- A documentation of the design flow using Alliance tools.

- Each tools are shortly described, strength and weakness are brieflly commented,
- An example for each Alliance file format is given.
This commit is contained in:
Ludovic Jacomme 2004-05-24 17:36:01 +00:00
parent d840190012
commit d30e4fa501
31 changed files with 1866 additions and 0 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 329 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 273 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 579 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

View File

@ -0,0 +1,510 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Digital design flow</title>
<!-- Author: Ludovic Jacomme May 2004 -->
</head>
<body bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#000080" alink="#FF0000">
<img src="logo.gif">
<br>
<h1>The main steps of the digital design flow</h1>
<ul>
<li>Behavioral specification</li>
<li>RTL synthesis</li>
<li>Place and Route</li>
</ul>
<br>
<h1>Overview of the behavioral specification step</h1>
<ul>
<li>During this step the designer can cut the chip in several functional
blocks interconnected together
<br><br><img src=beh-spec-split.gif>
</li>
<br>
<li>Then he has to describe, using a hardware description langage (HDL),
the behavior of each functional block.<br> Each functional block can be:
</li>
<ul>
<li>a Finite State Machine
<br><img src=beh-spec-fsm.gif>
</li>
<li>a set of registers and transfert functions
<br><img src=beh-spec-rtl.gif>
</li>
<li>a set of interconnected other functional blocks
<br><img src=beh-spec-struct.gif>
</li>
</ul>
<br>
<li>The behavioral description has to be validate. The designer can use
different methods such as:
<ul>
<li>digital simulation using a set of stimuli.
(each stimuli describes the value of inputs pins
and the expected values of outputs pins)</li>
<li>model checking using a set of CTL formulae. (each CTL
formulae describe a property that the functional block has
to verified)</li>
</ul>
</ul>
<h1>The behavioral specification using the Alliance CAD system</h1>
<ul>
<li>Digital simulation using a set of stimuli:
<a id="asimut" name="asimut"></a>
<a id="xpat" name="xpat"></a>
<a id="genpat" name="genpat"></a>
<br><img src=beh-spec-asimut.gif><br>
<ul>
<li><a href="tools.html#genpat">GENPAT</a> is used to write
digital stimuli. It provides a C
interface of a set of functions usefull to create stimuli. It
loads a C file describing patterns and run the C compiler.
Finally it generates a stimuli file
(<a href="tools.html#pat">PAT</a> file format).
Note that patterns file can also
be written using a simple text editor.
<br></li>
<li><a href="tools.html#asimut">ASIMUT</a> is a VHDL simulator.
It loads behavioral or structural
descriptions written according to the Alliance VHDL subsets.
<a href="tools.html#asimut">ASIMUT</a> may also be linked with C
descriptions of behavioral
components.
It loads a stimuli file (<a href="tools.html#pat">PAT</a> file format) and then
run the simulation. The result is dumped in a new pattern file
and it can be displayed using <a href="tools.html#xpat">XPAT</a>.
<br></li>
<li><a href="tools.html#xpat">XPAT</a> is a graphical pattern
viewer. It loads a pattern file
(<a href="tools.html#pat">PAT</a> file format)
and displays waveforms on a graphical window.
<br></li>
</ul>
</li>
<br><li>Digital simulation of FSM descriptions:
<a id="syf" name="syf"></a>
<br><br><img src=beh-spec-syf.gif><br><br>
<ul>
<li><a href="tools.html#syf">SYF</a> loads the graph of a Finite
State Machine. This FSM is
described in VHDL using predefined templates. It encodes each
states of the FSM and tries to minimize the resulting
combinatorial logic.
Finally it drives a new description using the Alliance VHDL
dataflow subset (<a href="tools.html#vbe">VBE</a> file format).
<br></li>
</ul>
</li>
<br><li>Digital simulation of VHDL descriptions using Synospys VHDL subset:
<a id="vasy" name="vasy"></a>
<br><br><img src=beh-spec-vasy.gif><br><br>
<ul>
<li><a href="tools.html#vasy">VASY</a> can be seen as a VHDL
translator. It loads VHDL
behavioral or structural descriptions (written according to the
Synopsys <a href="tools.html#vhd">VHDL</a> subset).
It then drives one or more VHDL descriptions using the Alliance
VHDL dataflow or structural
subsets. <br> Those Alliance VHDL subsets are small and very
particular.
They are called <a href="tools.html#vbe">VBE</a> (VHDL
BEhavioral) and <a href="tools.html#vst">VST</a> (VHDL
STructural) file format.
<br></li>
</ul>
</li>
<br><li>Model checking of behavioral descriptions:
<a id="mocha" name="mocha"></a>
<br><br><img src=beh-spec-mocha.gif><br><br>
<ul>
<li><a href="tools.html#mocha">MOCHA</a> loads the graph of a
Finite State Machine
description. This FSM is described in VHDL using predefined
templates. Then it loads a list of CTL formulae (described in
