2014-05-27 08:40:42 -05:00
|
|
|
# -*- Mode:Python; explicit-buffer-name: "kite.conf<cmos>" -*-
|
|
|
|
|
|
|
|
import helpers
|
Correct handling of lambdas & microns in configuration files.
* Bug: In CRL/etc/NODE/VENDOR/Technology.conf, the database must be configured
as early has possible so the functions ensuring length conversions can
work correctly (l(v), u(v)). So we can no longer rely on a table to be
read after the execution of the file. We perform a direct call to the
helpers.Technology.initTechno() function. And it must be made first
thing.
In all tables taking dimensions, we must use one of the converter
function helpers.l(v), helpers.u(v) or helpers.n(v) so the the value v
get converted in lambda, microns or nanometer (resp.). Make the
modifications in all technology.conf and kite.conf files.
* Change: In CRL/coriolisInit.py, remove the technoConfig variable that has
been replaced by a direct call to helpers.Technology.initTechno().
* Change: In CRL/helpers.Alliance.loadRoutingGaugesTable(), no longer try to
convert coordinates, they must already be in DbU.
* Change: In CRL/helpers.__init__.py, remove lambdaMode() and micronsMode()
they could not be made to work as expected. Create l(), u(), n() as
replacement.
2018-07-16 04:32:40 -05:00
|
|
|
from helpers import l, n, u
|
2014-05-27 08:40:42 -05:00
|
|
|
|
|
|
|
# Contains the layout (shared by all technologies).
|
|
|
|
execfile( helpers.sysConfDir+'/common/kite.conf' )
|
2012-11-16 06:49:47 -06:00
|
|
|
|
|
|
|
|
|
|
|
parametersTable = \
|
In CRL, update real conf. files. Smarter management of pin in LEF parser.
* Change: In CRL Core, etc/, update the configuration files of real
technologies. Mostly for FreePDK 45. This work is also done for
AMS c35b4 (350nm) but in a private (SoC) git repository.
Added a new parameter 'lefImport.minTerminalwidth' for the
minimum size (width) of a metal1 terminal in standard cells.
Corrected bug of the minimum trace level which must be
initialized to a great value and *not* zero;
* Change: In CRL Core, BlifParser, detect when there is no tie low
or tie high defined, issue an error (connexion left open) but
continue.
* New: In CRL::RoutingLayerGauge, new overlad of getTrackPosition()
with the parameter set of getTrackIndex(). Used to know if a
terminal is on-grid or not.
* New: In CRL::LefImport, smarter management of metal1 pins. Adds a
_pinPostProcess() function to select the external components
among the various shapes. If the gauge is VH, all the pin rectangles
are translateds into vertical segments (even if the metal1 gauge
says the tracks are horizontals).
The _pinPostProcess() function adds as external components of
a net, only the segments of a sufficent width as given in
'lefImport.minTerminalWidth' and that are on-grid.
2018-01-06 09:18:33 -06:00
|
|
|
( ('lefImport.minTerminalWidth' ,TypeDouble ,0.0 )
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
, ('katabatic.routingGauge' ,TypeString , 'sxlib' )
|
In CRL, update real conf. files. Smarter management of pin in LEF parser.
* Change: In CRL Core, etc/, update the configuration files of real
technologies. Mostly for FreePDK 45. This work is also done for
AMS c35b4 (350nm) but in a private (SoC) git repository.
Added a new parameter 'lefImport.minTerminalwidth' for the
minimum size (width) of a metal1 terminal in standard cells.
Corrected bug of the minimum trace level which must be
initialized to a great value and *not* zero;
* Change: In CRL Core, BlifParser, detect when there is no tie low
or tie high defined, issue an error (connexion left open) but
continue.
* New: In CRL::RoutingLayerGauge, new overlad of getTrackPosition()
with the parameter set of getTrackIndex(). Used to know if a
terminal is on-grid or not.
* New: In CRL::LefImport, smarter management of metal1 pins. Adds a
_pinPostProcess() function to select the external components
among the various shapes. If the gauge is VH, all the pin rectangles
are translateds into vertical segments (even if the metal1 gauge
says the tracks are horizontals).
The _pinPostProcess() function adds as external components of
a net, only the segments of a sufficent width as given in
'lefImport.minTerminalWidth' and that are on-grid.
2018-01-06 09:18:33 -06:00
|
|
|
, ("katabatic.globalLengthThreshold",TypeInt ,1450 ) # Katabatic parameters.
|
2014-05-27 08:40:42 -05:00
|
|
|
, ("katabatic.saturateRatio" ,TypePercentage,80 )
|
|
|
|
, ("katabatic.saturateRp" ,TypeInt ,8 )
|
Express "xEdgeCapacity" ratio as "xTracksReservedLocal" a number of tracks.
* Change: In Kite, Katabatic & Knik, express the number of tracks truly
available to the global router by the number of tracks reserved to
the local routage inside a GCell. Replace the ratio parameter
"hEdgeCapacity" by an integer parameter "hTracksReservedLocal"
(duplicate for verticals).
It is more explicit to give directly the number of tracks that
are to be used locally, and potentially saves us from rouding
problems when calculating the number of availables tracks.
Note: we cannot do that for the layer saturateRatio as it
uses the density ratio that take account local wires, leading
to fractional results.
* Change: In Katabatic, in <GCellGrid>, rename checkEdgeSaturation()
into checkEdgeOverflow(), more explicit.
* Change: In Knik, in <Graph>, display the computed capacities of the
lower left node edges (should be the same througout all the grid).
* Change: In Unicorn, in <cgt.py>, uses the new parameters names for
edge density.
2014-06-10 09:58:52 -05:00
|
|
|
, ('katabatic.topRoutingLayer' ,TypeString , 'METAL5')
|
2012-11-16 06:49:47 -06:00
|
|
|
# Kite parameters.
|
Express "xEdgeCapacity" ratio as "xTracksReservedLocal" a number of tracks.
* Change: In Kite, Katabatic & Knik, express the number of tracks truly
available to the global router by the number of tracks reserved to
the local routage inside a GCell. Replace the ratio parameter
"hEdgeCapacity" by an integer parameter "hTracksReservedLocal"
(duplicate for verticals).
It is more explicit to give directly the number of tracks that
are to be used locally, and potentially saves us from rouding
problems when calculating the number of availables tracks.
Note: we cannot do that for the layer saturateRatio as it
uses the density ratio that take account local wires, leading
to fractional results.
* Change: In Katabatic, in <GCellGrid>, rename checkEdgeSaturation()
into checkEdgeOverflow(), more explicit.
* Change: In Knik, in <Graph>, display the computed capacities of the
lower left node edges (should be the same througout all the grid).
* Change: In Unicorn, in <cgt.py>, uses the new parameters names for
edge density.
2014-06-10 09:58:52 -05:00
|
|
|
, ("kite.hTracksReservedLocal" ,TypeInt ,3 , { 'min':0, 'max':20 } )
|
|
|
|
, ("kite.vTracksReservedLocal" ,TypeInt ,3 , { 'min':0, 'max':20 } )
|
|
|
|
, ("kite.eventsLimit" ,TypeInt ,4000002 )
|
|
|
|
, ("kite.ripupCost" ,TypeInt ,3 , { 'min':0 } )
|
|
|
|
, ("kite.strapRipupLimit" ,TypeInt ,16 , { 'min':1 } )
|
|
|
|
, ("kite.localRipupLimit" ,TypeInt ,9 , { 'min':1 } )
|
|
|
|
, ("kite.globalRipupLimit" ,TypeInt ,5 , { 'min':1 } )
|
|
|
|
, ("kite.longGlobalRipupLimit" ,TypeInt ,5 , { 'min':1 } )
