caravel/verilog/rtl/chip_io_alt.v

478 lines
14 KiB
Verilog

// SPDX-FileCopyrightText: 2020 Efabless Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
// `default_nettype none
/* Alternative padframe that removes the GPIO from the top row, */
/* replacing them with un-overlaid power pads which have a */
/* direct connection from pad to core. */
/* For convenience, all of the original GPIO signals remain */
/* defined in the I/O list, although some are not connected. */
/* ANALOG_PADS_1 = Number of GPIO pads in the user 1 section */
/* that are replaced by straight-through analog */
/* ANALOG_PADS_2 = Number of GPIO pads in the user 2 section */
/* that are replaced by straight-through analog */
module chip_io_alt #(
parameter ANALOG_PADS_1 = 5,
parameter ANALOG_PADS_2 = 6
) (
// Package Pins
inout vddio_pad, // Common padframe/ESD supply
inout vddio_pad2, // Common padframe/ESD supply
inout vssio_pad, // Common padframe/ESD ground
inout vssio_pad2, // Common padframe/ESD ground
inout vccd_pad, // Common 1.8V supply
inout vssd_pad, // Common digital ground
inout vdda_pad, // Management analog 3.3V supply
inout vssa_pad, // Management analog ground
inout vdda1_pad, // User area 1 3.3V supply
inout vdda1_pad2, // User area 1 3.3V supply
inout vdda2_pad, // User area 2 3.3V supply
inout vssa1_pad, // User area 1 analog ground
inout vssa1_pad2, // User area 1 analog ground
inout vssa2_pad, // User area 2 analog ground
inout vccd1_pad, // User area 1 1.8V supply
inout vccd2_pad, // User area 2 1.8V supply
inout vssd1_pad, // User area 1 digital ground
inout vssd2_pad, // User area 2 digital ground
// Core Side
inout vddio, // Common padframe/ESD supply
inout vssio, // Common padframe/ESD ground
inout vccd, // Common 1.8V supply
inout vssd, // Common digital ground
inout vdda, // Management analog 3.3V supply
inout vssa, // Management analog ground
inout vdda1, // User area 1 3.3V supply
inout vdda2, // User area 2 3.3V supply
inout vssa1, // User area 1 analog ground
inout vssa2, // User area 2 analog ground
inout vccd1, // User area 1 1.8V supply
inout vccd2, // User area 2 1.8V supply
inout vssd1, // User area 1 digital ground
inout vssd2, // User area 2 digital ground
inout gpio,
input clock,
input resetb,
output flash_csb,
output flash_clk,
inout flash_io0,
inout flash_io1,
// Chip Core Interface
input porb_h,
input por,
output resetb_core_h,
output clock_core,
input gpio_out_core,
output gpio_in_core,
input gpio_mode0_core,
input gpio_mode1_core,
input gpio_outenb_core,
input gpio_inenb_core,
input flash_csb_core,
input flash_clk_core,
input flash_csb_oeb_core,
input flash_clk_oeb_core,
input flash_io0_oeb_core,
input flash_io1_oeb_core,
input flash_csb_ieb_core,
input flash_clk_ieb_core,
input flash_io0_ieb_core,
input flash_io1_ieb_core,
input flash_io0_do_core,
input flash_io1_do_core,
output flash_io0_di_core,
output flash_io1_di_core,
// User project IOs
// mprj_io is defined for all pads, both digital and analog
inout [`MPRJ_IO_PADS-1:0] mprj_io,
// The section below is for the digital pads only.
