caravel/verilog/rtl/caravel_openframe.v

797 lines
28 KiB
Coq
Raw Normal View History

// `default_nettype none
// SPDX-FileCopyrightText: 2020 Efabless Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
/*--------------------------------------------------------------*/
/* caravel_openframe, a project harness for the Google/SkyWater */
/* sky130 fabrication process and open source PDK */
/* The "openframe" version does not specify a management SoC */
/* and only implements the padframe and related infrastructure. */
/* */
/* Copyright 2020 efabless, Inc. */
/* Written by Tim Edwards, December 2019 */
/* and Mohamed Shalan, August 2020 */
/* This file is open source hardware released under the */
/* Apache 2.0 license. See file LICENSE. */
/* */
/*--------------------------------------------------------------*/
module caravel_openframe (
inout vddio, // Common 3.3V padframe/ESD power
inout vddio_2, // Common 3.3V padframe/ESD power
inout vssio, // Common padframe/ESD ground
inout vssio_2, // Common padframe/ESD ground
inout vdda, // Management 3.3V power
inout vssa, // Common analog ground
inout vccd, // Management/Common 1.8V power
inout vssd, // Common digital ground
inout vdda1, // User area 1 3.3V power
inout vdda1_2, // User area 1 3.3V power
inout vdda2, // User area 2 3.3V power
inout vssa1, // User area 1 analog ground
inout vssa1_2, // User area 1 analog ground
inout vssa2, // User area 2 analog ground
inout vccd1, // User area 1 1.8V power
inout vccd2, // User area 2 1.8V power
inout vssd1, // User area 1 digital ground
inout vssd2, // User area 2 digital ground
inout gpio, // Used for external LDO control
inout [`MPRJ_IO_PADS-1:0] mprj_io,
output [`MPRJ_PWR_PADS-1:0] pwr_ctrl_out,
input clock, // CMOS core clock input, not a crystal
input resetb, // Reset input (sense inverted)
// Note that only two flash data pins are dedicated to the
// management SoC wrapper. The management SoC exports the
// quad SPI mode status to make use of the top two mprj_io
// pins for io2 and io3.
output flash_csb,
output flash_clk,
output flash_io0,
output flash_io1
);
//------------------------------------------------------------
// This value is uniquely defined for each user project.
//------------------------------------------------------------
parameter USER_PROJECT_ID = 32'h00000000;
/*
*--------------------------------------------------------------------
*
* These pins are overlaid on mprj_io space. They have the function
* below when the management processor is in reset, or in the default
* configuration. They are assigned to uses in the user space by the
* configuration program running off of the SPI flash. Note that even
* when the user has taken control of these pins, they can be restored
* to the original use by setting the resetb pin low. The SPI pins and
* UART pins can be connected directly to an FTDI chip as long as the
* FTDI chip sets these lines to high impedence (input function) at
* all times except when holding the chip in reset.
*
* JTAG = mprj_io[0] (inout)
* SDO = mprj_io[1] (output)
* SDI = mprj_io[2] (input)
* CSB = mprj_io[3] (input)
* SCK = mprj_io[4] (input)
* ser_rx = mprj_io[5] (input)
* ser_tx = mprj_io[6] (output)
* irq = mprj_io[7] (input)
*
* flash_io2 = mprj_io[36] (inout)
* flash_io3 = mprj_io[37] (inout)
*
* These pins are reserved for any project that wants to incorporate
* its own processor and flash controller. While a user project can
* technically use any available I/O pins for the purpose, these
* four pins connect to a pass-through mode from the SPI slave (pins
* 1-4 above) so that any SPI flash connected to these specific pins
* can be accessed through the SPI slave even when the processor is in
* reset.
