus output
.exec_done (exec_done), // Execution completed
.fe_mb_en (fe_mb_en), // Frontend Memory bus enable
.pc (pc) // Program counter
);
`else
assign brk0_halt = 1'b0;
assign brk0_pnd = 1'b0;
assign brk0_dout = 16'h0000;
`endif
`ifdef DBG_HWBRK_1
// Hardware Breakpoint/Watchpoint Register read select
wire [3:0] brk1_reg_rd = {reg_rd[BRK1_ADDR1],
reg_rd[BRK1_ADDR0],
reg_rd[BRK1_STAT],
reg_rd[BRK1_CTL]};
// Hardware Breakpoint/Watchpoint Register write select
wire [3:0] brk1_reg_wr = {reg_wr[BRK1_ADDR1],
reg_wr[BRK1_ADDR0],
reg_wr[BRK1_STAT],
reg_wr[BRK1_CTL]};
omsp_dbg_hwbrk dbg_hwbr_1 (
// OUTPUTs
.brk_halt (brk1_halt), // Hardware breakpoint command
.brk_pnd (brk1_pnd), // Hardware break/watch-point pending
.brk_dout (brk1_dout), // Hardware break/watch-point register data input
// INPUTs
.brk_reg_rd (brk1_reg_rd), // Hardware break/watch-point register read select
.brk_reg_wr (brk1_reg_wr), // Hardware break/watch-point register write select
.dbg_clk (dbg_clk), // Debug unit clock
.dbg_din (dbg_din), // Debug register data input
.dbg_rst (dbg_rst), // Debug unit reset
.eu_mab (eu_mab), // Execution-Unit Memory address bus
.eu_mb_en (eu_mb_en), // Execution-Unit Memory bus enable
.eu_mb_wr (eu_mb_wr), // Execution-Unit Memory bus write transfer
.eu_mdb_in (eu_mdb_in), // Memory data bus input
.eu_mdb_out (eu_mdb_out), // Memory data bus output
.exec_done (exec_done), // Execution completed
.fe_mb_en (fe_mb_en), // Frontend Memory bus enable
.pc (pc) // Program counter
);
`else
assign brk1_halt = 1'b0;
assign brk1_pnd = 1'b0;
assign brk1_dout = 16'h0000;
`endif
`ifdef DBG_HWBRK_2
// Hardware Breakpoint/Watchpoint Register read select
wire [3:0] brk2_reg_rd = {reg_rd[BRK2_ADDR1],
reg_rd[BRK2_ADDR0],
reg_rd[BRK2_STAT],
reg_rd[BRK2_CTL]};
// Hardware Breakpoint/Watchpoint Register write select
wire [3:0] brk2_reg_wr = {reg_wr[BRK2_ADDR1],
reg_wr[BRK2_ADDR0],
reg_wr[BRK2_STAT],
reg_wr[BRK2_CTL]};
omsp_dbg_hwbrk dbg_hwbr_2 (
// OUTPUTs
.brk_halt (brk2_halt), // Hardware breakpoint command
.brk_pnd (brk2_pnd), // Hardware break/watch-point pending
.brk_dout (brk2_dout), // Hardware break/watch-point register data input
// INPUTs
.brk_reg_rd (brk2_reg_rd), // Hardware break/watch-point register read select
.brk_reg_wr (brk2_reg_wr), // Hardware break/watch-point register write select
.dbg_clk (dbg_clk), // Debug unit clock
.dbg_din (dbg_din), // Debug register data input
.dbg_rst (dbg_rst), // Debug unit reset
.eu_mab (eu_mab), // Execution-Unit Memory address bus
.eu_mb_en (eu_mb_en), // Execution-Unit Memory bus enable
.eu_mb_wr (eu_mb_wr), // Execution-Unit Memory bus write transfer
.eu_mdb_in (eu_mdb_in), // Memory data bus input
.eu_mdb_out (eu_mdb_out), // Memory data bus output
.exec_done (exec_done), // Execution completed
.fe_mb_en (fe_mb_en), // Frontend Memory bus enable
.pc (pc) // Program counter
);
`else
assign brk2_halt = 1'b0;
assign brk2_pnd = 1'b0;
assign brk2_dout = 16'h0000;
`endif
`ifdef DBG_HWBRK_3
// Hardware Breakpoint/Watchpoint Register read select
wire [3:0] brk3_reg_rd = {reg_rd[BRK3_ADDR1],
reg_rd[BRK3_ADDR0],
reg_rd[BRK3_STAT],
reg_rd[BRK3_CTL]};
// Hardware Breakpoint/Watchpoint Register write select
wire [3:0] brk3_reg_wr = {reg_wr[BRK3_ADDR1],
reg_wr[BRK3_ADDR0],
reg_wr[BRK3_STAT],
reg_wr[BRK3_CTL]};
omsp_dbg_hwbrk dbg_hwbr_3 (
// OUTPUTs
.brk_halt (brk3_halt), // Hardware breakpoint command
.brk_pnd (brk3_pnd), // Hardware break/watch-point pending
.brk_dout (brk3_dout), // Hardware break/watch-point register data input
// INPUTs
.brk_reg_rd (brk3_reg_rd), // Hardware break/watch-point register read select
.brk_reg_wr (brk3_reg_wr), // Hardware break/watch-point register write select
.dbg_clk (dbg_clk), // Debug unit clock
.dbg_din (dbg_din), // Debug register data input
.dbg_rst (dbg_rst), // Debug unit reset
.eu_mab (eu_mab), // Execution-Unit Memory address bus
.eu_mb_en (eu_mb_en), // Execution-Unit Memory bus enable
.eu_mb_wr (eu_mb_wr), // Execution-Unit Memory bus write transfer
.eu_mdb_in (eu_mdb_in), // Memory data bus input
.eu_mdb_out (eu_mdb_out), // Memory data bus output
.exec_done (exec_done), // Execution completed
.fe_mb_en (fe_mb_en), // Frontend Memory bus enable
.pc (pc) // Program counter
);
`else
assign brk3_halt = 1'b0;
assign brk3_pnd = 1'b0;
assign brk3_dout = 16'h0000;
`endif
//============================================================================
// 6) DATA OUTPUT GENERATION
//============================================================================
wire [15:0] cpu_id_lo_rd = cpu_id[15:0] & {16{reg_rd[CPU_ID_LO]}};
wire [15:0] cpu_id_hi_rd = cpu_id[31:16] & {16{reg_rd[CPU_ID_HI]}};
wire [15:0] cpu_ctl_rd = {8'h00, cpu_ctl_full} & {16{reg_rd[CPU_CTL]}};
wire [15:0] cpu_stat_rd = {8'h00, cpu_stat_full} & {16{reg_rd[CPU_STAT]}};
wire [15:0] mem_ctl_rd = {8'h00, mem_ctl_full} & {16{reg_rd[MEM_CTL]}};
wire [15:0] mem_data_rd = mem_data & {16{reg_rd[MEM_DATA]}};
wire [15:0] mem_addr_rd = mem_addr & {16{reg_rd[MEM_ADDR]}};
wire [15:0] mem_cnt_rd = mem_cnt & {16{reg_rd[MEM_CNT]}};
wire [15:0] dbg_dout = cpu_id_lo_rd |
cpu_id_hi_rd |
cpu_ctl_rd |
cpu_stat_rd |
mem_ctl_rd |
mem_data_rd |
mem_addr_rd |
mem_cnt_rd |
brk0_dout |
brk1_dout |
brk2_dout |
brk3_dout;
// Tell UART/JTAG interface that the data is ready to be read
always @ (posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) dbg_rd_rdy <= 1'b0;
else if (mem_burst | mem_burst_rd) dbg_rd_rdy <= (dbg_reg_rd | dbg_mem_rd_dly);
else dbg_rd_rdy <= dbg_rd;
//============================================================================
// 7) CPU CONTROL
//============================================================================
// Reset CPU
//--------------------------
wire dbg_cpu_reset = cpu_ctl[`CPU_RST];
// Break after reset
//--------------------------
wire halt_rst = cpu_ctl[`RST_BRK_EN] & dbg_en_s & puc_pnd_set;
// Freeze peripherals
//--------------------------
wire dbg_freeze = dbg_halt_st & (cpu_ctl[`FRZ_BRK_EN] | ~cpu_en_s);
// Software break
//--------------------------
assign dbg_swbrk = (fe_mdb_in==`DBG_SWBRK_OP) & decode_noirq & cpu_ctl[`SW_BRK_EN];
// Single step
//--------------------------
reg [1:0] inc_step;
always @(posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) inc_step <= 2'b00;
else if (istep) inc_step <= 2'b11;
else inc_step <= {inc_step[0], 1'b0};
// Run / Halt
//--------------------------
reg halt_flag;
wire mem_halt_cpu;
wire mem_run_cpu;
wire halt_flag_clr = run_cpu | mem_run_cpu;
wire halt_flag_set = halt_cpu | halt_rst | dbg_swbrk | mem_halt_cpu |
brk0_halt | brk1_halt | brk2_halt | brk3_halt;
always @(posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) halt_flag <= 1'b0;
else if (halt_flag_clr) halt_flag <= 1'b0;
else if (halt_flag_set) halt_flag <= 1'b1;
wire dbg_halt_cmd = (halt_flag | halt_flag_set) & ~inc_step[1];
//============================================================================
// 8) MEMORY CONTROL
//============================================================================
// Control Memory bursts
//------------------------------
wire mem_burst_start = (mem_start & |mem_cnt);
wire mem_burst_end = ((dbg_wr | dbg_rd_rdy) & ~|mem_cnt);
// Detect when burst is on going
always @(posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) mem_burst <= 1'b0;
else if (mem_burst_start) mem_burst <= 1'b1;
else if (mem_burst_end) mem_burst <= 1'b0;
// Control signals for UART/JTAG interface