CTL file format) and check formally if the given FSM verify CTL
properties. <a href="tools.html#mocha">MOCHA</a> can also be
used on a behavioral description
using the Alliance VHDL dataflow subset (<a href="tools.html#vbe">VBE</a>).
<br></li>
</ul>
</li>
<br><li><b>Summary of digital behavioral specification step</b></li>
<br><br><img src=beh-spec-alliance.gif>
</ul>
<!--
-->
<h1>Overview of the RTL synthesis step</h1>
<ul>
<li>This step consist on a transformation of a behavioral description
to an optimized netlist of gates (standard cells, macros-cells, datapaths etc ...).
</li>
<br>
<li>The designer can give optimization parameters and constraints to
be satisfied such as:
</li>
<ul>
<li>delay, arrival/required time
</li>
<li>surface
</li>
<li>power consumption
</li>
<li>etc ...
</li>
</ul>
<br>
<li>The RTL synthesis step has to be validate. The designer can use
different methods such as:
<ul>
<li>Post synthesis digital simulation
</li>
<li>Formal proof
</li>
</ul>
</ul>
<!--
-->
<h1>The RTL synthesis step using the Alliance CAD system</h1>
<ul>
<li>Logic synthesis and standard cell mapping
<a id="boom" name="boom"></a>
<a id="boog" name="boog"></a>
<a id="loon" name="loon"></a>
<a id="proof" name="proof"></a>
<br><br><img src=rtl-synth-logic.gif><br><br>
<ul>
<li><a href="tools.html#boom">BOOM</a> is used for the first
step of the synthesis process.
It loads a behavioural description
(<a href="tools.html#vbe">VBE</a>), if possible a parameter
file, and it builds an equivalent boolean network.
From one hand it minimizes the boolean expression
of each nodes of the network, and on the other hand it factorizes
equivalent nodes. The result is an equivalent boolean network where
the maximum depth is smaller and where boolean nodes have been factorized.
<br></li>
<li><a href="tools.html#asimut">ASIMUT</a> is the Alliance's VHDL simulator.
<br></li>
<li><a href="tools.html#proof">PROOF</a> is an equivalence
checker. It loads two behavioural descriptions
(<a href="tools.html#vbe">VBE</a>) and check their equivalence using formal technics.
<br></li>
<li><a href="tools.html#boog">BOOG</a> is used for the second
step of the synthesis process.
It loads a behavioural description
(<a href="tools.html#vbe">VBE</a>) beforehand optimized
with <a href="tools.html#boom">BOOM</a>
and builds an equivalent boolean network. It loads also a library of standard
cells and in option a parameter file.
For each boolean function of each node of the network,
it tries to find in the given library, a cell or a set of cells that produce
the same boolean function. This step is often called standard cell mapping.
The result is a netlist of cells with an equivalent behavior.
<br></li>
<li><a href="tools.html#loon">LOON</a> is used for the last
step of the synthesis process.
It loads a netlist of gates described in VHDL (<a href="tools.html#vst">VST</a>).
It loads also a library of standard cells and in option a parameter file.
<a href="tools.html#loon">LOON</a> computes the critical path
and performs a gate repowering to
decrease its delay and global capacitance.
The result is an optimized netlist described in VHDL
(<a href="tools.html#vst">VST</a>).
<br></li>
</ul>
</li>
<br>
<li>Handmake synthesis
<a id="genlib" name="genlib"></a>
<a id="xsch" name="xsch"></a>
<br><br><img src=rtl-synth-genlib.gif><br><br>
<ul>
<li><a href="tools.html#genlib">GENLIB</a> provides a C
interface of a set of functions usefull to create
a netlist of cells or a physical layout. For example given a cell library,
a simple C function call is enough to create an instance of a cell.
The result is a netlist (or a physical layout) built during the sequential
execution of the C source code.
<br></li>
<li><a href="tools.html#xsch">XSCH</a> is the graphical
schematic viewer of Alliance. It loads a netlist
(<a href="tools.html#vst">VST</a> file
format) and displays it on a graphical window.
<br></li>
<li><a href="tools.html#asimut">ASIMUT</a> is the Alliance's VHDL simulator.
<br></li>
</ul>
</li>
<br>
<li>Data-path synthesis
<br><br><img src=rtl-synth-dp.gif><br><br>
<ul>
<li><a href="tools.html#genlib">GENLIB</a> provides also a C
interface for several macro-cells generators such
as rom generator/register file generator etc ...
The layout and the netlist of a complex data-path can be easily
generated with only simple calls to predefined C functions.
<br></li>
<li><a href="tools.html#asimut">ASIMUT</a> is the Alliance's VHDL simulator.
<br></li>
</ul>
</li>
<br>
<li>FSM synthesis and state graph minimisation:
<a id="fmi" name="fmi"></a>
<a id="fsp" name="fsp"></a>
<br><br><img src=rtl-synth-fmi.gif><br><br>
<ul>
<li><a href="tools.html#fmi">FMI</a> loads the graph of a Finite
State Machine (<a href="tools.html#fsm">FSM</a> file format).
In the given FSM, <a href="tools.html#fmi">FMI</a> finds all
equivalent states and merges them all