*
* user_flash_csb = mprj_io[8]
* user_flash_sck = mprj_io[9]
* user_flash_io0 = mprj_io[10]
* user_flash_io1 = mprj_io[11]
*
*--------------------------------------------------------------------
*/
// One-bit GPIO dedicated to management SoC (outside of user control)
wire gpio_out_core;
wire gpio_in_core;
wire gpio_mode0_core;
wire gpio_mode1_core;
wire gpio_outenb_core;
wire gpio_inenb_core;
// User Project Control (pad-facing)
wire [`MPRJ_IO_PADS-1:0] mprj_io_inp_dis;
wire [`MPRJ_IO_PADS-1:0] mprj_io_oeb;
wire [`MPRJ_IO_PADS-1:0] mprj_io_ib_mode_sel;
wire [`MPRJ_IO_PADS-1:0] mprj_io_vtrip_sel;
wire [`MPRJ_IO_PADS-1:0] mprj_io_slow_sel;
wire [`MPRJ_IO_PADS-1:0] mprj_io_holdover;
wire [`MPRJ_IO_PADS-1:0] mprj_io_analog_en;
wire [`MPRJ_IO_PADS-1:0] mprj_io_analog_sel;
wire [`MPRJ_IO_PADS-1:0] mprj_io_analog_pol;
wire [`MPRJ_IO_PADS*3-1:0] mprj_io_dm;
wire [`MPRJ_IO_PADS-1:0] mprj_io_in;
wire [`MPRJ_IO_PADS-1:0] mprj_io_out;
// User Project Control (user-facing)
wire [`MPRJ_IO_PADS-1:0] user_io_oeb;
wire [`MPRJ_IO_PADS-1:0] user_io_in;
wire [`MPRJ_IO_PADS-1:0] user_io_out;
wire [`MPRJ_IO_PADS-10:0] user_analog_io;
/* Padframe control signals */
wire [`MPRJ_IO_PADS_1-1:0] gpio_serial_link_1;
wire [`MPRJ_IO_PADS_2-1:0] gpio_serial_link_2;
wire mprj_io_loader_resetn;
wire mprj_io_loader_clock;
wire mprj_io_loader_data_1; /* user1 side serial loader */
wire mprj_io_loader_data_2; /* user2 side serial loader */
// User Project Control management I/O
// There are two types of GPIO connections:
// (1) Full Bidirectional: Management connects to in, out, and oeb
// Uses: JTAG and SDO
// (2) Selectable bidirectional: Management connects to in and out,
// which are tied together. oeb is grounded (oeb from the
// configuration is used)
// SDI = mprj_io[2] (input)
// CSB = mprj_io[3] (input)
// SCK = mprj_io[4] (input)
// ser_rx = mprj_io[5] (input)
// ser_tx = mprj_io[6] (output)
// irq = mprj_io[7] (input)
wire [`MPRJ_IO_PADS-1:0] mgmt_io_in;
wire jtag_out, sdo_out;
wire jtag_outenb, sdo_outenb;
wire gpio_flash_io2_out, gpio_flash_io3_out;
wire [1:0] mgmt_io_nc; /* no-connects */
wire clock_core;
// Power-on-reset signal. The reset pad generates the sense-inverted
// reset at 3.3V. The 1.8V signal and the inverted 1.8V signal are
// derived.
wire porb_h;
wire porb_l;
wire por_l;
wire rstb_h;
wire rstb_l;
wire flash_clk_core, flash_csb_core;
wire flash_clk_oeb_core, flash_csb_oeb_core;
wire flash_clk_ieb_core, flash_csb_ieb_core;
wire flash_io0_oeb_core, flash_io1_oeb_core;
wire flash_io2_oeb_core, flash_io3_oeb_core;
wire flash_io0_ieb_core, flash_io1_ieb_core;
wire flash_io0_do_core, flash_io1_do_core;
wire flash_io0_di_core, flash_io1_di_core;
chip_io padframe(
`ifndef TOP_ROUTING
// Package Pins
.vddio_pad (vddio), // Common padframe/ESD supply
.vddio_pad2 (vddio_2),
.vssio_pad (vssio), // Common padframe/ESD ground
.vssio_pad2 (vssio_2),
.vccd_pad (vccd), // Common 1.8V supply
.vssd_pad (vssd), // Common digital ground
.vdda_pad (vdda), // Management analog 3.3V supply
.vssa_pad (vssa), // Management analog ground
.vdda1_pad (vdda1), // User area 1 3.3V supply
.vdda1_pad2 (vdda1_2),
.vdda2_pad (vdda2), // User area 2 3.3V supply
.vssa1_pad (vssa1), // User area 1 analog ground
.vssa1_pad2 (vssa1_2),
.vssa2_pad (vssa2), // User area 2 analog ground
.vccd1_pad (vccd1), // User area 1 1.8V supply
.vccd2_pad (vccd2), // User area 2 1.8V supply
.vssd1_pad (vssd1), // User area 1 digital ground
.vssd2_pad (vssd2), // User area 2 digital ground
`endif
// Power Pins
.vddio (vddio_core),
.vssio (vssio_core),
