* New: In Hurricane::RoutingPad, added support if the supporting component
is a Pad. The source/target positions are computed according to the
most likely direction.
Change the _getEntityAsComponent() function into an inline template
_getEntityAs<T>().
Change the flags from an enum to static const uint32_t.
* Change: In Anabatic::Configuration, use _getEntityAs<T>.
* Change: In Anabatic::Dijkstra, use _getEntityAs<T>.
* Change: In Anabatic::NetBuilder, use _getEntityAs<T>.
* Change: In Katabatic::LoadGrByNet, use _getEntityAs<T>.
* Change: In Katana::ProtectRoutingPads, use _getEntityAs<T>.
* Change: In Bora::AnalogDistance, use _getEntityAs<T>.
* Change: In Etesian::EtesianEngine, use _getEntityAs<T>.
* Change: In CRL/helpers.io, the ErrorWidget requires PyQt5 to execute but
is not mandatory to run Coriolis/cgt. In order to be more portable,
if it is not availble just evert to text display on the console.
This widget will be directly supplied by Coriolis in the future
completely removing the need for PyQt.
*Change: In cumulus/plugins/aboutwindow, same as above.
* Bug: In Anabatic::AutoSegment::canReduce(), when looking at a fixed
segment we were unconditionally flagging it as reduced if it was
a "jumper", regardless of it's length.
It was wrong, now also check for a length below the P-Pitch.
This was introduced when implementing the channel routing.
* Update: In CRL/node600/phenitec/kite.py, update the routing gauge to
the new format. So now we can use again SxLib-2M (channel routing
SxLib for two metal technologies).
* Change: In CRL::BlifParser, if a master cell is not found in the
AllianceFramework, then try in the Blif supplied libraries.
This is used to load the zero, one and tie cells.
Add a Blif::getCell() static function to look into the Blif
supplied libraries.
* Change: In CRL::LefImport, sometimes there can be discrepencies between
the LEF ROUTING layers and the Coriolis routing gauge. Now ignore
routing layers that are *not* presents in the Coriolis gauge.
* Change: In AnabaticEngine, moved routingMode attribute from KatanaEngine,
as some setup operations needs it.
* Change: In AutoSegment::canReduce(), allow fixed segments to be reduced
if they are "jumpers" (turn+turn and top+top or bot+bot).
This case arise on the edge of routing channels for fixed wires
to connect terminals.
* Change: In AutoSegment::getTopologicalinfos(), compute differently the
(leftBound,rightBound) interval when in channel mode.
In over-the-cell mode, this interval is the one of the whole
GCells under the wire. In channel mode, for fixed wires (that is,
verticals connecteds to cells) this interval is reduced to half
the GCell height, on the connected side of said channel.
This allows Manipulator::_insertToTrack() to issue disantangling
requests (push left/push right) for fixed segments that are face
to face in the channel.
* Change: In Anabatic::Configuration CTOR, allow the cellGauge to have a
different name from the routingGauge. Now if the cell gauge that
should match the routing gauge is not found, fallback to the
name set in "anabatic.cellGauge" parameter.
Case occur when we try to match with CORE sites from LEF files.
* Change: In Etesian::Configuration CTOR, same change as in the
Anabatic configuration.
* Change: In Anabatic::GCell::updateDensity(), never set the GoStraight
flag in channel mode. This flag makes sense when there is at least
4 routing layers (so we have 2 contiguous free of blockages).
* Bug: In Anabatic::Session::_getNearestGridpoint(), sometimes the nearest on
grid point is outside the constraint box. Now force the point
to remains inside constraints even if offgrid.
* Change: In Katana::DataNegociate::update(), perpandiculars that are
either reduced or in non-preferred routing direction should not
trigger a bug message.
* Change: In KatanaEngine::_check(), do not check for fixed, horizontal
non-prefs AutoSegments in channel mode (avoid false bug display).
* Bug: In Manipulator::_forceToTrack(), slighty shrink (-1) the interval
to free. The intersection function of intervals returns true when
the two intervals *exactly* touches (1.vMax == 2.vMin). But in
this specific case, they are not *overlapping* and no action
should be taken...
* Bug: In Manipulator::_insertInTrack(), do not reject the track when
we are overlapping a fixed vertical segment in channel mode.
(Hmm, maybe already corrected by the previous one).
* Change: In Katana::NegociateOverlapCost(), in channel mode, do
not put two overlaping vertical fixed segments into infinite cost.