together. The result is a new FSM, that still equivalent, but with a
reduced number of states.
Finally it drives this new description using <a href="tools.html#fsm">FSM</a>
file format.
<br></li>
<li><a href="tools.html#fsp">FSP</a> is an FSM equivalence
checker. It loads the graph of two FSMs and checks formally
(using a FSM product based algorithm) if they have exactly the
same behavior.
<br></li>
<li><a href="tools.html#syf">SYF</a> is a Finite State Machine synthesizer.
<br></li>
<li><a href="tools.html#b2f">B2F</a> is a Finite State Machine
abstractor.
It loads a RTL VHDL description (<a href="tools.html#vbe">VBE</a> file format).
It then build the graph of an equivalent Finite State Machine, using a symbolic
simulation algorithm. This tool does the inverse operation of the FSM synthesizer
<a href="tools.html#syf">SYF</a>
<br></li>
</ul>
</li>
</ul>
<!--
-->
<h1>Overview of the Place & Route step</h1>
<ul>
<li>This step consist on a transformation of a netlist description
to a physical layout.
</li>
<br>
<li>The designer can give some parameters and constraints to
be satisfied such as:
</li>
<ul>
<li>an initial placement of the cells
</li>
<li>a position for each physical connectors
</li>
<li>a form factor
</li>
<li>number of metal layers to be used
</li>
<li>etc ...
</li>
</ul>
<br>
<li>The place and route step has to be validated. The designer has to use
different methods such as:
<ul>
<li>Netlist exctration and netlist comparison
</li>
<li>Design rule checking
</li>
<li>Functionnal abstraction
</li>
</ul>
</ul>
<!--
-->
<h1>The place and route step using the Alliance CAD system</h1>
<ul>
<li>Overcell place and route
<a id="ocp" name="ocp"></a>
<a id="nero" name="nero"></a>
<br><br><img src=place-route-ocpr.gif><br><br>
<ul>
<li><a href="tools.html#ocp">OCP</a> is a placement tool. It
loads a netlist of standard cells.
The designer can specifies eventually connectors placement by given
a parameter file (IOC file format).
If there are non standard cell blocks in the netlist, the designer
has to give a placement for those blocks.
<a href="tools.html#ocp">OCP</a> then uses a simulated
annealing algorithm to find a placement
of all the netlist's cells, that minimized the length of nets.
The result is a physical symbolic layout file with physical connectors
and placed cells (<a href="tools.html#ap">AP</a> file format).
<br></li>
<li><a href="tools.html#nero">NERO</a>(previously OCR) is the overcell
router of Alliance. It loads a netlist and a
physical placement file. The designer can give other parameters such
as the number of metal layer he would like to use.
The result is a physical symbolic layout view where each net
of the netlist has been routed (<a href="tools.html#ap">AP</a> file format).
<br></li>
</ul>
</li>
<br>
<li>Pad ring place and route
<a id="ring" name="ring"></a>
<br><br><img src=place-route-ring.gif><br><br>
<ul>
<li><a href="tools.html#ring">RING</a> loads a netlist of pads
interconnected with a "core" block.
The designer can give a relative placement for those pads (RIN file format).
After loading the physical view of the pads and the core, <a
href="tools.html#ring">RING</a>
place and route them all together, with a special treatment for
the power supply nets.
The result is a physical symbolic layout
(<a href="tools.html#ap">AP</a> file format).
<br></li>
</ul>
</li>
<br>
<li>Place and route validation
<a id="lynx" name="lynx"></a>
<a id="cougar" name="cougar"></a>
<a id="lvx" name="lvx"></a>
<a id="druc" name="druc"></a>
<a id="graal" name="graal"></a>
<br><br><img src=place-route-valid.gif><br><br>
<ul>
<li><a href="tools.html#cougar">LYNX</a> (called now COUGAR) is a
hierarchical netlist extractor.
It loads a symbolic or real physical view and given a technological
file (RDS file format) it extracts a netlist
(<a href="tools.html#al">AL</a> file format).
<br></li>
<li><a href="tools.html#lvx">LVX</a> is simple a netlist comparator.
<br></li>
<li><a href="tools.html#druc">DRUC</a> is a hierarchical design rule checker.
It loads a symbolic physical view and given a technological
file (RDS file format) it verifies design rules.
<br></li>
<li><a href="tools.html#asimut">ASIMUT</a> is the Alliance's VHDL simulator.
<br></li>
<li><a href="tools.html#graal">GRAAL</a> is a hierarchical symbolic layout editor.
<br></li>
</ul>
</li>
<br>
<li>Symbolic layout to real layout
<a id="s2r" name="s2r"></a>
<a id="dreal" name="dreal"></a>
<br><br><img src=place-route-s2r.gif><br><br>
<ul>
<li>Given a technological file, <a href="tools.html#s2r">S2R</a> transforms
a symbolic layout (lambda) to a real equivalent layout (micron).
<br></li>
<li><a href="tools.html#dreal">DREAL</a> is the real layout editor of Alliance.
<br></li>
<li><a href="tools.html#cougar">LYNX</a> is the netlist extractor of Alliance.
<br></li>
</ul>
</li>
<br>
</ul>
</body>

