Go to file
Jean-Paul Chaput 81fffb9d0a Add a new Track finishing stage: close short gaps of same nets wires.
* New: In Track::repair(), short gaps between segments of the same
    nets where occuring and being not detected. This was causing
    DRC minimal distance violations. Now, fuse the segments when
    they are too close. Done by extenting the duSource of the
    rightmost one to the leftlost one.
       Create ancillary class GapSet to manage the gaps of the
    various segment of the same net.
2021-04-10 19:51:19 +02:00
anabatic Refining check in AutoSegment::isMiddleStack(). 2021-04-09 13:54:46 +02:00
bootstrap Added utlity script bootstrap/resetDoc.sh to revert the generated doc. 2020-11-14 18:54:23 +01:00
bora Bug fix, reset Cell flags after unrouting an analog design. 2020-04-30 00:38:32 +02:00
coloquinte Add updators to modify cell sizes on the fly in Coloquinte. 2021-01-13 19:10:31 +01:00
crlcore Prefix all Cell from a GDS file with "gds_" to avoid cell overload. 2021-04-09 13:55:08 +02:00
cumulus Forgot to update root clocktree wiring for block-only routing. 2021-04-10 19:41:30 +02:00
documentation Updated PDFs, November 13, 2020 (15:02). 2020-11-13 15:02:56 +01:00
equinox Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
etesian Use the extention cap in Anabatic to ensure the METAL minimum area. 2021-04-01 08:46:02 +02:00
flute Added support for loading user defined global routing in Anabatic. 2020-09-30 11:55:39 +02:00
hurricane Bug fixes in the VST/VHDL driver coupled with BlifParser. 2021-04-05 23:53:44 +02:00
ispd Various typos correction (courtesy of G. Gouvine). 2019-07-30 13:13:57 +02:00
karakaze Correct Cell object detection while reading Oceane parameters. 2020-05-27 16:11:53 +02:00
katabatic Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
katana Add a new Track finishing stage: close short gaps of same nets wires. 2021-04-10 19:51:19 +02:00
kite Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
knik Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
lefdef Migrating doc from Sphinx towards Pelican. 2020-02-03 17:44:15 +01:00
mauka Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
metis Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
nimbus Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
oroshi Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
solstice Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
stratus1 Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
tutorial More PEP8 compliant Python code. Start rewrite Python/C++ wrappers. 2020-04-08 11:24:42 +02:00
unicorn Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
unittests Enhanced techno rule support. Inspector support bug fix. 2020-07-21 11:22:04 +02:00
vlsisapd Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
.gitignore Various bug corrections to pass the alliance-check-toolkit reference benchs. 2019-05-24 23:57:22 +02:00
Makefile Enabling the user to choose the devtoolset it needs. 2019-03-04 14:20:13 +01:00
README.rst Update doc link for the new Pelican generated one. 2020-02-10 13:38:06 +01:00

README.rst

.. -*- Mode: rst -*-


===============
Coriolis README
===============

Coriolis is a free database, placement tool and routing tool for VLSI design.


Purpose
=======

Coriolis provides several tools to perform the layout of VLSI circuits.  Its
main components are the Hurricane database, the Etesian placer and the Katana
router, but other tools can use the Hurricane database and the parsers
provided.

The user interface <cgt> is the prefered way to use Coriolis, but all
Coriolis tools are Python modules and thus scriptable.


Documentation
=============

The complete documentation is available here, both in pdf & html:

   ./documentation/output/html
   ./documentation/UsersGuide/UsersGuide.pdf

The documentation of the latest *stable* version is also
available online. It may be quite outdated from the *devel*
version.

    https://www-soc.lip6.fr/sesi-docs/coriolis2-docs/coriolis2/en/latex/users-guide/UsersGuide.pdf


Building Coriolis
=================

To build Coriolis, ensure the following prerequisites are met:

* Python 2.7.
* cmake.
* boost.
* bison & flex.
* Qt 4 or 5.
* libxml2.
* RapidJSON
* A C++11 compliant compiler.

The build system relies on a fixed directory tree from the root
of the user currently building it. Thus first step is to get a clone of
the repository in the right place. Proceed as follow: ::

   ego@home:~$ mkdir -p ~/coriolis-2.x/src/support
   ego@home:~$ cd ~/coriolis-2.x/src/support
   ego@home:~$ git clone http://github.com/miloyip/rapidjson
   ego@home:~$ git checkout ec322005072076ef53984462fb4a1075c27c7dfd
   ego@home:~$ cd ~/coriolis-2.x/src
   ego@home:src$ git clone https://www-soc.lip6.fr/git/coriolis.git
   ego@home:src$ cd coriolis

If you want to use the *devel* branch: ::

    ego@home:coriolis$ git checkout devel

Then, build the tool: ::

    ego@home:coriolis$ make install

Coriolis gets installed at the root of the following tree: ::

    ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/

Where ``<OS>`` is the name of your operating system and ``<DISTRIB>`` your
distribution.


Using Coriolis
==============

The Coriolis main interface can be launched with the command: ::

    ego@home:~: ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/bin/coriolis

The ``coriolis`` script detects its location and setups the UNIX
environment appropriately, then lauches ``cgt`` (or *any* command, with the
``--run=<COMMAND>`` option).

Conversely, you can setup the current shell environement for Coriolis by 
using the helper ``coriolisEnv.py``, then run any Coriolis tool: ::

    ego@home:~$ eval `~/coriolis-2.x/src/coriolis/bootstrap/coriolisEnv.py`
    ego@home:~$ cgt -V