|
2019-02-26 13:00:28 -06:00
|
|
|
# Anabatic & Katana parameters are temporarily hosted here.
|
|
|
|
, ('anabatic.routingGauge' ,TypeString , 'sxlib' )
|
|
|
|
, ("anabatic.globalLengthThreshold" ,TypeInt ,1450 )
|
|
|
|
, ("anabatic.saturateRatio" ,TypePercentage,80 )
|
|
|
|
, ("anabatic.saturateRp" ,TypeInt ,8 )
|
|
|
|
, ('anabatic.topRoutingLayer' ,TypeString , 'METAL5')
|
2016-05-26 06:56:16 -05:00
|
|
|
, ("anabatic.edgeLength" ,TypeInt ,24 )
|
|
|
|
, ("anabatic.edgeWidth" ,TypeInt ,4 )
|
2019-02-26 13:00:28 -06:00
|
|
|
, ("anabatic.edgeCostH" ,TypeDouble ,19.0 )
|
|
|
|
, ("anabatic.edgeCostK" ,TypeDouble ,-60.0 )
|
Corrections in the Dijkstra global routing (ripup) mechanism.
* Bug: In Anabatic::Dijkstra, the degree of a vertex (the number of neighbors
belonging to the same net) was miscalculated. This was leading, in the
materialize step to some feed-through vertexes not being broken.
Leading in turn to incomplete transformation of the detailed routing.
Also in _trackback(), the degree of the first vertex we were backtracking
from was not incremented.
* Bug: In Anabatic::Dijkstra::materialize(), systematically use
GCell::breakGoThrough() on both source and target. This is needed when
we are in the ripup phase as both source and target can be go-through.
This was also leading to incomplete detailed routing transformation.
* Change: In Anabatic::Edge::ripup(), ripup one third of the segments instead
of thoses exeeding the global length threshold. This way we are sure to
desaturate an edge. Needs to be further calibrated.
* Change: In Aanabatic::GCell::breakGoThrough(), no longer return NULL.
Return existing gcontact if any. Break if it is a go-through and create
a new gcontact in last resort. Maybe rename this function.
* New: In Anabatic::Configuration, new parameters:
- anabatic.edgeHScaling, to adjust the length of the horizontal edges
relative to the vertical ones (this is a ratio).
- anabatic.globalIterations, set the maximum number of ripup passes
of the global router.
* New: In CRL/etc/*/kite.conf, added new parameters anabatic.edgeHScaling
and anabatic.globalIterations.
* New: In Katana::GlobalRoute::DigitalDistance, take into account the new
edgeHScaling factor. Must be used when the capacity of V-edges differs
greatly for H-edges (case of AMS 350nm c35b4 for instance).
* Bug: In Katana::GlobalRoute::DigitalDistance, the historic cost is
computed for an edge length of "1". Must be multiplicated by the
current edge length to have any measurable effect.
This bug is finally explaining why the ripup was producing the
same solutions over and over, the historical cost was negligible!
2018-04-16 05:10:48 -05:00
|
|
|
, ("anabatic.edgeHScaling" ,TypeDouble ,1.0 )
|
|
|
|
, ("anabatic.globalIterations" ,TypeInt ,10 , { 'min':1, 'max':100 } )
|
2016-09-10 11:49:48 -05:00
|
|
|
, ("anabatic.gcell.displayMode" ,TypeEnumerate ,1
|
|
|
|
, { 'values':( ("Boundary" , 1)
|
|
|
|
, ("Density" , 2) ) }
|
|
|
|
)
|
2019-02-26 13:00:28 -06:00
|
|
|
, ("katana.hTracksReservedLocal" ,TypeInt ,3 , { 'min':0, 'max':20 } )
|
|
|
|
, ("katana.vTracksReservedLocal" ,TypeInt ,3 , { 'min':0, 'max':20 } )
|
Added core2chip support for Phenitec80.
This commit degrades the run success rate of ARMv2a to 87% (40 iters).