View File

@ -0,0 +1,26 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Futur works in Alliance</title>
</head>
<body bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#000080" alink="#FF0000">
<img src="logo.gif">
<br>
<br>
<br>
<h1>TO BE DONE</h1>
<ul>
<li>To be done
</li>
<li>To be done
</li>
</ul>
<br>
</body>

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

View File

@ -0,0 +1,18 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Alliance</title>
<!-- Author: Ludovic Jacomme May 2004 -->
</head>
<body bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#000080" alink="#FF0000">
<img src="logo.gif">
<ul>
<li><a href="intro.html">What is Alliance ?</a></li>
<li><a href="flow.html">Digital design flow</a></li>
<li><a href="tools.html">Tools overview</a></li>
</ul>
</body>

View File

@ -0,0 +1,73 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>What is Alliance ?</title>
</head>
<body bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#000080" alink="#FF0000">
<img src="logo.gif">
<br>
<br>
<br>
<h1>Alliance provides a software environement for the development of CAD tools:</h1>
<ul>
<li>More than 60 librairies written in C langage.
Those libraries contain the definition of several data structures and methods
allowing to describe circuits from the RTL view up to the physical view.
Thoses data structures covered all the design flow and can be used
by developpers to implement CAD applications.
Those libraries contain also parsers and drivers for several standard file
format.</li>
<li>More than 650 man pages describing the programming interface of
those librairies</li>
</ul>
<br>
<h1>Alliance provides CAD tools covering most of all the digital design flow:</h1>
<ul>
<li>VHDL Compilation and Simulation</li>
<li>Model checking and formal proof</li>
<li>RTL and Logic synthesis</li>
<li>Data-Path compilation</li>
<li>Macro-cells generation</li>
<li>Place and route</li>
<li>Layout edition</li>
<li>Netlist extraction and verification</li>
<li>Design rules checking</li>
<li>etc ...</li>
</ul>
<br>
<center><a href="mips.html"><img src=mips-small.jpg></a>
<br>
This is a MIPS-R3000 of 52000 transistors, that has been completely designed
using Alliance CAD tools
</center>
<br>
<h1>Alliance provides also a complete set of portable CMOS libraries:</h1>
<ul>
<li>standard cells</li>
<li>specific cells used by the generators (RAM/ROM/etc ...)</li>
<li>symbolic pad cells</li>
</ul>
<br>
<br>
<center>
<em>The Alliance CAD system is used in more than 80 Universities all arround the world
for teaching and research purposes.
</em>
<br>
<em>Alliance is the result of a twelve year effort spent at ASIM department of LIP6
laboratory of the Pierre et Marie Curie University
</em>
</center>
</body>

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.7 KiB

View File

@ -0,0 +1,16 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>What is Alliance ?</title>
</head>
<body bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#000080" alink="#FF0000">
<img src="logo.gif">
<br>
<br>
<center><a href="intro.html"><img src=mips.jpg></a>
</body>

Binary file not shown.

After

Width:  |  Height:  |  Size: 133 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.9 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB