Merge pull request #122 from lnis-uofu/xt_dev

Add SOFA+ Architecture with fracturable 18x18 multiplier
This commit is contained in:
tangxifan 2021-05-26 10:35:00 -06:00 committed by GitHub
commit bcf5d6513c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 1529 additions and 0 deletions

View File

@ -0,0 +1,322 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k4_frac_cc_sky130nm.xml
- General purpose logic block
- K = 4, N = 8, I = 24
- Routing architecture
- 10% L = 1, fc_in = 0.15, Fc_out = 0.10
- 10% L = 2, fc_in = 0.15, Fc_out = 0.10
- 80% L = 4, fc_in = 0.15, Fc_out = 0.10
- DSP block:
- Multi-mode multiplier which can operate in two modes
- Mode A: 18-bit multiplier
- Mode B: two independent 9-bit multipliers
- Skywater 130nm PDK
- circuit models are binded to the opensource skywater
foundry high-density standard cell library
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="inv_01" prefix="inv_01" verilog_netlist="./inv/sky130_fd_sc_hd__inv_1.v">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" lib_name="A" size="1"/>
<port type="output" prefix="out" lib_name="Y" size="1"/>
</circuit_model>
<circuit_model type="inv_buf" name="sky130_fd_sc_hd__inv_1" prefix="sky130_fd_sc_hd__inv_1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" lib_name="A" size="1"/>
<port type="output" prefix="out" lib_name="Y" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="sky130_fd_sc_hd__buf_2" prefix="sky130_fd_sc_hd__buf_2" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="2"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" lib_name="A" size="1"/>
<port type="output" prefix="out" lib_name="X" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="sky130_fd_sc_hd__buf_4" prefix="sky130_fd_sc_hd__buf_4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" lib_name="A" size="1"/>
<port type="output" prefix="out" lib_name="X" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="sky130_fd_sc_hd__inv_2" prefix="sky130_fd_sc_hd__inv_2" is_default="false">
<design_technology type="cmos" topology="buffer" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" lib_name="A" size="1"/>
<port type="output" prefix="out" lib_name="Y" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="gate" name="sky130_fd_sc_hd__or2_1" prefix="sky130_fd_sc_hd__or2_1" is_default="true">
<design_technology type="cmos" topology="OR"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="a" lib_name="A" size="1"/>
<port type="input" prefix="b" lib_name="B" size="1"/>
<port type="output" prefix="out" lib_name="X" size="1"/>
<delay_matrix type="rise" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
</circuit_model>
<!-- Define a circuit model for the standard cell MUX2
OpenFPGA requires the following truth table for the MUX2
When the select signal sel is enabled, the first input, i.e., in0
will be propagated to the output, i.e., out
If your standard cell provider does not offer the exact truth table,
you can simply swap the inputs as shown in the example below
-->
<circuit_model type="gate" name="sky130_fd_sc_hd__mux2_1" prefix="sky130_fd_sc_hd__mux2_1">
<design_technology type="cmos" topology="MUX2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in0" lib_name="A1" size="1"/>
<port type="input" prefix="in1" lib_name="A0" size="1"/>
<port type="input" prefix="sel" lib_name="S" size="1"/>
<port type="output" prefix="out" lib_name="X" size="1"/>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/>
<!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/>
<!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_tree" prefix="mux_tree" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<pass_gate_logic circuit_model_name="sky130_fd_sc_hd__mux2_1"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_tree_tapbuf" prefix="mux_tree_tapbuf" dump_structural_verilog="true">
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
<input_buffer exist="false"/>
<output_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__buf_4"/>
<pass_gate_logic circuit_model_name="sky130_fd_sc_hd__mux2_1"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="CUSTOM_DATAFF" prefix="CUSTOM_DATAFF" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
<output_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="DI" lib_name="SI" size="1"/>
<port type="input" prefix="Test_en" lib_name="SE" size="1" is_global="true" default_val="0"/>
<port type="input" prefix="R" size="1" default_val="0"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="C" lib_name="CK" size="1" default_val="0" />
