Go to file
Jean-Paul Chaput f528cdea4c Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
    This is to ensure better deterministic properties. Between use cases,
    additional strings may have to be allocated, shitfing the ids. Even if
    hash can be duplicated, we should be able to ensure that the absolute
    order in map table should be preserved. Supplemental strings are inserted
    in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
    default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
    symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
    Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
    block corona corners so the global router do not draw wire under them.
    This was creating deadlock for the detailed router.
      When the abutment has to be computed, directly use Etesian to do it
    instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
    standard cells, we trick it by making them bigger during the placement
    stage. Furthermore, we do not not uniformely increase the size of the
    cells but create a "bloating profile" based on cell size, cell name
    or it's density of terminals. Currently only two profiles are defined,
    "disabled" which does nothing and "nsxlib" targeted on 4 metal layer
    technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
    configuration parameter "katabatic.routingGauge" as the default one
    may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
    the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
    contact cache when topology is invalidated. In case of multiple
    invalidations, if the first did not invalidate the cache, later one
    that may need it where not allowed to do so. The end result was correct
    nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
    of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
    edge capacity, even for the westermost GCell, should be the east
    edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
    terminal". This is the minimal number of segments separating the
    current one from the nearest RoutingPad. This replace the previous
    "strong terminal" and "weak terminal" flags.
      This distance is used by Katana to sort the events, we route the
    segments *from* the RoutingPads *outward*. The idea being that if we
    cannot event connect to the RoutingPad, there is no points continuing
    as thoses segments are the more constraineds. This gives an order close
    to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
    dogleg making on those segments. mainly intended for local segments
    directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
    Now the only case where a segment cannot be reduced is when it is
    one horizontal branch in a HTee or a vertical on a VTee. Check if,
    when not accounted the source & target VIAs are still connex, if so,
    allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
    mainly to prevent making doglegs twice on a turn contact. This is to
    limit over-fragmentation. If one dogleg doesn't solve the problem,
    making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
    the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
    no turn go be made inside those GCells. Mainly used underneath a block
    corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
    GCells with too many terminals. Slacken at least one RoutingPad access
    when there is more than 8 RoutingPad in the GCell (slacken or change
    a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
    in non-preferred direction. That is, vertical METAL2 directly connected
    to the RoutingPad (then a horizontal METAL2). This alllows for short
    dogleg without clutering the METAL3 layer (critical for AMS c35b4).
      Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
      Perform some other tweaking on METAL1 access topologies, to also
    minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
    distance to RoutingPad for segments. Set the Unbreakable flag, based
    on the distance and segment length (local, short global or long global).
      New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
    is modificated so net with a degree superior to 10 are sorted first,
    whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
    in non-preferred routing direction. Mostly intended for small METAL2
    vertical directly connected to RoutingPad. Modifications to manage
    this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
    of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
    routed first and whitout the global routing estimation. There should be
    few of them so they wont create saturations and we want them as straight
    as possible. Detour are for long be-points.
      Set the saerch halo to one GCell in the initial routing stage (before
    ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
    inside NegociateWindow::run(), as segments are inserted into tracks
    only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
    select whether to replace the perpandiculars *after* or *before* the
    current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
    segment is fully enclosed inside a global, the longest overlap cost
    is set to the shortest global hoverhang (before or after).
      When the cost is for a global, set an infinite cost if the overlapping
    segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
    the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
    to any turn connected to the first segment of the RoutingPad so the
    perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
    RoutingPad, then layer depth. If both distance to RoutingPad is null,
    then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
    perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
    when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
    minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
    the axis of the segment is not the one of the track (case of wide
    segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
    count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
    is a set of overlaping segments at the "end" of the track, the
    EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
    segment is at it's ripup limit. We should try *not* to rip it up if
    we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
    updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
    found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
    dogleg on source/target (reject if so).
2019-07-28 23:20:00 +02:00
anabatic Upgrade of Katana detailed router to support Arlet 6502. 2019-07-28 23:20:00 +02:00
bootstrap Adapt socInstaller to the new SL7 & benchmarks. 2019-05-26 15:41:24 +02:00
bora Make FLUTE an independant tool in the Coriolis git repository. 2019-02-12 12:48:52 +01:00
coloquinte Pin management implemented for NetBuilderHV. 2019-03-10 13:25:43 +01:00
crlcore Upgrade of Katana detailed router to support Arlet 6502. 2019-07-28 23:20:00 +02:00
cumulus Upgrade of Katana detailed router to support Arlet 6502. 2019-07-28 23:20:00 +02:00
documentation Typos corrigees dans Hurricane et Python Tutorial 2019-06-04 14:34:20 +02:00
equinox Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
etesian Upgrade of Katana detailed router to support Arlet 6502. 2019-07-28 23:20:00 +02:00
flute Patch flute to be compatible with boost 1.65. 2019-03-04 12:34:43 +01:00
hurricane Upgrade of Katana detailed router to support Arlet 6502. 2019-07-28 23:20:00 +02:00
ispd Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
karakaze Support for mixing real pads & symbolic core. Wrapper around s2r. 2019-05-22 14:34:32 +02:00
katabatic Full update of the generated documentation for version 2.3 2019-05-27 18:49:51 +02:00
katana Upgrade of Katana detailed router to support Arlet 6502. 2019-07-28 23:20:00 +02:00
kite Full update of the generated documentation for version 2.3 2019-05-27 18:49:51 +02:00
knik Upgrade of Katana detailed router to support Arlet 6502. 2019-07-28 23:20:00 +02:00
lefdef Correct dependency problems in lefdef. 2018-11-27 13:43:59 +01:00
mauka Happy New Year 2018 ! Update license years... 2018-01-06 17:55:44 +01:00
metis Happy New Year 2018 ! Update license years... 2018-01-06 17:55:44 +01:00
nimbus Add a fully generated documentation in the git repository. 2018-06-06 18:42:26 +02:00
oroshi Full update of the generated documentation for version 2.3 2019-05-27 18:49:51 +02:00
solstice Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
stratus1 Various bug corrections to pass the alliance-check-toolkit reference benchs. 2019-05-24 23:57:22 +02:00
tutorial Support for mixing real pads & symbolic core. Wrapper around s2r. 2019-05-22 14:34:32 +02:00
unicorn Full update of the generated documentation for version 2.3 2019-05-27 18:49:51 +02:00
unittests Compatiblilty with boost 1.57 on RedHat 6. 2019-03-11 16:01:11 +01:00
vlsisapd Full update of the generated documentation for version 2.3 2019-05-27 18:49:51 +02:00
.gitignore Various bug corrections to pass the alliance-check-toolkit reference benchs. 2019-05-24 23:57:22 +02:00
Makefile Enabling the user to choose the devtoolset it needs. 2019-03-04 14:20:13 +01:00
README.rst Complete hoverhaul of the documentation to Sphinx. 2017-07-15 17:35:02 +02:00

