OpenFPGA/openfpga/src/fpga_spice/spice_grid.cpp

435 lines
18 KiB
C++

/********************************************************************
* This file includes functions to print SPICE subckts for a Grid
* (CLBs, I/Os, heterogeneous blocks etc.)
*******************************************************************/
/* System header files */
#include <vector>
#include <fstream>
/* Headers from vtrutil library */
#include "vtr_geometry.h"
#include "vtr_assert.h"
#include "vtr_log.h"
/* Headers from readarch library */
#include "physical_types.h"
/* Headers from openfpgautil library */
#include "openfpga_digest.h"
#include "openfpga_side_manager.h"
/* Headers from vpr library */
#include "vpr_utils.h"
#include "openfpga_reserved_words.h"
#include "openfpga_naming.h"
#include "openfpga_physical_tile_utils.h"
#include "pb_type_utils.h"
#include "circuit_library_utils.h"
#include "module_manager_utils.h"
#include "spice_constants.h"
#include "spice_writer_utils.h"
#include "spice_subckt_writer.h"
#include "spice_grid.h"
/* begin namespace openfpga */
namespace openfpga {
/********************************************************************
* Print SPICE subckts of a primitive node in the pb_graph_node graph
* This generic function can support all the different types of primitive nodes
* i.e., Look-Up Tables (LUTs), Flip-flops (FFs) and hard logic blocks such as adders.
*
* The SPICE subckt will consist of two parts:
* 1. Logic module of the primitive node
* This module performs the logic function of the block
* 2. Memory module of the primitive node
* This module stores the configuration bits for the logic module
* if the logic module is a programmable resource, such as LUT
*
* SPICE subckt structure:
*
* Primitive block
* +---------------------------------------+
* | |
* | +---------+ +---------+ |
* in |----->| |--->| |<------|configuration lines
* | | Logic |... | Memory | |
* out|<-----| |--->| | |
* | +---------+ +---------+ |
* | |
* +---------------------------------------+
*
*******************************************************************/
static
void print_spice_primitive_block(NetlistManager& netlist_manager,
const ModuleManager& module_manager,
const std::string& subckt_dir,
t_pb_graph_node* primitive_pb_graph_node,
const bool& verbose) {
/* Ensure a valid pb_graph_node */
if (nullptr == primitive_pb_graph_node) {
VTR_LOGF_ERROR(__FILE__, __LINE__,
"Invalid primitive_pb_graph_node!\n");
exit(1);
}
/* Give a name to the Verilog netlist */
/* Create the file name for Verilog */
std::string spice_fname(subckt_dir
+ generate_logical_tile_netlist_name(std::string(), primitive_pb_graph_node, std::string(SPICE_NETLIST_FILE_POSTFIX))
);
VTR_LOG("Writing SPICE netlist '%s' for primitive pb_type '%s' ...",
spice_fname.c_str(), primitive_pb_graph_node->pb_type->name);
VTR_LOGV(verbose, "\n");
/* Create the file stream */
std::fstream fp;
fp.open(spice_fname, std::fstream::out | std::fstream::trunc);
check_file_stream(spice_fname.c_str(), fp);
print_spice_file_header(fp, std::string("SPICE subckts for primitive pb_type: " + std::string(primitive_pb_graph_node->pb_type->name)));
/* Generate the module name for this primitive pb_graph_node*/
std::string primitive_module_name = generate_physical_block_module_name(primitive_pb_graph_node->pb_type);
/* Create a module of the primitive LUT and register it to module manager */
ModuleId primitive_module = module_manager.find_module(primitive_module_name);
/* Ensure that the module has been created and thus unique! */
VTR_ASSERT(true == module_manager.valid_module_id(primitive_module));
VTR_LOGV(verbose,
"Writing SPICE codes of logical tile primitive block '%s'...",
module_manager.module_name(primitive_module).c_str());
/* Write the spice module */
write_spice_subckt_to_file(fp, module_manager, primitive_module);
/* Close file handler */
fp.close();
/* Add fname to the netlist name list */
NetlistId nlist_id = netlist_manager.add_netlist(spice_fname);
VTR_ASSERT(NetlistId::INVALID() != nlist_id);
netlist_manager.set_netlist_type(nlist_id, NetlistManager::LOGIC_BLOCK_NETLIST);
VTR_LOGV(verbose, "Done\n");
}
/********************************************************************
* Print SPICE subckts of physical blocks inside a grid (CLB, I/O. etc.)