.vdda (vdda_core),
.vssa (vssa_core),
.vccd (vccd_core),
.vssd (vssd_core),
.vdda1 (vdda1_core),
.vdda2 (vdda2_core),
.vssa1 (vssa1_core),
.vssa2 (vssa2_core),
.vccd1 (vccd1_core),
.vccd2 (vccd2_core),
.vssd1 (vssd1_core),
.vssd2 (vssd2_core),
// Signal Pins
.gpio(gpio),
.mprj_io(mprj_io),
.clock(clock),
.resetb(resetb),
.flash_csb(flash_csb),
.flash_clk(flash_clk),
.flash_io0(flash_io0),
.flash_io1(flash_io1),
// Clock and Reset Interface
.porb_h(porb_h),
.por(por_l),
.resetb_core_h(rstb_h),
.clock_core(clock_core),
// Core-facing side of the pads
.gpio_out_core(gpio_out_core),
.gpio_in_core(gpio_in_core),
.gpio_mode0_core(gpio_mode0_core),
.gpio_mode1_core(gpio_mode1_core),
.gpio_outenb_core(gpio_outenb_core),
.gpio_inenb_core(gpio_inenb_core),
.flash_csb_core(flash_csb_core),
.flash_clk_core(flash_clk_core),
.flash_csb_oeb_core(flash_csb_oeb_core),
.flash_clk_oeb_core(flash_clk_oeb_core),
.flash_io0_oeb_core(flash_io0_oeb_core),
.flash_io1_oeb_core(flash_io1_oeb_core),
.flash_csb_ieb_core(flash_csb_ieb_core),
.flash_clk_ieb_core(flash_clk_ieb_core),
.flash_io0_ieb_core(flash_io0_ieb_core),
.flash_io1_ieb_core(flash_io1_ieb_core),
.flash_io0_do_core(flash_io0_do_core),
.flash_io1_do_core(flash_io1_do_core),
.flash_io0_di_core(flash_io0_di_core),
.flash_io1_di_core(flash_io1_di_core),
.mprj_io_in(mprj_io_in),
.mprj_io_out(mprj_io_out),
.mprj_io_oeb(mprj_io_oeb),
.mprj_io_inp_dis(mprj_io_inp_dis),
.mprj_io_ib_mode_sel(mprj_io_ib_mode_sel),
.mprj_io_vtrip_sel(mprj_io_vtrip_sel),
.mprj_io_slow_sel(mprj_io_slow_sel),
.mprj_io_holdover(mprj_io_holdover),
.mprj_io_analog_en(mprj_io_analog_en),
.mprj_io_analog_sel(mprj_io_analog_sel),
.mprj_io_analog_pol(mprj_io_analog_pol),
.mprj_io_dm(mprj_io_dm),
.mprj_analog_io(user_analog_io)
);
// Clock and reset
wire caravel_clk;
wire caravel_clk2;
wire caravel_rstn;
wire mprj_clock;
wire mprj_clock2;
wire mprj_reset;
// Mask revision (User ID)
wire [31:0] mask_rev;
// Power Monitoring
wire mprj_vcc_pwrgood;
wire mprj2_vcc_pwrgood;
wire mprj_vdd_pwrgood;
wire mprj2_vdd_pwrgood;
// Open Frame wrapper
openframe_wrapper openframe (
`ifdef USE_POWER_PINS
.VPWR(vccd_core),
.VGND(vssd_core),
`endif
// GPIO (1 pin)
.gpio_out_pad(gpio_out_core),
.gpio_in_pad(gpio_in_core),
.gpio_mode0_pad(gpio_mode0_core),
.gpio_mode1_pad(gpio_mode1_core),
.gpio_outenb_pad(gpio_outenb_core),
.gpio_inenb_pad(gpio_inenb_core),
// GPIO
// Primary SPI flash controller
.flash_csb(flash_csb_core),
.flash_csb_ieb(flash_csb_ieb_core),
.flash_csb_oeb(flash_csb_oeb_core),
.flash_clk(flash_clk_core),
.flash_clk_ieb(flash_clk_ieb_core),
.flash_clk_oeb(flash_clk_oeb_core),
.flash_io0_ieb(flash_io0_ieb_core),
.flash_io0_oeb(flash_io0_oeb_core),
.flash_io0_di(flash_io0_di_core),
.flash_io0_do(flash_io0_do_core),
.flash_io1_ieb(flash_io1_ieb_core),
.flash_io1_oeb(flash_io1_oeb_core),
.flash_io1_di(flash_io1_di_core),
.flash_io1_do(flash_io1_do_core),
.flash_io2_ieb(flash_io2_ieb_core),
.flash_io2_oeb(flash_io2_oeb_core),
.flash_io2_di(flash_io2_di_core),
.flash_io2_do(flash_io2_do_core),
.flash_io3_ieb(flash_io3_ieb_core),
.flash_io3_oeb(flash_io3_oeb_core),
.flash_io3_di(flash_io3_di_core),
.flash_io3_do(flash_io3_do_core),
// Clock and reset
.core_clk(caravel_clk),
.core_rstn(caravel_rstn)
);
wire [`MPRJ_IO_PADS_1-1:0] gpio_serial_link_1_shifted;
wire [`MPRJ_IO_PADS_2-1:0] gpio_serial_link_2_shifted;
assign gpio_serial_link_1_shifted = {gpio_serial_link_1[`MPRJ_IO_PADS_1-2:0],
mprj_io_loader_data_1};
// Note that serial_link_2 is backwards compared to serial_link_1, so it
// shifts in the other direction.