<port type="sram" prefix="mode" lib_name="MODE" size="1" mode_select="true" circuit_model_name="CUSTOM_CCFF" default_val="0"/>
</circuit_model>
<circuit_model type="lut" name="frac_lut4_arith" prefix="frac_lut4_arith" dump_structural_verilog="true" verilog_netlist="frac_lut4_arith.v">
<design_technology type="cmos" fracturable_lut="true"/>
<input_buffer exist="false"/>
<output_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__buf_2"/>
<lut_input_inverter exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
<lut_input_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__buf_2"/>
<lut_intermediate_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__buf_2" location_map="-1-"/>
<pass_gate_logic circuit_model_name="sky130_fd_sc_hd__mux2_1"/>
<port type="input" prefix="in" size="4" tri_state_map="---1" circuit_model_name="sky130_fd_sc_hd__or2_1"/>
<port type="input" prefix="cin" size="1" is_harden_lut_port="true"/>
<port type="output" prefix="lut3_out" size="2" lut_frac_level="3" lut_output_mask="0,1"/>
<port type="output" prefix="lut4_out" size="1" lut_output_mask="0"/>
<port type="output" prefix="cout" size="1" is_harden_lut_port="true"/>
<port type="sram" prefix="sram" size="16"/>
<port type="sram" prefix="mode" size="2" mode_select="true" circuit_model_name="CUSTOM_CCFF" default_val="1"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="CUSTOM_CCFF" prefix="CUSTOM_CCFF" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/dff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
<output_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="scan_data_in" lib_name="SCD" size="1"/>
<!-- This port allows readback configurable memories without modifying the storage -->
<port type="input" prefix="config_readback" lib_name="SCE" size="1" is_global="true" default_val="0"/>
<!-- This port allows programming circuitry is be isolated from datapath logic during programming -->
<port type="input" prefix="config_enable" lib_name="CFGE" size="1" is_global="true" default_val="0" is_config_enable="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="CLK" size="1" is_global="true" default_val="0" is_prog="true"/>
<port type="input" prefix="pReset" lib_name="RESET_B" size="1" is_global="true" default_val="1" is_prog="true" is_reset="true"/>
</circuit_model>
<circuit_model type="iopad" name="EMBEDDED_IO_ISOLN" prefix="EMBEDDED_IO_ISOLN" is_default="true" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/gpio.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
<output_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
<port type="input" prefix="SOC_IN" lib_name="SOC_IN" size="1" is_global="true" is_io="true" is_data_io="true"/>
<port type="output" prefix="SOC_OUT" lib_name="SOC_OUT" size="1" is_global="true" is_io="true" is_data_io="true"/>
<port type="output" prefix="SOC_DIR" lib_name="SOC_DIR" size="1" is_global="true" is_io="true"/>
<port type="input" prefix="IO_ISOL_N" lib_name="IO_ISOL_N" size="1" is_global="true" default_val="1"/>
<port type="output" prefix="inpad" lib_name="FPGA_IN" size="1"/>
<port type="input" prefix="outpad" lib_name="FPGA_OUT" size="1"/>
<port type="sram" prefix="en" lib_name="FPGA_DIR" size="1" mode_select="true" circuit_model_name="CUSTOM_CCFF" default_val="1"/>
</circuit_model>
<circuit_model type="hard_logic" name="CARRY_MUX2" prefix="CARRY_MUX2" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/mux2.v">
<design_technology type="cmos"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="a" lib_name="A0" size="1"/>
<port type="input" prefix="b" lib_name="A1" size="1"/>
<port type="input" prefix="cin" lib_name="S" size="1"/>
<port type="output" prefix="cout" lib_name="Y" size="1"/>
</circuit_model>
<circuit_model type="hard_logic" name="frac_mult_18x18" prefix="frac_mult_18x18" is_default="true" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/frac_mult_18x18.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/frac_mult_18x18.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="A" lib_name="A" size="18"/>
<port type="input" prefix="B" lib_name="B" size="18"/>
<port type="output" prefix="Y" lib_name="Y" size="36"/>
<port type="sram" prefix="mode" lib_name="MODE" size="1" mode_select="true" circuit_model_name="CUSTOM_CCFF" default_val="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="CUSTOM_CCFF" num_regions="1"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_tree_tapbuf"/>
</connection_block>
<switch_block>
<switch name="L1_mux" circuit_model_name="mux_tree_tapbuf"/>
<switch name="L2_mux" circuit_model_name="mux_tree_tapbuf"/>
<switch name="L4_mux" circuit_model_name="mux_tree_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L1" circuit_model_name="chan_segment"/>
<segment name="L2" circuit_model_name="chan_segment"/>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<direct_connection>
<direct name="carry_chain" circuit_model_name="direct_interc"/>
<direct name="scan_chain" circuit_model_name="direct_interc" type="column" x_dir="positive" y_dir="positive"/>
</direct_connection>
<tile_annotations>
<global_port name="clk" is_clock="true" default_val="0">
<tile name="clb" port="clk" x="-1" y="-1"/>
</global_port>
<global_port name="Reset" is_reset="true" default_val="1">
<tile name="clb" port="reset" x="-1" y="-1"/>
</global_port>
</tile_annotations>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<!-- IMPORTANT: must set unused I/Os to operating in INPUT mode !!! -->
<pb_type name="io[physical].iopad" circuit_model_name="EMBEDDED_IO_ISOLN" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb.fle" physical_mode_name="physical"/>
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut4_arith" circuit_model_name="frac_lut4_arith" mode_bits="00"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="CUSTOM_DATAFF" mode_bits="0"/>
<!-- Binding operating pb_type to physical pb_type -->
<!-- Binding operating pb_types in mode 'arithmetic' -->
<pb_type name="clb.fle[arithmetic].soft_adder.adder_lut4" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut4_arith" mode_bits="11"/>
<!-- Binding operating pb_types in mode 'n2_lut3' -->
<pb_type name="clb.fle[n2_lut3].lut3inter.ble3.lut3" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut4_arith" mode_bits="01" physical_pb_type_index_factor="0.5">
<!-- Binding the lut3 to the first 3 inputs of fracturable lut4 -->
<port name="in" physical_mode_port="in[0:2]"/>
<port name="out" physical_mode_port="lut3_out[0:0]" physical_mode_pin_rotate_offset="1"/>
</pb_type>
<pb_type name="clb.fle[n2_lut3].lut3inter.ble3.ff[latch].latch" physical_pb_type_name="clb.fle[physical].fabric.ff" mode_bits="0">
<port name="clk" physical_mode_port="C"/>
</pb_type>
<pb_type name="clb.fle[n2_lut3].lut3inter.ble3.ff[dff].dff" physical_pb_type_name="clb.fle[physical].fabric.ff" mode_bits="0"/>
<pb_type name="clb.fle[n2_lut3].lut3inter.ble3.ff[dffr].dffr" physical_pb_type_name="clb.fle[physical].fabric.ff" mode_bits="0"/>
<pb_type name="clb.fle[n2_lut3].lut3inter.ble3.ff[dffrn].dffrn" physical_pb_type_name="clb.fle[physical].fabric.ff" mode_bits="1">
<port name="RN" physical_mode_port="R"/>
</pb_type>
<!-- Binding operating pb_types in mode 'ble4' -->
<pb_type name="clb.fle[n1_lut4].ble4.lut4" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut4_arith" mode_bits="00">
<!-- Binding the lut4 to the first 4 inputs of fracturable lut4 -->
<port name="in" physical_mode_port="in[0:3]"/>
<port name="out" physical_mode_port="lut4_out"/>
</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.ff[latch].latch" physical_pb_type_name="clb.fle[physical].fabric.ff" mode_bits="0" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0">
<port name="clk" physical_mode_port="C"/>
</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.ff[dff].dff" physical_pb_type_name="clb.fle[physical].fabric.ff" mode_bits="0" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff[dffr].dffr" physical_pb_type_name="clb.fle[physical].fabric.ff" mode_bits="0" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff[dffrn].dffrn" physical_pb_type_name="clb.fle[physical].fabric.ff" mode_bits="1" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0">
<port name="RN" physical_mode_port="R"/>
</pb_type>
<!-- End physical pb_type binding in complex block CLB -->
<!-- physical pb_type binding in complex block dsp -->
<pb_type name="mult_18" physical_mode_name="mult_18x18"/>
<!-- Bind the primitive pb_type in the physical mode to a circuit model -->
<pb_type name="mult_18[mult_18x18].mult_18x18_slice.mult_18x18" circuit_model_name="frac_mult_18x18" mode_bits="0"/>
<pb_type name="mult_18[mult_9x9].mult_9x9_slice.mult_9x9" physical_pb_type_name="mult_18[mult_18x18].mult_18x18_slice.mult_18x18" mode_bits="1" physical_pb_type_index_factor="0">
<port name="A" physical_mode_port="A[0:8]" physical_mode_port_rotate_offset="9"/>
<port name="B" physical_mode_port="B[0:8]" physical_mode_port_rotate_offset="9"/>
<port name="Y" physical_mode_port="Y[0:17]" physical_mode_port_rotate_offset="18"/>
</pb_type>
</pb_type_annotations>
</openfpga_architecture>