* This function will traverse the graph of complex logic block (t_pb_graph_node)
* in a recursive way, using a Depth First Search (DFS) algorithm.
* As such, primitive physical blocks (LUTs, FFs, etc.), leaf node of the pb_graph
* will be printed out first, while the top-level will be printed out in the last
*
* Note: this function will print a unique SPICE subckt for each type of
* t_pb_graph_node, i.e., t_pb_type, in the graph, in order to enable highly
* hierarchical Verilog organization as well as simplify the Verilog file sizes.
*
* Note: DFS is the right way. Do NOT use BFS.
* DFS can guarantee that all the sub-modules can be registered properly
* to its parent in module manager
*******************************************************************/
static
void rec_print_spice_logical_tile(NetlistManager& netlist_manager,
const ModuleManager& module_manager,
const VprDeviceAnnotation& device_annotation,
const std::string& subckt_dir,
t_pb_graph_node* physical_pb_graph_node,
const bool& verbose) {
/* Check cur_pb_graph_node*/
if (nullptr == physical_pb_graph_node) {
VTR_LOGF_ERROR(__FILE__, __LINE__,
"Invalid physical_pb_graph_node\n");
exit(1);
}
/* Get the pb_type definition related to the node */
t_pb_type* physical_pb_type = physical_pb_graph_node->pb_type;
/* Find the mode that physical implementation of a pb_type */
t_mode* physical_mode = device_annotation.physical_mode(physical_pb_type);
/* For non-leaf node in the pb_type graph:
* Recursively Depth-First Generate all the child pb_type at the level
*/
if (false == is_primitive_pb_type(physical_pb_type)) {
for (int ipb = 0; ipb < physical_mode->num_pb_type_children; ++ipb) {
/* Go recursive to visit the children */
rec_print_spice_logical_tile(netlist_manager,
module_manager, device_annotation,
subckt_dir,
&(physical_pb_graph_node->child_pb_graph_nodes[physical_mode->index][ipb][0]),
verbose);
}
}
/* For leaf node, a primitive SPICE subckt will be generated.
* Note that the primitive may be mapped to a standard cell, we force to use
* explict port mapping. This aims to avoid any port sequence issues!!!
*/
if (true == is_primitive_pb_type(physical_pb_type)) {
print_spice_primitive_block(netlist_manager,
module_manager,
subckt_dir,
physical_pb_graph_node,
verbose);
/* Finish for primitive node, return */
return;
}
/* Give a name to the Verilog netlist */
/* Create the file name for Verilog */
std::string spice_fname(subckt_dir
+ generate_logical_tile_netlist_name(std::string(), physical_pb_graph_node, std::string(SPICE_NETLIST_FILE_POSTFIX))
);
VTR_LOG("Writing SPICE netlist '%s' for pb_type '%s' ...",
spice_fname.c_str(), physical_pb_type->name);
VTR_LOGV(verbose, "\n");
/* Create the file stream */
std::fstream fp;
fp.open(spice_fname, std::fstream::out | std::fstream::trunc);
check_file_stream(spice_fname.c_str(), fp);
print_spice_file_header(fp, std::string("SPICE subckts for pb_type: " + std::string(physical_pb_type->name)));
/* Generate the name of the SPICE subckt for this pb_type */
std::string pb_module_name = generate_physical_block_module_name(physical_pb_type);
/* Register the SPICE subckt in module manager */
ModuleId pb_module = module_manager.find_module(pb_module_name);
VTR_ASSERT(true == module_manager.valid_module_id(pb_module));
VTR_LOGV(verbose,
"Writing SPICE codes of pb_type '%s'...",
module_manager.module_name(pb_module).c_str());
/* Comment lines */
print_spice_comment(fp, std::string("BEGIN Physical programmable logic block SPICE subckt: " + std::string(physical_pb_type->name)));
/* Write the spice module */
write_spice_subckt_to_file(fp, module_manager, pb_module);
print_spice_comment(fp, std::string("END Physical programmable logic block SPICE subckt: " + std::string(physical_pb_type->name)));
/* Close file handler */
fp.close();
/* Add fname to the netlist name list */
NetlistId nlist_id = netlist_manager.add_netlist(spice_fname);
VTR_ASSERT(NetlistId::INVALID() != nlist_id);
netlist_manager.set_netlist_type(nlist_id, NetlistManager::LOGIC_BLOCK_NETLIST);
VTR_LOGV(verbose, "Done\n");
}
/*****************************************************************************
* This function will create a Verilog file and print out a Verilog netlist
* for the logical tile (pb_graph/pb_type)
*****************************************************************************/
static
void print_spice_logical_tile_netlist(NetlistManager& netlist_manager,
const ModuleManager& module_manager,
const VprDeviceAnnotation& device_annotation,
const std::string& subckt_dir,
t_pb_graph_node* pb_graph_head,
const bool& verbose) {
VTR_LOG("Writing Verilog netlists for logic tile '%s' ...",
pb_graph_head->pb_type->name);
VTR_LOG("\n");
/* Print SPICE subckts for all the pb_types/pb_graph_nodes
* use a Depth-First Search Algorithm to print the sub-modules
* Note: DFS is the right way. Do NOT use BFS.