assign gpio_serial_link_2_shifted = {mprj_io_loader_data_2,
gpio_serial_link_2[`MPRJ_IO_PADS_2-1:1]};
// Propagating clock and reset to mitigate timing and fanout issues
wire [`MPRJ_IO_PADS_1-1:0] gpio_clock_1;
wire [`MPRJ_IO_PADS_2-1:0] gpio_clock_2;
wire [`MPRJ_IO_PADS_1-1:0] gpio_resetn_1;
wire [`MPRJ_IO_PADS_2-1:0] gpio_resetn_2;
wire [`MPRJ_IO_PADS_1-1:0] gpio_clock_1_shifted;
wire [`MPRJ_IO_PADS_2-1:0] gpio_clock_2_shifted;
wire [`MPRJ_IO_PADS_1-1:0] gpio_resetn_1_shifted;
wire [`MPRJ_IO_PADS_2-1:0] gpio_resetn_2_shifted;
assign gpio_clock_1_shifted = {gpio_clock_1[`MPRJ_IO_PADS_1-2:0],
mprj_io_loader_clock};
assign gpio_clock_2_shifted = {mprj_io_loader_clock,
gpio_clock_2[`MPRJ_IO_PADS_2-1:1]};
assign gpio_resetn_1_shifted = {gpio_resetn_1[`MPRJ_IO_PADS_1-2:0],
mprj_io_loader_resetn};
assign gpio_resetn_2_shifted = {mprj_io_loader_resetn,
gpio_resetn_2[`MPRJ_IO_PADS_2-1:1]};
// Clocking control
caravel_clocking clocking(
`ifdef USE_POWER_PINS
.vdd1v8(VPWR),
.vss(VGND),
`endif
.ext_clk_sel(ext_clk_sel),
.ext_clk(clock),
.pll_clk(pll_clk),
.pll_clk90(pll_clk90),
.resetb(resetb),
.sel(spi_pll_sel),
.sel2(spi_pll90_sel),
.ext_reset(ext_reset), // From housekeeping SPI
.core_clk(core_clk),
.user_clk(user_clk),
.resetb_sync(core_rstn)
);
// DCO/Digital Locked Loop
digital_pll pll (
`ifdef USE_POWER_PINS
.VPWR(VPWR),
.VGND(VGND),
`endif
.resetb(resetb),
.enable(spi_pll_ena),
.osc(clock),
.clockp({pll_clk, pll_clk90}),
.div(spi_pll_div),
.dco(spi_pll_dco_ena),
.ext_trim(spi_pll_trim)
);
// Housekeeping SPI interface
housekeeping_spi housekeeping (
`ifdef USE_POWER_PINS
.vdd(VPWR),
.vss(VGND),
`endif
.RSTB(porb),
.SCK((hk_connect) ? mgmt_out_predata[4] : mgmt_in_data[4]),
.SDI((hk_connect) ? mgmt_out_predata[2] : mgmt_in_data[2]),
.CSB((hk_connect) ? mgmt_out_predata[3] : mgmt_in_data[3]),
.SDO(sdo_out_pre),
.sdo_enb(sdo_outenb_pre),
.pll_dco_ena(spi_pll_dco_ena),
.pll_sel(spi_pll_sel),
.pll90_sel(spi_pll90_sel),
.pll_div(spi_pll_div),
.pll_ena(spi_pll_ena),
.pll_trim(spi_pll_trim),
.pll_bypass(ext_clk_sel),
.irq(irq_spi),
.reset(ext_reset),
.trap(trap),
.mask_rev_in(mask_rev),
.gpio_enable(gpio_enable),
.gpio_resetn(gpio_resetn),
.gpio_clock(gpio_clock),
.gpio_data_1(gpio_data_1),
.gpio_data_2(gpio_data_2),
.sram_clk(hkspi_sram_clk),
.sram_csb(hkspi_sram_csb),
.sram_addr(hkspi_sram_addr),
.sram_rdata(hkspi_sram_rdata),
.pass_thru_mgmt_reset(pass_thru_mgmt),
.pass_thru_user_reset(pass_thru_user),
.pass_thru_mgmt_sck(pass_thru_mgmt_sck),
.pass_thru_mgmt_csb(pass_thru_mgmt_csb),
.pass_thru_mgmt_sdi(pass_thru_mgmt_sdi),
.pass_thru_mgmt_sdo(pass_thru_mgmt_sdo),
.pass_thru_user_sck(pass_thru_user_sck),
.pass_thru_user_csb(pass_thru_user_csb),
.pass_thru_user_sdi(pass_thru_user_sdi),
.pass_thru_user_sdo(mgmt_in_data[11])
);