input [`MPRJ_IO_PADS-ANALOG_PADS_1-ANALOG_PADS_2-1:0] mprj_io_out,
input [`MPRJ_IO_PADS-ANALOG_PADS_1-ANALOG_PADS_2-1:0] mprj_io_oeb,
input [`MPRJ_IO_PADS-ANALOG_PADS_1-ANALOG_PADS_2-1:0] mprj_io_inp_dis,
input [`MPRJ_IO_PADS-ANALOG_PADS_1-ANALOG_PADS_2-1:0] mprj_io_ib_mode_sel,
input [`MPRJ_IO_PADS-ANALOG_PADS_1-ANALOG_PADS_2-1:0] mprj_io_vtrip_sel,
input [`MPRJ_IO_PADS-ANALOG_PADS_1-ANALOG_PADS_2-1:0] mprj_io_slow_sel,
input [`MPRJ_IO_PADS-ANALOG_PADS_1-ANALOG_PADS_2-1:0] mprj_io_holdover,
input [`MPRJ_IO_PADS-ANALOG_PADS_1-ANALOG_PADS_2-1:0] mprj_io_analog_en,
input [`MPRJ_IO_PADS-ANALOG_PADS_1-ANALOG_PADS_2-1:0] mprj_io_analog_sel,
input [`MPRJ_IO_PADS-ANALOG_PADS_1-ANALOG_PADS_2-1:0] mprj_io_analog_pol,
input [(`MPRJ_IO_PADS-ANALOG_PADS_1-ANALOG_PADS_2)*3-1:0] mprj_io_dm,
output [`MPRJ_IO_PADS-ANALOG_PADS_1-ANALOG_PADS_2-1:0] mprj_io_in,
output [`MPRJ_IO_PADS-ANALOG_PADS_1-ANALOG_PADS_2-1:0] mprj_io_in_3v3,
// User project direct access to gpio pad connections for analog
// "analog" connects to the "esd_0" pin of the GPIO pad, and
// "analog_noesd" connects to the "noesd" pin of the GPIO pad.
// User side 1: Connects to all but the first 7 pads;
// User side 2: Connects to all but the last 2 pads
inout [`MPRJ_IO_PADS-ANALOG_PADS_1-ANALOG_PADS_2-10:0] mprj_gpio_analog,
inout [`MPRJ_IO_PADS-ANALOG_PADS_1-ANALOG_PADS_2-10:0] mprj_gpio_noesd,
// Core connections for the analog signals
inout [ANALOG_PADS_1+ANALOG_PADS_2-1:0] mprj_analog,
// These are clamp connections for the clamps in the analog cells, if
// they are used for power supplies.
// User side 1: Connects to
input [2:0] mprj_clamp_high,
input [2:0] mprj_clamp_low
);
wire analog_a, analog_b;
wire vddio_q, vssio_q;
// To be considered: Master hold signal on all user pads (?)
// For now, set holdh_n to 1 (NOTE: This is in the 3.3V domain)
// and setting enh to porb_h.
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_hldh_n;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_enh;
assign mprj_io_hldh_n = {`MPRJ_IO_PADS{vddio}};
assign mprj_io_enh = {`MPRJ_IO_PADS{porb_h}};
// Instantiate power and ground pads for management domain
// 12 pads: vddio, vssio, vdda, vssa, vccd, vssd
// One each HV and LV clamp.
// HV clamps connect between one HV power rail and one ground
// LV clamps have two clamps connecting between any two LV power
// rails and grounds, and one back-to-back diode which connects
// between the first LV clamp ground and any other ground.