* New: In CRLcore/etc/.../kite.conf, add configuration parameters:
katana.termSatReservedlocal
katana.termSatthreshold
for the new edge capacity computation system.
* New: In CRLcore/etc/symbolic/phenitec06/, add support for N. Shimizu
small I/O pads (supplied in phlib80). Tune various parameters of
Anabatic/Katana to increase routing success.
* Change: In CRLcore/alliance/ap/ApParser, make Pin external components,
so RoutingPad will be build upon in global routing.
Do not complain when a I/O pad has a physical instance that did
not exists in the netlist. Just create it (appeared in phlib80).
When no netlist instance exists in a pad, the pad Cell is still
considered as terminal.
* New: In Etesian::BloatCells, new profile named "3metals" better suited
for two routing metals technologies (i.e. Phenitec).
* New: In Anabatic::RawGCellsUnder, new CTOR which take only source &
target points instead of a segment. Needed to manage wide segment for
which the axis to consider is not that of the segment (one axis for
each track it intersect).
* New: In Anabatic::GCell, add a RoutingPad count attribute, for Edge
reservation computation.
* New: In AnabaticEngine::computeEdgeCapacities(), instead of decreasing
all edges of a fixed amount (hTrackReservedLocal), guess the GCell
cluttering from the number of RoutingPads that it contains.
For non-saturated GCells, the four edges are decreased by the number
of RoutingPads. We use the maximum from the two neigboring GCells.
The hTrackReservedLocal parameter is now used only as a *maximum*
that the edge reservation can reach.
If a GCell is saturated (more than 8 RoutingPads, the saturation is
propagated horizontally to 2 neigboring GCells).
* Change: In AutoContactTerminal::getNativeConstraintBox(), use a more
flexible gauge name matching for terminal vertical extensions correction.
Namely, match all "msxlib*" kind of gauges.
* Change: In AutoSegment::setAxis(), add the ability to force the axis
position, even if it is a non-canonical segment. Maybe needed in the
initialisation steo, before the first canonisation is performed.
* New: In NetBuilder, added new methods _do_1G_1PinM1() and _do_2G_1PinM1(),
to manage coronas for Phenitec designs.
To avoid various side effects from segments being too close from
the north / east side of the routing area, make those segments fixeds.
* Change: In KatanaEngine::annotateGlobalGraph(), the management of wide
wires was wrong. The axis to use to find the underlying GCells is the
one of the track, not of the segment. This was creating bad edge
capacity computation under the power ring of a block and subsequently
routing failures.
* New: In Kanata::Manipulator, added method reprocessParallels(), not used
though, but keep it anyway, might be of use later...
* New: In Kanata::Manipulator, added method avoidBlockage() for terminal
METAL2 in non-preferred direction, restrict the terminal and turn
constraint box at the current position of the perpandicular, so it
doesn't create a deadlock in METAL2.
* Change: In SegmentFsm::conflictSolveByPlaceds(), if we cannot break
using the whole overlap, try the first atomic overlap.
* New: In SegmentFsm::_slackenStrap(), manage conflict between a non-prefered
segment and a blockage, this when to call avoidBlockage()...
* New: In Katana::Configuration, management of the new edge computation
parameters:
katana.termSatReservedlocal
katana.termSatthreshold
* New: In Cumulus/plugins/Core2Chip, support for Phenitec I/O pads.
2019-09-17 10:05:54 -05:00
|
|
|
, ("katana.termSatReservedLocal" ,TypeInt ,8 )
|
|
|
|
, ("katana.termSatThreshold" ,TypeInt ,9 )
|
2019-02-26 13:00:28 -06:00
|
|
|
, ("katana.eventsLimit" ,TypeInt ,4000002 )
|
|
|
|
, ("katana.ripupCost" ,TypeInt ,3 , { 'min':0 } )
|
|
|
|
, ("katana.strapRipupLimit" ,TypeInt ,16 , { 'min':1 } )
|
|
|
|
, ("katana.localRipupLimit" ,TypeInt ,9 , { 'min':1 } )
|
|
|
|
, ("katana.globalRipupLimit" ,TypeInt ,5 , { 'min':1 } )
|
|
|
|
, ("katana.longGlobalRipupLimit" ,TypeInt ,5 , { 'min':1 } )
|
ISPD05 loading speed issues. IO PAD support for LEF importation.