View File

@ -0,0 +1,40 @@
L1_SB_MUX_DELAY: 1.44e-9
L2_SB_MUX_DELAY: 1.44e-9
L4_SB_MUX_DELAY: 1.44e-9
CB_MUX_DELAY: 1.38e-9
L1_WIRE_R: 100
L1_WIRE_C: 1e-12
L2_WIRE_R: 100
L2_WIRE_C: 1e-12
L4_WIRE_R: 100
L4_WIRE_C: 1e-12
INPAD_DELAY: 0.11e-9
OUTPAD_DELAY: 0.11e-9
FF_T_SETUP: 0.39e-9
FF_T_CLK2Q: 0.43e-9
LUT_OUT0_TO_FF_D_DELAY: 1.14e-9
LUT_OUT1_TO_FF_D_DELAY: 0.56e-9
LUT_OUT0_TO_FLE_OUT_DELAY: 0.89e-9
FF0_Q_TO_FLE_OUT_DELAY: 0.88e-9
LUT_OUT1_TO_FLE_OUT_DELAY: 0.78e-9
FF1_Q_TO_FLE_OUT_DELAY: 0.89e-9
LUT_CIN2LUT3_OUT_DELAY: 1.21e-9
LUT_CIN2LUT4_OUT_DELAY: 1.21e-9
LUT_CIN2COUT_DELAY: 1.21e-9
LUT_IN2COUT_DELAY: 1.21e-9
LUT3_DELAY: 0.92e-9
LUT3_OUT_TO_FLE_OUT_DELAY: 1.44e-9
LUT4_DELAY: 1.21e-9
LUT4_OUT_TO_FLE_OUT_DELAY: 1.46e-9
ADDER_LUT4_CIN2OUT_DELAY: 1.21e-9
ADDER_LUT4_CIN2COUT_DELAY: 1.21e-9
ADDER_LUT4_IN2OUT_DELAY: 1.21e-9
ADDER_LUT4_IN2COUT_DELAY: 1.21e-9
MULT9_A2Y_DELAY_MAX: 1.523e-9
MULT9_A2Y_DELAY_MIN: 0.776e-9
MULT9_B2Y_DELAY_MAX: 1.523e-9
MULT9_B2Y_DELAY_MIN: 0.776e-9
MULT18_A2Y_DELAY_MAX: 1.523e-9
MULT18_A2Y_DELAY_MIN: 0.776e-9
MULT18_B2Y_DELAY_MAX: 1.523e-9
MULT18_B2Y_DELAY_MIN: 0.776e-9

