Go to file
Jean-Paul Chaput 3687ca80e9 Add management for highly loaded leafs of H-Trees.
In the LS180, probably due to the implementation of a small RAM
with DFFs, some leaf of the clock tree (H-Tree) got heavily
loaded (around 80 DFFs sinks). Implement an option that allow
the leaf of the QuadTree to use three buffers instead of one.
The sinks are partitionned using their angle from the center
of the leaf (trigonometric direction). CChoose the bigger angle
gaps to perform the split.

* Change: In Cumulus/plugins.block.configuration.GaugeConf, in
     getNearestHorizontalTrack() and getNearestVerticalTrack() add an
     offset argument to shift the position of the requested track
     by a certain amount.
* Change: In Cumulus/plugins.block.configuration.GaugeConf, in
    createHorizontal(), add a flag to make the source end of the
    segment to "stick out". Useful when connecting to a stacked
    VIA top, but using a lower layer that can be shifted.
* New: In Cumulus/plugins.block.spares.Spares, BufferPool & QuadTree,
    add support for selection and management of multiple buffers at
    the same time. Basically returns a list of selected buffer
    instances instead of just one instance.
      Added HEAVY_LEAF_LOAD flag to Spares. To be used by all tools
    classes that makes use of it.
      Added QuadTree.runselect(), be sure to call it between different
    H-Tree operations, otherwise results will be strange.
* New: In Cumulus/plugins.block.htree.HTree, in case of heavy leaf
    load, in the leaf of the tree, allocate three buffers instead
    of one. Select them to form a triangle around the main one.
    That is, use (i,j), (i+1,j) and (i,j+1).
      Added a HTree._connectLeaf() to share the handling of the child
    buffer connexions. Whether they are leaf of not and heavy or not.
* Change: Cumulus/plugins.block.Block, expand HTree support to
    manage the HEAVY_LEAF_LOAD flag.
2021-07-01 14:01:44 +02:00
anabatic Prevent wires part of a diode cluster to be moved up. 2021-06-18 19:17:24 +02:00
bootstrap Freeze version of RapidJSON to build under SL7. 2021-06-11 11:47:35 +02:00
bora Bug fix, reset Cell flags after unrouting an analog design. 2020-04-30 00:38:32 +02:00
coloquinte Add updators to modify cell sizes on the fly in Coloquinte. 2021-01-13 19:10:31 +01:00
crlcore Fix offgrid core power rings in symbolic/cmos configuration. 2021-06-26 14:38:13 +02:00
cumulus Add management for highly loaded leafs of H-Trees. 2021-07-01 14:01:44 +02:00
documentation Updated PDFs, November 13, 2020 (15:02). 2020-11-13 15:02:56 +01:00
equinox Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
etesian Use fill_x0 instead of tie_x0 in Etesian::Slice::fillHole() 2021-06-24 11:18:22 +02:00
flute Added support for loading user defined global routing in Anabatic. 2020-09-30 11:55:39 +02:00
hurricane More generic H-Tree support to accomodate the LS180 PLL internal clock. 2021-05-31 00:02:23 +02:00
ispd Various typos correction (courtesy of G. Gouvine). 2019-07-30 13:13:57 +02:00
karakaze Correct Cell object detection while reading Oceane parameters. 2020-05-27 16:11:53 +02:00
katabatic Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
katana New parameter "katana.trackFill" to control the dummy fill ratio. 2021-06-27 20:16:42 +02:00
kite Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
knik Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
lefdef Migrating doc from Sphinx towards Pelican. 2020-02-03 17:44:15 +01:00
mauka Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
metis Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
nimbus Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
oroshi Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
solstice Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
stratus1 Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
tutorial More PEP8 compliant Python code. Start rewrite Python/C++ wrappers. 2020-04-08 11:24:42 +02:00
unicorn Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
unittests Enhanced techno rule support. Inspector support bug fix. 2020-07-21 11:22:04 +02:00
vlsisapd Fix unitialized stat structure in Vlsisapd, Path::mode() (valgrind). 2021-05-11 13:46:53 +02:00
.gitignore Various bug corrections to pass the alliance-check-toolkit reference benchs. 2019-05-24 23:57:22 +02:00
Makefile Enabling the user to choose the devtoolset it needs. 2019-03-04 14:20:13 +01:00
README.rst Update doc link for the new Pelican generated one. 2020-02-10 13:38:06 +01:00

README.rst

.. -*- Mode: rst -*-


===============
Coriolis README
===============

Coriolis is a free database, placement tool and routing tool for VLSI design.


Purpose
=======

Coriolis provides several tools to perform the layout of VLSI circuits.  Its
main components are the Hurricane database, the Etesian placer and the Katana
router, but other tools can use the Hurricane database and the parsers
provided.

The user interface <cgt> is the prefered way to use Coriolis, but all
Coriolis tools are Python modules and thus scriptable.


Documentation
=============

The complete documentation is available here, both in pdf & html:

   ./documentation/output/html
   ./documentation/UsersGuide/UsersGuide.pdf

The documentation of the latest *stable* version is also
available online. It may be quite outdated from the *devel*
version.

    https://www-soc.lip6.fr/sesi-docs/coriolis2-docs/coriolis2/en/latex/users-guide/UsersGuide.pdf


Building Coriolis
=================

To build Coriolis, ensure the following prerequisites are met:

* Python 2.7.
* cmake.
* boost.
* bison & flex.
* Qt 4 or 5.
* libxml2.
* RapidJSON
* A C++11 compliant compiler.

The build system relies on a fixed directory tree from the root
of the user currently building it. Thus first step is to get a clone of
the repository in the right place. Proceed as follow: ::

   ego@home:~$ mkdir -p ~/coriolis-2.x/src/support
   ego@home:~$ cd ~/coriolis-2.x/src/support
   ego@home:~$ git clone http://github.com/miloyip/rapidjson
   ego@home:~$ git checkout ec322005072076ef53984462fb4a1075c27c7dfd
   ego@home:~$ cd ~/coriolis-2.x/src
   ego@home:src$ git clone https://www-soc.lip6.fr/git/coriolis.git
   ego@home:src$ cd coriolis

If you want to use the *devel* branch: ::

    ego@home:coriolis$ git checkout devel

Then, build the tool: ::

    ego@home:coriolis$ make install

Coriolis gets installed at the root of the following tree: ::

    ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/

Where ``<OS>`` is the name of your operating system and ``<DISTRIB>`` your
distribution.


Using Coriolis
==============

The Coriolis main interface can be launched with the command: ::

    ego@home:~: ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/bin/coriolis

The ``coriolis`` script detects its location and setups the UNIX
environment appropriately, then lauches ``cgt`` (or *any* command, with the
``--run=<COMMAND>`` option).

Conversely, you can setup the current shell environement for Coriolis by 
using the helper ``coriolisEnv.py``, then run any Coriolis tool: ::

    ego@home:~$ eval `~/coriolis-2.x/src/coriolis/bootstrap/coriolisEnv.py`
    ego@home:~$ cgt -V