// GPIO control
mprj_ctrl_wb #(
.BASE_ADR(MPRJ_CTRL_ADR)
) mprj_ctrl (
.wb_clk_i(wb_clk_i),
.wb_rst_i(wb_rst_i),
.wb_adr_i(cpu_adr_o),
.wb_dat_i(cpu_dat_o),
.wb_sel_i(cpu_sel_o),
.wb_we_i(cpu_we_o),
.wb_cyc_i(cpu_cyc_o),
.wb_stb_i(mprj_ctrl_stb_i),
.wb_ack_o(mprj_ctrl_ack_o),
.wb_dat_o(mprj_ctrl_dat_o),
.serial_clock(mprj_io_loader_clock),
.serial_resetn(mprj_io_loader_resetn),
.serial_data_out_1(mprj_io_loader_data_1),
.serial_data_out_2(mprj_io_loader_data_2),
.ext_enable(gpio_enable),
.ext_resetn(gpio_resetn),
.ext_clock(gpio_clock),
.ext_data_1(gpio_data_1),
.ext_data_2(gpio_data_2),
.sdo_oenb_state(sdo_oenb_state),
.jtag_oenb_state(jtag_oenb_state),
.flash_io2_oenb_state(flash_io2_oenb_state),
.flash_io3_oenb_state(flash_io3_oenb_state),
.mgmt_gpio_out(mgmt_out_pre),
.mgmt_gpio_oeb(mgmt_oeb_data),
.mgmt_gpio_in(mgmt_in_data),
.pwr_ctrl_out(pwr_ctrl_out),
.user_irq_ena(user_irq_ena)
);
// Each control block sits next to an I/O pad in the user area.
// It gets input through a serial chain from the previous control
// block and passes it to the next control block. Due to the nature
// of the shift register, bits are presented in reverse, as the first
// bit in ends up as the last bit of the last I/O pad control block.
// There are two types of block; the first two and the last two
// are configured to be full bidirectional under control of the
// management Soc (JTAG and SDO for the first two; flash_io2 and
// flash_io3 for the last two). The rest are configured to be default
// (input). Note that the first two and last two are the ones closest
// to the management SoC on either side, which minimizes the wire length
// of the extra signals those pads need.
/* First two GPIOs (JTAG and SDO) */
gpio_control_block #(
.MGMT_INIT(1'b1), // Management-controlled
.OENB_INIT(1'b1) // Output controlled from bidirectional pin
) gpio_control_bidir_1 [1:0] (
`ifdef USE_POWER_PINS
.vccd(vccd_core),
.vssd(vssd_core),
.vccd1(vccd1_core),
.vssd1(vssd1_core),
`endif
// Management Soc-facing signals
.resetn(gpio_resetn_1_shifted[1:0]),
.serial_clock(gpio_clock_1_shifted[1:0]),
.resetn_out(gpio_resetn_1[1:0]),
.serial_clock_out(gpio_clock_1[1:0]),
.mgmt_gpio_in(mgmt_io_in[1:0]),
.mgmt_gpio_out({sdo_out, jtag_out}),
.mgmt_gpio_oeb({sdo_outenb, jtag_outenb}),
.one(),
.zero(),
// Serial data chain for pad configuration
.serial_data_in(gpio_serial_link_1_shifted[1:0]),
.serial_data_out(gpio_serial_link_1[1:0]),
// User-facing signals
.user_gpio_out(user_io_out[1:0]),
.user_gpio_oeb(user_io_oeb[1:0]),
.user_gpio_in(user_io_in[1:0]),
// Pad-facing signals (Pad GPIOv2)
.pad_gpio_inenb(mprj_io_inp_dis[1:0]),
.pad_gpio_ib_mode_sel(mprj_io_ib_mode_sel[1:0]),
.pad_gpio_vtrip_sel(mprj_io_vtrip_sel[1:0]),
.pad_gpio_slow_sel(mprj_io_slow_sel[1:0]),