This happens when two cell connected verticals are face to face in
a channel. We want them negociated the track (by shrinking their
length) instead of excluding it right away.
* Change: In NegociateWindow::createTrackSegment(), in channel mode,
do not attempt to create a track segment over a fixed and reduced
AutoSegment.
Do not attempt to put a non-preferred AutoSegment on a Track
either.
* Bug: In RoutingEvent::revalidate(), the number of availables tracks
was badly computed when in the pure constraint case, when there
was only one it was reporting zero.
* Change: In TrackElements::TrackElements_Perpandicular::Locator,
do not issue a bug when an non-pref or reduced AutoSegment do not
have an associated TrackElement.
* Change: In TrackSegmentCost::update(), do not issue a bug when a
perpandicular is reduded or non-pref and do not have a TrackElement.
* New: In cumulus/plugins/sram_256x32.py, build the output mux using a
NAND2/NOR2 binary tree instead of mux2/mux3. Use more, but much
smaller cells. The reduction of wirelength (from Yosys) goes
from 4% to 15% for the non-folded variant.
Uses a specially placed tree to minimize wire length.
* New: In cumulus/plugins/sram.py, extend StdCellConf to convert names
accross library flavors (FlexLib_TSMC_C180, FlexLib_Sky130 and
generic SxLib).
The generator as been build in two parts:
1. A genereric sram.BaseSRAM class to provides support for all kind of
SRAM (grouping column tree, headers, folding).
2. The specific SRAM_256x32 (256 words of 32 bits) suited for the
ethmac.
The sram has been simulated with genpat+asimut and gives identical
results to the Yosys one (at gate level). No timing though.
* Bug: In Katana::GlobalNetTable::getRootNet(), when tracking up the
net through the plug (to look if it's connected to a top level
clock), we may encounter an *unconnected* plug.
We where not checking that case, and went crashing. Now issue
a warning and return NULL.
This indicates that, up until now, we didn't encounter any
unconnected Plug in our netlists. This did show up due to a
building error in the SRAM Standard Cell generator.
Build DAG then create an ordered list of gates from it. DAG starting
points could be Net or Instances (we take the output of the Instance).
Multiple DAG can be created, but once an Instance is part of a DAG,
it connot be part of another and is conidered as "reached" by all
subsequent DAG run. The ordered list build from a DAG contains both
Net and Instances.
A new property has DagProperty, accessible through DagExtension
has been created to store relevant information of the DAG on each
Instance or Net (work in progress).
* New: Isobar::PyAttributesHolder, a PyObject with only a dictionary
to hold the attributes associated to a DBo.
* New: Isobar::PyHolderProperty, the Property that encapsulate
PyAttributesholder.
* New: Isobar::PythonAttributes, the extension to simplify the
management of the PyAttributesholder.
* Change: In PyEntity, now use a dedicated tp_getattro and tp_setattro
to delegate the Python attribute access towars the PyAttributesholder.
* New: In hurricane/doc & documentation, update docs regarding Python
attributes managment.
Main list of ports:
* Replace deprecated operator '<>' by '!='.
* To check if a list is empty, do not compare to [], but check it's
length instead.
* Do not make a class inherit indirectly twice from the same base class.
* Hurricane physical object constructors uses DbU::Unit as arguments,
seen as int in Python, so they will not match float. Unfortunately
the calculation often gives float. So explicitely cast them into
int. This is due to a change of behavior in Python. Now, 3/2
gives 1.5 (float). To get the previous one use: 3/2 -> 1 (int).
* dict.keys()[0] no longer work, instead use list(dict.keys())[0].
In SelectorCriterion & SelectorCriterions, when selecting a Net occurrence,
we where storing the Net only. This was fine if the Net was belonging to
the Cell's top level. But when it was an occurrence of a non-top level
net, this was creating the elusive incoherent Occurrence problem.
Now we truly store the occurrence of the Net, to be accurate, the root
of the HyperNet.
* Change: In SelectorCriterions::add(), the Net* argument is replaced
by a Occurrence of Net. Must be an HyperNet root occurrence.
Same goes for SelectorCriterions::remove().
* Change: In CellWidget::select(), when called with a Net occurrence,
select the whole HyperNet components.
* Change: In NetSelectorCriterion, now use a Net occurrence instead
of directly a Net. Must be an HyperNet root net occurrence.