* New: In Hurricane::IntrusiveMap, introduce IntrusiveMapConst which allow
to search with a "const Key&" instead of a "Key", sparing the copy
construction of the Key.
* Change: In Hurricane::Cell::NetMap, use the new kind of map with
"const Name&" key access. This speeds up the Cell::getNet() method
by suppressing one copy construction of a Name, which are costly
after all...
Should review the whole code to use "const Name&" everywhere it
is possible.
* Change: In Hurricane::Entity & Hurricane::DBo, displace the unique
identifier from Entity to DBo (move up to the base class).This
to allow us to build deterministic map of DBo requireds in
UpdateSession (which is built upon a SharedProperty).
WARNING: This break the JSON database exportation support, do not
use it until fixed/rewritten.
* Change: In Hurricane::Layer, add an attribute to know if a layer is
associated to a blockage. Modificate accordingly PyLayer and
BasicLayer.
* Change: In Hurricane::SharedProperty, the set of owners (DBo*) is now
stored in a std::set sorted on the objects Ids, instead of a simple
vector. The linera search time through the std::vector was starting
to show (ISPD05 bigblue1).
* Bug: In Isobar::PyInstance, make full contructor signature (5 arguments)
conform to the C++ one. It was only accepting the four first and
forcing the placement status to be FIXED.
* Bug: In CRL/etc/symbolic/ispd05/kite.conf, update for the new configuration
requirements where all distance must be converted into DbU in the
file itself (use "helpers.l()", "helpers.m()"). Apply to the cell &
routing gauges.
* Bug: In CRL/etc/symbolic/ispd05/technology.conf, update for the new
configuration. "helpers.initTechno()" *must* by called first thing
in this file in order for the Technology to be created.
* New: In CRL::AllianceFramework, add matchCellGauge() &
matchCellgaugeByHeight()
* New: In CRL::CellGauge, add a flag to distinguish gauges meant for
IO Pads and an "isPad()" predicate.
* Change: In CRL::Ispd05Bookshelf, flush the UpdateSession stack every
1000 elements additions. Maybe not necessary now the the UpdateSession
property relies on a std::set instead of a std::vector.
* New: In CRL::LefImport, support for SITE and match/create the appropriate
CellGauge on the fly. Specific support for MACROS that are flagged PAD.
Add a dedicated post-treatment for PAD connectors, extend them toward
the boundary of the nearest abutment box side. Tested only on AMS 350nm
c35b4 for now.
This part is most likely to be tweaked for every kind of real foundry
pad that we may encounter...
* Change: In EtesianEngine::findYSpin(), use the C++ "for" construct to loop
over Collections.
* Change: In Unicorn/cgt.py, register the Python/C++ tutorial support by
default.
2019-04-22 05:16:16 -05:00
|
|
|
, ('chip.padCoreSide' ,TypeString ,'South' )
|
2012-11-16 06:49:47 -06:00
|
|
|
)
|
New coriolis launcher. Configuration files cleanup.
* Change: In CRL Core, simplify the loading sequence. The technology,
both symbolic and real is now loaded directly from coriolisInit.py
and not through the Alliance loader. This was a leftover from the
time configuration was in XML. Remove others traces of XML loading.
Remove SYMB_TECHNO_NAME, REAL_TECHNO_NAME & DISPLAY from the Alliance
environement, as they was no longer used.
Note that technology *still* need to be loader *after* Alliance
framework has been initialized.
Gauge information is moved from <alliance.conf> to <kite.conf>.