.pad_gpio_holdover(mprj_io_holdover[1:0]),
.pad_gpio_ana_en(mprj_io_analog_en[1:0]),
.pad_gpio_ana_sel(mprj_io_analog_sel[1:0]),
.pad_gpio_ana_pol(mprj_io_analog_pol[1:0]),
.pad_gpio_dm(mprj_io_dm[5:0]),
.pad_gpio_outenb(mprj_io_oeb[1:0]),
.pad_gpio_out(mprj_io_out[1:0]),
.pad_gpio_in(mprj_io_in[1:0])
);
/* Section 1 GPIOs (GPIO 0 to 18) */
wire [`MPRJ_IO_PADS_1-1:2] one_loop1;
/* Section 1 GPIOs (GPIO 3 to 7) that start up under management control */
gpio_control_block #(
.DM_INIT(3'b001), // Configured as inputs
.MGMT_INIT(1'b1), // Management-controlled
.OENB_INIT(1'b1) // Output disabled
) gpio_control_in_1a [5:0] (
`ifdef USE_POWER_PINS
.vccd(vccd_core),
.vssd(vssd_core),
.vccd1(vccd1_core),
.vssd1(vssd1_core),
`endif
// Management Soc-facing signals
.resetn(gpio_resetn_1_shifted[7:2]),
.serial_clock(gpio_clock_1_shifted[7:2]),
.resetn_out(gpio_resetn_1[7:2]),
.serial_clock_out(gpio_clock_1[7:2]),
.mgmt_gpio_in(mgmt_io_in[7:2]),
.mgmt_gpio_out(mgmt_io_in[7:2]),
.mgmt_gpio_oeb(one_loop1[7:2]),
.one(one_loop1[7:2]),
.zero(),
// Serial data chain for pad configuration
.serial_data_in(gpio_serial_link_1_shifted[7:2]),
.serial_data_out(gpio_serial_link_1[7:2]),
// User-facing signals
.user_gpio_out(user_io_out[7:2]),
.user_gpio_oeb(user_io_oeb[7:2]),
.user_gpio_in(user_io_in[7:2]),
// Pad-facing signals (Pad GPIOv2)
.pad_gpio_inenb(mprj_io_inp_dis[7:2]),
.pad_gpio_ib_mode_sel(mprj_io_ib_mode_sel[7:2]),
.pad_gpio_vtrip_sel(mprj_io_vtrip_sel[7:2]),
.pad_gpio_slow_sel(mprj_io_slow_sel[7:2]),
.pad_gpio_holdover(mprj_io_holdover[7:2]),
.pad_gpio_ana_en(mprj_io_analog_en[7:2]),
.pad_gpio_ana_sel(mprj_io_analog_sel[7:2]),
.pad_gpio_ana_pol(mprj_io_analog_pol[7:2]),
.pad_gpio_dm(mprj_io_dm[23:6]),
.pad_gpio_outenb(mprj_io_oeb[7:2]),
.pad_gpio_out(mprj_io_out[7:2]),
.pad_gpio_in(mprj_io_in[7:2])
);
/* Section 1 GPIOs (GPIO 8 to 18) */
gpio_control_block gpio_control_in_1 [`MPRJ_IO_PADS_1-9:0] (
`ifdef USE_POWER_PINS
.vccd(vccd_core),
.vssd(vssd_core),
.vccd1(vccd1_core),
.vssd1(vssd1_core),
`endif
// Management Soc-facing signals
.resetn(gpio_resetn_1_shifted[(`MPRJ_IO_PADS_1-1):8]),
.serial_clock(gpio_clock_1_shifted[(`MPRJ_IO_PADS_1-1):8]),
.resetn_out(gpio_resetn_1[(`MPRJ_IO_PADS_1-1):8]),
.serial_clock_out(gpio_clock_1[(`MPRJ_IO_PADS_1-1):8]),
.mgmt_gpio_in(mgmt_io_in[(`MPRJ_IO_PADS_1-1):8]),
.mgmt_gpio_out(mgmt_io_in[(`MPRJ_IO_PADS_1-1):8]),
.mgmt_gpio_oeb(one_loop1[(`MPRJ_IO_PADS_1-1):8]),
.one(one_loop1[(`MPRJ_IO_PADS_1-1):8]),
.zero(),
// Serial data chain for pad configuration
.serial_data_in(gpio_serial_link_1_shifted[(`MPRJ_IO_PADS_1-1):8]),
.serial_data_out(gpio_serial_link_1[(`MPRJ_IO_PADS_1-1):8]),
// User-facing signals
.user_gpio_out(user_io_out[(`MPRJ_IO_PADS_1-1):8]),
.user_gpio_oeb(user_io_oeb[(`MPRJ_IO_PADS_1-1):8]),