README.rst

.. -*- Mode: rst -*-


===============
Coriolis README
===============


Coriolis is a free database, placement tool and routing tool for VLSI designs.


Purpose
=======

Coriolis provides several tools to perform the layout of VLSI circuits.  Its
main components are the Hurricane database, the Etesian placer and the Kite
router, but other tools can use the Hurricane database and the parsers
provided.

The user interface <cgt> is the prefered way to use Coriolis, but all
Coriolis tools are Python modules and thus scriptables.


Documentation
=============

The complete documentation is available here, both in pdf & html:

   ./documentation/_build/html/index.html
   ./documentation/UsersGuide/UsersGuide.pdf

The documentation of the latest *stable* version is also
available online. It may be quite outdated from the *devel*
version.

    https://soc-extras.lip6.fr/en/coriolis/coriolis2-users-guide/


Building Coriolis
=================

To build Coriolis, ensure the following prerequisites are met:

* Python 2.7.
* cmake.
* boost.
* bison & flex.
* Qt 4 or 5.
* libxml2.
* RapidJSON
* A C++11 compliant compiler.

The build system relies on a fixed directory tree from the root
of the user currently building it. Thus first step is to get a clone of
the repository in the right place. Proceed as follow: ::

   ego@home:~$ mkdir -p ~/coriolis-2.x/src/support
   ego@home:~$ cd ~/coriolis-2.x/src/support
   ego@home:~$ git clone http://github.com/miloyip/rapidjson
   ego@home:~$ git checkout ec322005072076ef53984462fb4a1075c27c7dfd
   ego@home:~$ cd ~/coriolis-2.x/src
   ego@home:src$ git clone https://www-soc.lip6.fr/git/coriolis.git
   ego@home:src$ cd coriolis

If you want to use the *devel* branch: ::

    ego@home:coriolis$ git checkout devel

Then, build the tool: ::

    ego@home:coriolis$ make install

Coriolis gets installed at the root of the following tree: ::

    ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/

Where ``<OS>`` is the name of your operating system and ``<DISTRIB>`` your
distribution.


Using Coriolis
==============

The Coriolis main interface can be launched with the command: ::

    ego@home:~: ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/bin/coriolis

The ``coriolis`` script is tasked to guess it's location and setup appropriatly
the UNIX environment, then lauch ``cgt`` (or *any* command, with the
``--run=<COMMAND>`` option).

Conversely, you can setup the current shell environement for Coriolis by 
using the helper ``coriolisEnv.py``, then run any Coriolis tool: ::

    ego@home:~$ eval `~/coriolis-2.x/src/coriolis/bootstrap/coriolisEnv.py`
    ego@home:~$ cgt -V