assign mem_burst_rd = (mem_burst_start & ~mem_ctl[1]);
assign mem_burst_wr = (mem_burst_start & mem_ctl[1]);
// Trigger CPU Register or memory access during a burst
reg mem_startb;
always @(posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) mem_startb <= 1'b0;
else mem_startb <= (mem_burst & (dbg_wr | dbg_rd)) | mem_burst_rd;
// Combine single and burst memory start of sequence
wire mem_seq_start = ((mem_start & ~|mem_cnt) | mem_startb);
// Memory access state machine
//------------------------------
reg [1:0] mem_state;
reg [1:0] mem_state_nxt;
// State machine definition
parameter M_IDLE = 2'h0;
parameter M_SET_BRK = 2'h1;
parameter M_ACCESS_BRK = 2'h2;
parameter M_ACCESS = 2'h3;
// State transition
always @(mem_state or mem_seq_start or dbg_halt_st)
case (mem_state)
M_IDLE : mem_state_nxt = ~mem_seq_start ? M_IDLE :
dbg_halt_st ? M_ACCESS : M_SET_BRK;
M_SET_BRK : mem_state_nxt = dbg_halt_st ? M_ACCESS_BRK : M_SET_BRK;
M_ACCESS_BRK : mem_state_nxt = M_IDLE;
M_ACCESS : mem_state_nxt = M_IDLE;
// pragma coverage off
default : mem_state_nxt = M_IDLE;
// pragma coverage on
endcase
// State machine
always @(posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) mem_state <= M_IDLE;
else mem_state <= mem_state_nxt;
// Utility signals
assign mem_halt_cpu = (mem_state==M_IDLE) & (mem_state_nxt==M_SET_BRK);
assign mem_run_cpu = (mem_state==M_ACCESS_BRK) & (mem_state_nxt==M_IDLE);
assign mem_access = (mem_state==M_ACCESS) | (mem_state==M_ACCESS_BRK);
// Interface to CPU Registers and Memory bacbkone
//------------------------------------------------
assign dbg_mem_addr = mem_addr;
assign dbg_mem_dout = ~mem_bw ? mem_data :
mem_addr[0] ? {mem_data[7:0], 8'h00} :
{8'h00, mem_data[7:0]};
assign dbg_reg_wr = mem_access & mem_ctl[1] & mem_ctl[2];
assign dbg_reg_rd = mem_access & ~mem_ctl[1] & mem_ctl[2];
assign dbg_mem_en = mem_access & ~mem_ctl[2];
assign dbg_mem_rd = dbg_mem_en & ~mem_ctl[1];
wire [1:0] dbg_mem_wr_msk = ~mem_bw ? 2'b11 :
mem_addr[0] ? 2'b10 : 2'b01;
assign dbg_mem_wr = {2{dbg_mem_en & mem_ctl[1]}} & dbg_mem_wr_msk;
// It takes one additional cycle to read from Memory as from registers
always @(posedge dbg_clk or posedge dbg_rst)
if (dbg_rst) dbg_mem_rd_dly <= 1'b0;
else dbg_mem_rd_dly <= dbg_mem_rd;
//=============================================================================
// 9) UART COMMUNICATION
//=============================================================================
`ifdef DBG_UART
omsp_dbg_uart dbg_uart_0 (
// OUTPUTs
.dbg_addr (dbg_addr), // Debug register address
.dbg_din (dbg_din), // Debug register data input
.dbg_rd (dbg_rd), // Debug register data read
.dbg_uart_txd (dbg_uart_txd), // Debug interface: UART TXD
.dbg_wr (dbg_wr), // Debug register data write
// INPUTs
.dbg_clk (dbg_clk), // Debug unit clock
.dbg_dout (dbg_dout), // Debug register data output
.dbg_rd_rdy (dbg_rd_rdy), // Debug register data is ready for read
.dbg_rst (dbg_rst), // Debug unit reset
.dbg_uart_rxd (dbg_uart_rxd), // Debug interface: UART RXD
.mem_burst (mem_burst), // Burst on going
.mem_burst_end(mem_burst_end), // End TX/RX burst
.mem_burst_rd (mem_burst_rd), // Start TX burst
.mem_burst_wr (mem_burst_wr), // Start RX burst
.mem_bw (mem_bw) // Burst byte width
);
`else
assign dbg_addr = 6'h00;
assign dbg_din = 16'h0000;
assign dbg_rd = 1'b0;
assign dbg_uart_txd = 1'b0;
assign dbg_wr = 1'b0;
`endif
//=============================================================================
// 10) JTAG COMMUNICATION
//=============================================================================
`ifdef DBG_JTAG
JTAG INTERFACE IS NOT SUPPORTED YET
`else
`endif
endmodule // dbg
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_undefines.v"
`endif