.user_gpio_in(user_io_in[(`MPRJ_IO_PADS_1-1):8]),
// Pad-facing signals (Pad GPIOv2)
.pad_gpio_inenb(mprj_io_inp_dis[(`MPRJ_IO_PADS_1-1):8]),
.pad_gpio_ib_mode_sel(mprj_io_ib_mode_sel[(`MPRJ_IO_PADS_1-1):8]),
.pad_gpio_vtrip_sel(mprj_io_vtrip_sel[(`MPRJ_IO_PADS_1-1):8]),
.pad_gpio_slow_sel(mprj_io_slow_sel[(`MPRJ_IO_PADS_1-1):8]),
.pad_gpio_holdover(mprj_io_holdover[(`MPRJ_IO_PADS_1-1):8]),
.pad_gpio_ana_en(mprj_io_analog_en[(`MPRJ_IO_PADS_1-1):8]),
.pad_gpio_ana_sel(mprj_io_analog_sel[(`MPRJ_IO_PADS_1-1):8]),
.pad_gpio_ana_pol(mprj_io_analog_pol[(`MPRJ_IO_PADS_1-1):8]),
.pad_gpio_dm(mprj_io_dm[(`MPRJ_IO_PADS_1*3-1):24]),
.pad_gpio_outenb(mprj_io_oeb[(`MPRJ_IO_PADS_1-1):8]),
.pad_gpio_out(mprj_io_out[(`MPRJ_IO_PADS_1-1):8]),
.pad_gpio_in(mprj_io_in[(`MPRJ_IO_PADS_1-1):8])
);
/* Last two GPIOs (flash_io2 and flash_io3) */
gpio_control_block #(
.MGMT_INIT(1'b1), // Management-controlled
.OENB_INIT(1'b1) // Output controlled from bidirectional pin
) gpio_control_bidir_2 [1:0] (
`ifdef USE_POWER_PINS
.vccd(vccd_core),
.vssd(vssd_core),
.vccd1(vccd1_core),
.vssd1(vssd1_core),
`endif
// Management Soc-facing signals
.resetn(gpio_resetn_1_shifted[(`MPRJ_IO_PADS_2-1):(`MPRJ_IO_PADS_2-2)]),
.serial_clock(gpio_clock_1_shifted[(`MPRJ_IO_PADS_2-1):(`MPRJ_IO_PADS_2-2)]),
.resetn_out(gpio_resetn_1[(`MPRJ_IO_PADS_2-1):(`MPRJ_IO_PADS_2-2)]),
.serial_clock_out(gpio_clock_1[(`MPRJ_IO_PADS_2-1):(`MPRJ_IO_PADS_2-2)]),
.mgmt_gpio_in(mgmt_io_in[(`MPRJ_IO_PADS-1):(`MPRJ_IO_PADS-2)]),
.mgmt_gpio_out({gpio_flash_io3_out, gpio_flash_io2_out}),
.mgmt_gpio_oeb({flash_io3_oeb_core, flash_io2_oeb_core}),
.one(),
.zero(),
// Serial data chain for pad configuration
.serial_data_in(gpio_serial_link_2_shifted[(`MPRJ_IO_PADS_2-1):(`MPRJ_IO_PADS_2-2)]),
.serial_data_out(gpio_serial_link_2[(`MPRJ_IO_PADS_2-1):(`MPRJ_IO_PADS_2-2)]),
// User-facing signals
.user_gpio_out(user_io_out[(`MPRJ_IO_PADS-1):(`MPRJ_IO_PADS-2)]),
.user_gpio_oeb(user_io_oeb[(`MPRJ_IO_PADS-1):(`MPRJ_IO_PADS-2)]),
.user_gpio_in(user_io_in[(`MPRJ_IO_PADS-1):(`MPRJ_IO_PADS-2)]),
// Pad-facing signals (Pad GPIOv2)
.pad_gpio_inenb(mprj_io_inp_dis[(`MPRJ_IO_PADS-1):(`MPRJ_IO_PADS-2)]),
.pad_gpio_ib_mode_sel(mprj_io_ib_mode_sel[(`MPRJ_IO_PADS-1):(`MPRJ_IO_PADS-2)]),
.pad_gpio_vtrip_sel(mprj_io_vtrip_sel[(`MPRJ_IO_PADS-1):(`MPRJ_IO_PADS-2)]),
.pad_gpio_slow_sel(mprj_io_slow_sel[(`MPRJ_IO_PADS-1):(`MPRJ_IO_PADS-2)]),
.pad_gpio_holdover(mprj_io_holdover[(`MPRJ_IO_PADS-1):(`MPRJ_IO_PADS-2)]),
.pad_gpio_ana_en(mprj_io_analog_en[(`MPRJ_IO_PADS-1):(`MPRJ_IO_PADS-2)]),
.pad_gpio_ana_sel(mprj_io_analog_sel[(`MPRJ_IO_PADS-1):(`MPRJ_IO_PADS-2)]),
.pad_gpio_ana_pol(mprj_io_analog_pol[(`MPRJ_IO_PADS-1):(`MPRJ_IO_PADS-2)]),
.pad_gpio_dm(mprj_io_dm[(`MPRJ_IO_PADS*3-1):(`MPRJ_IO_PADS*3-6)]),