* Bug: In Coloquinte, in optimization_subproblems.cxx static variables
must not be inlined. Generate a problem when linking in debug mode
(seems the symbol gets optimised out).
* Bug: In Katabatic, in Grid::getGCell(), when the coordinate is *outside*
the area, do not try to find a GCell, directly return NULL.
* New: In Unicorn, create a generic command launcher named "coriolis" which
automatically take cares of all environement setup, then run a command
by default, it's <cgt>, but it can be anything. For example: <zsh>.
2015-04-13 11:54:09 -05:00
|
|
|
|
|
|
|
|
|
|
|
# Format of routingGaugesTable (dictionary):
|
|
|
|
# A list of entry of the form:
|
2016-04-13 11:18:43 -05:00
|
|
|
# ( METAL_NAME, (Direction, Type, depth, density, offset, pitch, wire_width, via_width, obs_dw) )
|
New coriolis launcher. Configuration files cleanup.
* Change: In CRL Core, simplify the loading sequence. The technology,
both symbolic and real is now loaded directly from coriolisInit.py
and not through the Alliance loader. This was a leftover from the
time configuration was in XML. Remove others traces of XML loading.
Remove SYMB_TECHNO_NAME, REAL_TECHNO_NAME & DISPLAY from the Alliance
environement, as they was no longer used.
Note that technology *still* need to be loader *after* Alliance
framework has been initialized.
Gauge information is moved from <alliance.conf> to <kite.conf>.
* Bug: In Coloquinte, in optimization_subproblems.cxx static variables
must not be inlined. Generate a problem when linking in debug mode
(seems the symbol gets optimised out).
* Bug: In Katabatic, in Grid::getGCell(), when the coordinate is *outside*
the area, do not try to find a GCell, directly return NULL.
* New: In Unicorn, create a generic command launcher named "coriolis" which
automatically take cares of all environement setup, then run a command
by default, it's <cgt>, but it can be anything. For example: <zsh>.
2015-04-13 11:54:09 -05:00
|
|
|
|
|
|
|
routingGaugesTable = {}
|
|
|
|
|
|
|
|
routingGaugesTable['sxlib'] = \
|
Correct handling of lambdas & microns in configuration files.
* Bug: In CRL/etc/NODE/VENDOR/Technology.conf, the database must be configured
as early has possible so the functions ensuring length conversions can
work correctly (l(v), u(v)). So we can no longer rely on a table to be
read after the execution of the file. We perform a direct call to the
helpers.Technology.initTechno() function. And it must be made first
thing.
In all tables taking dimensions, we must use one of the converter
function helpers.l(v), helpers.u(v) or helpers.n(v) so the the value v
get converted in lambda, microns or nanometer (resp.). Make the
modifications in all technology.conf and kite.conf files.
* Change: In CRL/coriolisInit.py, remove the technoConfig variable that has
been replaced by a direct call to helpers.Technology.initTechno().
* Change: In CRL/helpers.Alliance.loadRoutingGaugesTable(), no longer try to
convert coordinates, they must already be in DbU.
* Change: In CRL/helpers.__init__.py, remove lambdaMode() and micronsMode()
they could not be made to work as expected. Create l(), u(), n() as
replacement.
2018-07-16 04:32:40 -05:00
|
|
|
( ( 'METAL1', ( Gauge.Vertical , Gauge.PinOnly, 0, 0.0, l(0), l(5), l(2), l(1), l(4) ) )
|
|
|
|
, ( 'METAL2', ( Gauge.Horizontal, Gauge.Default, 1, 7.0, l(0), l(5), l(2), l(1), l(4) ) )
|
|
|
|
, ( 'METAL3', ( Gauge.Vertical , Gauge.Default, 2, 0.0, l(0), l(5), l(2), l(1), l(4) ) )
|
|
|
|
, ( 'METAL4', ( Gauge.Horizontal, Gauge.Default, 3, 0.0, l(0), l(5), l(2), l(1), l(4) ) )
|
|
|
|
, ( 'METAL5', ( Gauge.Vertical , Gauge.Default, 4, 0.0, l(0), l(5), l(2), l(1), l(4) ) )
|
|
|
|
#, ( 'METAL6', ( Gauge.Horizontal, Gauge.Default, 5, 0.0, l(0), l(5), l(2), l(1), l(4) ) )
|
|
|
|
#, ( 'METAL7', ( Gauge.Vertical , Gauge.Default, 6, 0.0, l(0), l(5), l(2), l(1), l(4) ) )
|
New coriolis launcher. Configuration files cleanup.