sky130_ef_io__vddio_hvc_clamped_pad \mgmt_vddio_hvclamp_pad[0] (
`MGMT_ABUTMENT_PINS
`ifndef TOP_ROUTING
.VDDIO_PAD(vddio_pad)
`endif
);
// lies in user area 2
sky130_ef_io__vddio_hvc_clamped_pad \mgmt_vddio_hvclamp_pad[1] (
`USER2_ABUTMENT_PINS
`ifndef TOP_ROUTING
.VDDIO_PAD(vddio_pad2)
`endif
);
sky130_ef_io__vdda_hvc_clamped_pad mgmt_vdda_hvclamp_pad (
`MGMT_ABUTMENT_PINS
`ifndef TOP_ROUTING
.VDDA_PAD(vdda_pad)
`endif
);
sky130_ef_io__vccd_lvc_clamped_pad mgmt_vccd_lvclamp_pad (
`MGMT_ABUTMENT_PINS
`ifndef TOP_ROUTING
.VCCD_PAD(vccd_pad)
`endif
);
sky130_ef_io__vssio_hvc_clamped_pad \mgmt_vssio_hvclamp_pad[0] (
`MGMT_ABUTMENT_PINS
`ifndef TOP_ROUTING
.VSSIO_PAD(vssio_pad)
`endif
);
sky130_ef_io__vssio_hvc_clamped_pad \mgmt_vssio_hvclamp_pad[1] (
`USER2_ABUTMENT_PINS
`ifndef TOP_ROUTING
.VSSIO_PAD(vssio_pad2)
`endif
);
sky130_ef_io__vssa_hvc_clamped_pad mgmt_vssa_hvclamp_pad (
`MGMT_ABUTMENT_PINS
`ifndef TOP_ROUTING
.VSSA_PAD(vssa_pad)
`endif
);
sky130_ef_io__vssd_lvc_clamped_pad mgmt_vssd_lvclamp_pad (
`MGMT_ABUTMENT_PINS
`ifndef TOP_ROUTING
.VSSD_PAD(vssd_pad)
`endif
);
// Instantiate power and ground pads for user 1 domain
// 8 pads: vdda, vssa, vccd, vssd; One each HV and LV clamp.
sky130_ef_io__vdda_hvc_clamped_pad \user1_vdda_hvclamp_pad[0] (
`USER1_ABUTMENT_PINS
`ifndef TOP_ROUTING
.VDDA_PAD(vdda1_pad)
`endif
);
sky130_ef_io__vdda_hvc_clamped_pad \user1_vdda_hvclamp_pad[1] (
`USER1_ABUTMENT_PINS
`ifndef TOP_ROUTING
.VDDA_PAD(vdda1_pad2)
`endif
);
sky130_ef_io__vccd_lvc_clamped3_pad user1_vccd_lvclamp_pad (
`USER1_ABUTMENT_PINS
.VCCD1(vccd1),
.VSSD1(vssd1),
`ifndef TOP_ROUTING
.VCCD_PAD(vccd1_pad)
`endif
);
sky130_ef_io__vssa_hvc_clamped_pad \user1_vssa_hvclamp_pad[0] (
`USER1_ABUTMENT_PINS
`ifndef TOP_ROUTING
.VSSA_PAD(vssa1_pad)
`endif
);
sky130_ef_io__vssa_hvc_clamped_pad \user1_vssa_hvclamp_pad[1] (
`USER1_ABUTMENT_PINS
`ifndef TOP_ROUTING
.VSSA_PAD(vssa1_pad2)
`endif
);
sky130_ef_io__vssd_lvc_clamped3_pad user1_vssd_lvclamp_pad (
`USER1_ABUTMENT_PINS
.VCCD1(vccd1),
.VSSD1(vssd1),
`ifndef TOP_ROUTING
.VSSD_PAD(vssd1_pad)
`endif
);
// Instantiate power and ground pads for user 2 domain
// 8 pads: vdda, vssa, vccd, vssd; One each HV and LV clamp.
sky130_ef_io__vdda_hvc_clamped_pad user2_vdda_hvclamp_pad (
`USER2_ABUTMENT_PINS
`ifndef TOP_ROUTING
.VDDA_PAD(vdda2_pad)
`endif
);
sky130_ef_io__vccd_lvc_clamped3_pad user2_vccd_lvclamp_pad (
`USER2_ABUTMENT_PINS
.VCCD1(vccd2),
.VSSD1(vssd2),
`ifndef TOP_ROUTING
.VCCD_PAD(vccd2_pad)
`endif
);
sky130_ef_io__vssa_hvc_clamped_pad user2_vssa_hvclamp_pad (
`USER2_ABUTMENT_PINS
`ifndef TOP_ROUTING
.VSSA_PAD(vssa2_pad)
`endif
);
sky130_ef_io__vssd_lvc_clamped3_pad user2_vssd_lvclamp_pad (
`USER2_ABUTMENT_PINS
.VCCD1(vccd2),
.VSSD1(vssd2),
`ifndef TOP_ROUTING
.VSSD_PAD(vssd2_pad)
`endif
);
// Instantiate analog pads in user area 1 using the custom analog pad
sky130_ef_io__analog_pad user1_analog_pad [ANALOG_PADS_1-2:0] (
`USER1_ABUTMENT_PINS
`ifndef TOP_ROUTING
.P_PAD(mprj_io[`MPRJ_IO_PADS_1-2:`MPRJ_IO_PADS_1-ANALOG_PADS_1]),
`endif
.P_CORE(mprj_analog[ANALOG_PADS_1-2:0])
);
// Last analog pad is a power pad, to provide a clamp resource.