.pad_gpio_outenb(mprj_io_oeb[(`MPRJ_IO_PADS-1):(`MPRJ_IO_PADS-2)]),
.pad_gpio_out(mprj_io_out[(`MPRJ_IO_PADS-1):(`MPRJ_IO_PADS-2)]),
.pad_gpio_in(mprj_io_in[(`MPRJ_IO_PADS-1):(`MPRJ_IO_PADS-2)])
);
/* Section 2 GPIOs (GPIO 19 to 37) */
wire [`MPRJ_IO_PADS_2-3:0] one_loop2;
gpio_control_block gpio_control_in_2 [`MPRJ_IO_PADS_2-3:0] (
`ifdef USE_POWER_PINS
.vccd(vccd_core),
.vssd(vssd_core),
.vccd1(vccd1_core),
.vssd1(vssd1_core),
`endif
// Management Soc-facing signals
.resetn(gpio_resetn_1_shifted[(`MPRJ_IO_PADS_2-3):0]),
.serial_clock(gpio_clock_1_shifted[(`MPRJ_IO_PADS_2-3):0]),
.resetn_out(gpio_resetn_1[(`MPRJ_IO_PADS_2-3):0]),
.serial_clock_out(gpio_clock_1[(`MPRJ_IO_PADS_2-3):0]),
.mgmt_gpio_in(mgmt_io_in[(`MPRJ_IO_PADS-3):(`MPRJ_IO_PADS_1)]),
.mgmt_gpio_out(mgmt_io_in[(`MPRJ_IO_PADS-3):(`MPRJ_IO_PADS_1)]),
.mgmt_gpio_oeb(one_loop2),
.one(one_loop2),
.zero(),
// Serial data chain for pad configuration
.serial_data_in(gpio_serial_link_2_shifted[(`MPRJ_IO_PADS_2-3):0]),
.serial_data_out(gpio_serial_link_2[(`MPRJ_IO_PADS_2-3):0]),
// User-facing signals
.user_gpio_out(user_io_out[(`MPRJ_IO_PADS-3):(`MPRJ_IO_PADS_1)]),
.user_gpio_oeb(user_io_oeb[(`MPRJ_IO_PADS-3):(`MPRJ_IO_PADS_1)]),
.user_gpio_in(user_io_in[(`MPRJ_IO_PADS-3):(`MPRJ_IO_PADS_1)]),
// Pad-facing signals (Pad GPIOv2)
.pad_gpio_inenb(mprj_io_inp_dis[(`MPRJ_IO_PADS-3):(`MPRJ_IO_PADS_1)]),
.pad_gpio_ib_mode_sel(mprj_io_ib_mode_sel[(`MPRJ_IO_PADS-3):(`MPRJ_IO_PADS_1)]),
.pad_gpio_vtrip_sel(mprj_io_vtrip_sel[(`MPRJ_IO_PADS-3):(`MPRJ_IO_PADS_1)]),
.pad_gpio_slow_sel(mprj_io_slow_sel[(`MPRJ_IO_PADS-3):(`MPRJ_IO_PADS_1)]),
.pad_gpio_holdover(mprj_io_holdover[(`MPRJ_IO_PADS-3):(`MPRJ_IO_PADS_1)]),
.pad_gpio_ana_en(mprj_io_analog_en[(`MPRJ_IO_PADS-3):(`MPRJ_IO_PADS_1)]),
.pad_gpio_ana_sel(mprj_io_analog_sel[(`MPRJ_IO_PADS-3):(`MPRJ_IO_PADS_1)]),
.pad_gpio_ana_pol(mprj_io_analog_pol[(`MPRJ_IO_PADS-3):(`MPRJ_IO_PADS_1)]),
.pad_gpio_dm(mprj_io_dm[(`MPRJ_IO_PADS*3-7):(`MPRJ_IO_PADS_1*3)]),
.pad_gpio_outenb(mprj_io_oeb[(`MPRJ_IO_PADS-3):(`MPRJ_IO_PADS_1)]),
.pad_gpio_out(mprj_io_out[(`MPRJ_IO_PADS-3):(`MPRJ_IO_PADS_1)]),
.pad_gpio_in(mprj_io_in[(`MPRJ_IO_PADS-3):(`MPRJ_IO_PADS_1)])
);
user_id_programming #(
.USER_PROJECT_ID(USER_PROJECT_ID)
) user_id_value (
`ifdef USE_POWER_PINS
.VPWR(vccd_core),
.VGND(vssd_core),
`endif
.mask_rev(mask_rev)
);
// Power-on-reset circuit
simple_por por (
`ifdef USE_POWER_PINS
.vdd3v3(vddio_core),
.vdd1v8(vccd_core),
.vss(vssio_core),
`endif
.porb_h(porb_h),
.porb_l(porb_l),
.por_l(por_l)
);
// XRES (chip input pin reset) reset level converter
sky130_fd_sc_hvl__lsbufhv2lv_1_wrapped rstb_level (
`ifdef USE_POWER_PINS
.VPWR(vddio_core),
.LVPWR(vccd_core),
.LVGND(vssd_core),
.VGND(vssio_core),
`endif
.A(rstb_h),
.X(rstb_l)
);
endmodule
// `default_nettype wire