* Change: In CRL Core, simplify the loading sequence. The technology,
both symbolic and real is now loaded directly from coriolisInit.py
and not through the Alliance loader. This was a leftover from the
time configuration was in XML. Remove others traces of XML loading.
Remove SYMB_TECHNO_NAME, REAL_TECHNO_NAME & DISPLAY from the Alliance
environement, as they was no longer used.
Note that technology *still* need to be loader *after* Alliance
framework has been initialized.
Gauge information is moved from <alliance.conf> to <kite.conf>.
* Bug: In Coloquinte, in optimization_subproblems.cxx static variables
must not be inlined. Generate a problem when linking in debug mode
(seems the symbol gets optimised out).
* Bug: In Katabatic, in Grid::getGCell(), when the coordinate is *outside*
the area, do not try to find a GCell, directly return NULL.
* New: In Unicorn, create a generic command launcher named "coriolis" which
automatically take cares of all environement setup, then run a command
by default, it's <cgt>, but it can be anything. For example: <zsh>.
2015-04-13 11:54:09 -05:00
|
|
|
)
|
|
|
|
|
2017-08-18 11:16:43 -05:00
|
|
|
routingGaugesTable['sxlib-2M'] = \
|
Correct handling of lambdas & microns in configuration files.
* Bug: In CRL/etc/NODE/VENDOR/Technology.conf, the database must be configured
as early has possible so the functions ensuring length conversions can
work correctly (l(v), u(v)). So we can no longer rely on a table to be
read after the execution of the file. We perform a direct call to the
helpers.Technology.initTechno() function. And it must be made first
thing.
In all tables taking dimensions, we must use one of the converter
function helpers.l(v), helpers.u(v) or helpers.n(v) so the the value v
get converted in lambda, microns or nanometer (resp.). Make the
modifications in all technology.conf and kite.conf files.
* Change: In CRL/coriolisInit.py, remove the technoConfig variable that has
been replaced by a direct call to helpers.Technology.initTechno().
* Change: In CRL/helpers.Alliance.loadRoutingGaugesTable(), no longer try to
convert coordinates, they must already be in DbU.
* Change: In CRL/helpers.__init__.py, remove lambdaMode() and micronsMode()
they could not be made to work as expected. Create l(), u(), n() as
replacement.
2018-07-16 04:32:40 -05:00
|
|
|
( ( 'METAL1', ( Gauge.Horizontal, Gauge.Default, 0, 0.0, l(0), l(5), l(2), l(1), l(4) ) )
|
|
|
|
, ( 'METAL2', ( Gauge.Vertical , Gauge.Default, 1, 0.0, l(0), l(5), l(2), l(1), l(4) ) )
|
2017-08-18 11:16:43 -05:00
|
|
|
)
|
|
|
|
|
New coriolis launcher. Configuration files cleanup.
* Change: In CRL Core, simplify the loading sequence. The technology,
both symbolic and real is now loaded directly from coriolisInit.py
and not through the Alliance loader. This was a leftover from the
time configuration was in XML. Remove others traces of XML loading.
Remove SYMB_TECHNO_NAME, REAL_TECHNO_NAME & DISPLAY from the Alliance
environement, as they was no longer used.
Note that technology *still* need to be loader *after* Alliance
framework has been initialized.
Gauge information is moved from <alliance.conf> to <kite.conf>.
* Bug: In Coloquinte, in optimization_subproblems.cxx static variables
must not be inlined. Generate a problem when linking in debug mode
(seems the symbol gets optimised out).
* Bug: In Katabatic, in Grid::getGCell(), when the coordinate is *outside*
the area, do not try to find a GCell, directly return NULL.
* New: In Unicorn, create a generic command launcher named "coriolis" which
automatically take cares of all environement setup, then run a command
by default, it's <cgt>, but it can be anything. For example: <zsh>.
2015-04-13 11:54:09 -05:00
|
|
|
|
|
|
|
# Format of cellGaugesTable (dictionary):
|
|
|
|
# A list of entry of the form:
|
|
|
|
# ( METAL_PIN, xy_common_pitch, slice_height, slice_step )
|
|
|
|
|
|
|
|
cellGaugesTable = {}
|
ISPD05 loading speed issues. IO PAD support for LEF importation.
* New: In Hurricane::IntrusiveMap, introduce IntrusiveMapConst which allow
to search with a "const Key&" instead of a "Key", sparing the copy
construction of the Key.
* Change: In Hurricane::Cell::NetMap, use the new kind of map with
"const Name&" key access. This speeds up the Cell::getNet() method
by suppressing one copy construction of a Name, which are costly
after all...
Should review the whole code to use "const Name&" everywhere it
is possible.
* Change: In Hurricane::Entity & Hurricane::DBo, displace the unique
identifier from Entity to DBo (move up to the base class).This
to allow us to build deterministic map of DBo requireds in
UpdateSession (which is built upon a SharedProperty).
WARNING: This break the JSON database exportation support, do not
use it until fixed/rewritten.
* Change: In Hurricane::Layer, add an attribute to know if a layer is
associated to a blockage. Modificate accordingly PyLayer and
BasicLayer.
* Change: In Hurricane::SharedProperty, the set of owners (DBo*) is now
stored in a std::set sorted on the objects Ids, instead of a simple
vector. The linera search time through the std::vector was starting
to show (ISPD05 bigblue1).
* Bug: In Isobar::PyInstance, make full contructor signature (5 arguments)
conform to the C++ one. It was only accepting the four first and
forcing the placement status to be FIXED.
* Bug: In CRL/etc/symbolic/ispd05/kite.conf, update for the new configuration
requirements where all distance must be converted into DbU in the
file itself (use "helpers.l()", "helpers.m()"). Apply to the cell &
routing gauges.
* Bug: In CRL/etc/symbolic/ispd05/technology.conf, update for the new
configuration. "helpers.initTechno()" *must* by called first thing
in this file in order for the Technology to be created.
* New: In CRL::AllianceFramework, add matchCellGauge() &
matchCellgaugeByHeight()
* New: In CRL::CellGauge, add a flag to distinguish gauges meant for
IO Pads and an "isPad()" predicate.
* Change: In CRL::Ispd05Bookshelf, flush the UpdateSession stack every
1000 elements additions. Maybe not necessary now the the UpdateSession
property relies on a std::set instead of a std::vector.
* New: In CRL::LefImport, support for SITE and match/create the appropriate
CellGauge on the fly. Specific support for MACROS that are flagged PAD.
Add a dedicated post-treatment for PAD connectors, extend them toward
the boundary of the nearest abutment box side. Tested only on AMS 350nm
c35b4 for now.
This part is most likely to be tweaked for every kind of real foundry
pad that we may encounter...
* Change: In EtesianEngine::findYSpin(), use the C++ "for" construct to loop
over Collections.
* Change: In Unicorn/cgt.py, register the Python/C++ tutorial support by
default.
2019-04-22 05:16:16 -05:00
|
|
|
cellGaugesTable['sxlib'] = ('metal2', l(5.0), l( 50.0), l( 5.0))
|
|
|
|
cellGaugesTable['pxlib'] = ('metal2', l(5.0), l(400.0), l(200.0))
|