View File

@ -12,6 +12,7 @@ Please reveal the following architecture features in the names to help quickly s
- aib: If the Advanced Interface Bus (AIB) is used in place of some I/Os.
- multi\_io\_capacity: If I/O capacity is different on each side of FPGAs.
- reduced\_io: If I/Os only appear a certain or multiple sides of FPGAs
- <frac>\_dsp<M>: If the FPGA includes M-bit DSP blocks. The keyword 'frac' is to specify if the DSP block is fracturable to operate in different modes.
- <feature\_size>: The technology node which the delay numbers are extracted from.
Other features are used in naming should be listed here.

View File

@ -0,0 +1,25 @@
//-----------------------------
// 9-bit multiplier
//-----------------------------
module mult_9(
input [0:8] A,
input [0:8] B,
output [0:17] Y
);
assign Y = A * B;
endmodule
//-----------------------------
// 18-bit multiplier
//-----------------------------
module mult_18(
input [0:17] A,
input [0:17] B,
output [0:35] Y
);
assign Y = A * B;
endmodule

View File

@ -0,0 +1,41 @@
//-----------------------------
// 9-bit multiplier
//-----------------------------
module mult_9x9 (
input [0:8] A,
input [0:8] B,
output [0:17] Y
);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
mult_9 #() _TECHMAP_REPLACE_ (
.A (A),
.B (B),
.Y (Y) );
endmodule
//-----------------------------
// 18-bit multiplier
//-----------------------------
module mult_18x18 (
input [0:17] A,
input [0:17] B,
output [0:35] Y
);
parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 0;
parameter B_WIDTH = 0;
parameter Y_WIDTH = 0;
mult_18 #() _TECHMAP_REPLACE_ (
.A (A),
.B (B),
.Y (Y) );
endmodule

View File

@ -0,0 +1,74 @@
# Run VPR for the 'and' design
#--write_rr_graph example_rr_graph.xml
vpr ${VPR_ARCH_FILE} ${VPR_TESTBENCH_BLIF} --device ${OPENFPGA_VPR_DEVICE_LAYOUT} --route_chan_width ${OPENFPGA_VPR_ROUTE_CHAN_WIDTH} --constant_net_method route
# Read OpenFPGA architecture definition
read_openfpga_arch -f ${OPENFPGA_ARCH_FILE}
# Read OpenFPGA simulation settings
read_openfpga_simulation_setting -f ${OPENFPGA_SIM_SETTING_FILE}
# Annotate the OpenFPGA architecture to VPR data base
# to debug use --verbose options
link_openfpga_arch --sort_gsb_chan_node_in_edges
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
# Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing #--verbose
# Write the fabric hierarchy of module graph to a file
# This is used by hierarchical PnR flows
write_fabric_hierarchy --file ./fabric_hierarchy.txt
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
# Strongly recommend it is done after all the fix-up have been applied
repack #--verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --write_file fabric_independent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose
# Write fabric-dependent bitstream
write_fabric_bitstream --file fabric_bitstream.xml --format xml
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file ./SRC --explicit_port_mapping --include_timing --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
# - Must specify the reference benchmark file if you want to output any testbenches
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_verilog_testbench --file ./SRC --reference_benchmark_file_path ${REFERENCE_VERILOG_TESTBENCH} --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini ./SimulationDeck/simulation_deck.ini --include_signal_init --support_icarus_simulator #--explicit_port_mapping
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --file ./SDC
# Write SDC to disable timing for configure ports
write_sdc_disable_timing_configure_ports --file ./SDC/disable_configure_ports.sdc
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file ./SDC_analysis
# Finish and exit OpenFPGA
exit
# Note :
# To run verification at the end of the flow maintain source in ./SRC directory