sky130_ef_io__top_power_hvc user1_analog_pad_with_clamp (
`USER1_ABUTMENT_PINS
`ifndef TOP_ROUTING
.P_PAD(mprj_io[`MPRJ_IO_PADS_1-1]),
`endif
`HVCLAMP_PINS(mprj_clamp_high[0],
mprj_clamp_low[0]),
.P_CORE(mprj_analog[ANALOG_PADS_1-1])
);
// Instantiate analog pads in user area 2 using the custom analog pad.
sky130_ef_io__analog_pad user2_analog_pad [ANALOG_PADS_2-3:0] (
`USER2_ABUTMENT_PINS
`ifndef TOP_ROUTING
.P_PAD(mprj_io[`MPRJ_IO_PADS_1+ANALOG_PADS_2-1:`MPRJ_IO_PADS_1+2]),
`endif
.P_CORE(mprj_analog[ANALOG_PADS_2+ANALOG_PADS_1-1:ANALOG_PADS_1+2])
);
// Last two analog pads are power pads, to provide clamp resources.
sky130_ef_io__top_power_hvc user2_analog_pad_with_clamp [1:0] (
`ifndef TOP_ROUTING
.P_PAD(mprj_io[`MPRJ_IO_PADS_1+1:`MPRJ_IO_PADS_1]),
`endif
`HVCLAMP_PINS(mprj_clamp_high[2:1], mprj_clamp_low[2:1]),
.P_CORE(mprj_analog[`ANALOG_PADS_1+1:ANALOG_PADS_1])
);
wire [2:0] dm_all =
{gpio_mode1_core, gpio_mode1_core, gpio_mode0_core};
wire[2:0] flash_io0_mode =
{flash_io0_ieb_core, flash_io0_ieb_core, flash_io0_oeb_core};
wire[2:0] flash_io1_mode =
{flash_io1_ieb_core, flash_io1_ieb_core, flash_io1_oeb_core};
// Management clock input pad
`INPUT_PAD(clock, clock_core);
// Management GPIO pad
`INOUT_PAD(gpio, gpio_in_core, gpio_out_core, gpio_inenb_core, gpio_outenb_core, dm_all);
// Management Flash SPI pads
`INOUT_PAD(flash_io0, flash_io0_di_core, flash_io0_do_core, flash_io0_ieb_core, flash_io0_oeb_core, flash_io0_mode);
`INOUT_PAD(flash_io1, flash_io1_di_core, flash_io1_do_core, flash_io1_ieb_core, flash_io1_oeb_core, flash_io1_mode);
`OUTPUT_NO_INP_DIS_PAD(flash_csb, flash_csb_core, flash_csb_oeb_core);
`OUTPUT_NO_INP_DIS_PAD(flash_clk, flash_clk_core, flash_clk_oeb_core);
// NOTE: The analog_out pad from the raven chip has been replaced by
// the digital reset input resetb on caravel due to the lack of an on-board
// power-on-reset circuit. The XRES pad is used for providing a glitch-
// free reset.
wire xresloop;
sky130_fd_io__top_xres4v2 resetb_pad (
`MGMT_ABUTMENT_PINS
`ifndef TOP_ROUTING
.PAD(resetb),
`endif
.TIE_WEAK_HI_H(xresloop), // Loop-back connection to pad through pad_a_esd_h
.TIE_HI_ESD(),
.TIE_LO_ESD(),
.PAD_A_ESD_H(xresloop),
.XRES_H_N(resetb_core_h),
.DISABLE_PULLUP_H(vssio), // 0 = enable pull-up on reset pad
.ENABLE_H(porb_h), // Power-on-reset
.EN_VDDIO_SIG_H(vssio), // No idea.
.INP_SEL_H(vssio), // 1 = use filt_in_h else filter the pad input
.FILT_IN_H(vssio), // Alternate input for glitch filter
.PULLUP_H(vssio), // Pullup connection for alternate filter input
.ENABLE_VDDIO(vccd)
);
// Corner cells (These are overlay cells; it is not clear what is normally
// supposed to go under them.)
sky130_ef_io__corner_pad mgmt_corner [1:0] (
`ifndef TOP_ROUTING
.VSSIO(vssio),
.VDDIO(vddio),
.VDDIO_Q(vddio_q),
.VSSIO_Q(vssio_q),
.AMUXBUS_A(analog_a),
.AMUXBUS_B(analog_b),
.VSSD(vssd),
.VSSA(vssa),
.VSWITCH(vddio),
.VDDA(vdda),
.VCCD(vccd),
.VCCHIB(vccd)
`endif
);
sky130_ef_io__corner_pad user1_corner (
`ifndef TOP_ROUTING
.VSSIO(vssio),
.VDDIO(vddio),
.VDDIO_Q(vddio_q),
.VSSIO_Q(vssio_q),
.AMUXBUS_A(analog_a),
.AMUXBUS_B(analog_b),
.VSSD(vssd),
.VSSA(vssa1),
.VSWITCH(vddio),
.VDDA(vdda1),
.VCCD(vccd),
.VCCHIB(vccd)
`endif
);
sky130_ef_io__corner_pad user2_corner (
`ifndef TOP_ROUTING
.VSSIO(vssio),
.VDDIO(vddio),
.VDDIO_Q(vddio_q),
.VSSIO_Q(vssio_q),
.AMUXBUS_A(analog_a),
.AMUXBUS_B(analog_b),
.VSSD(vssd),
.VSSA(vssa2),
.VSWITCH(vddio),
.VDDA(vdda2),
.VCCD(vccd),
.VCCHIB(vccd)
`endif
);
mprj_io #(
.AREA1PADS(`MPRJ_IO_PADS_1 - ANALOG_PADS_1),
.TOTAL_PADS(`MPRJ_IO_PADS - ANALOG_PADS_1 - ANALOG_PADS_2)
) mprj_pads (
.vddio(vddio),
.vssio(vssio),
.vccd(vccd),
.vssd(vssd),
.vdda1(vdda1),
.vdda2(vdda2),
.vssa1(vssa1),
.vssa2(vssa2),
.vddio_q(vddio_q),
.vssio_q(vssio_q),
.analog_a(analog_a),
.analog_b(analog_b),
.porb_h(porb_h),
.io({mprj_io[`MPRJ_IO_PADS-1:`MPRJ_IO_PADS_1+ANALOG_PADS_2],
mprj_io[`MPRJ_IO_PADS_1-ANALOG_PADS_1-1:0]}),
.io_out(mprj_io_out),
.oeb(mprj_io_oeb),
.hldh_n(mprj_io_hldh_n),
.enh(mprj_io_enh),
.inp_dis(mprj_io_inp_dis),
.ib_mode_sel(mprj_io_ib_mode_sel),
.vtrip_sel(mprj_io_vtrip_sel),
.holdover(mprj_io_holdover),
.slow_sel(mprj_io_slow_sel),
.analog_en(mprj_io_analog_en),
.analog_sel(mprj_io_analog_sel),
.analog_pol(mprj_io_analog_pol),
.dm(mprj_io_dm),
.io_in(mprj_io_in),
.io_in_3v3(mprj_io_in_3v3),
.analog_io(mprj_gpio_analog),
.analog_noesd_io(mprj_gpio_noesd)
);
endmodule
// `default_nettype wire