* DFS can guarantee that all the sub-modules can be registered properly
* to its parent in module manager
*/
/* Print SPICE subckts starting from the top-level pb_type/pb_graph_node, and traverse the graph in a recursive way */
rec_print_spice_logical_tile(netlist_manager,
module_manager,
device_annotation,
subckt_dir,
pb_graph_head,
verbose);
VTR_LOG("Done\n");
VTR_LOG("\n");
}
/*****************************************************************************
* This function will create a Verilog file and print out a Verilog netlist
* for a type of physical block
*
* For IO blocks:
* The param 'border_side' is required, which is specify which side of fabric
* the I/O block locates at.
*****************************************************************************/
static
void print_spice_physical_tile_netlist(NetlistManager& netlist_manager,
const ModuleManager& module_manager,
const std::string& subckt_dir,
t_physical_tile_type_ptr phy_block_type,
const e_side& border_side) {
/* Check code: if this is an IO block, the border side MUST be valid */
if (true == is_io_type(phy_block_type)) {
VTR_ASSERT(NUM_SIDES != border_side);
}
/* Give a name to the Verilog netlist */
/* Create the file name for Verilog */
std::string spice_fname(subckt_dir
+ generate_grid_block_netlist_name(std::string(GRID_MODULE_NAME_PREFIX) + std::string(phy_block_type->name),
is_io_type(phy_block_type),
border_side,
std::string(SPICE_NETLIST_FILE_POSTFIX))
);
/* Echo status */
if (true == is_io_type(phy_block_type)) {
SideManager side_manager(border_side);
VTR_LOG("Writing SPICE Netlist '%s' for physical tile '%s' at %s side ...",
spice_fname.c_str(), phy_block_type->name,
side_manager.c_str());
} else {
VTR_LOG("Writing SPICE Netlist '%s' for physical_tile '%s'...",
spice_fname.c_str(), phy_block_type->name);
}
/* Create the file stream */
std::fstream fp;
fp.open(spice_fname, std::fstream::out | std::fstream::trunc);
check_file_stream(spice_fname.c_str(), fp);
print_spice_file_header(fp, std::string("SPICE subckts for physical tile: " + std::string(phy_block_type->name) + "]"));
/* Create a Verilog Module for the top-level physical block, and add to module manager */
std::string grid_module_name = generate_grid_block_module_name(std::string(GRID_SPICE_FILE_NAME_PREFIX), std::string(phy_block_type->name), is_io_type(phy_block_type), border_side);
ModuleId grid_module = module_manager.find_module(grid_module_name);
VTR_ASSERT(true == module_manager.valid_module_id(grid_module));
/* Write the spice module */
print_spice_comment(fp, std::string("BEGIN Grid SPICE subckt: " + module_manager.module_name(grid_module)));
write_spice_subckt_to_file(fp, module_manager, grid_module);
print_spice_comment(fp, std::string("END Grid SPICE subckt: " + module_manager.module_name(grid_module)));
/* Add an empty line as a splitter */
fp << std::endl;
/* Close file handler */
fp.close();
/* Add fname to the netlist name list */
NetlistId nlist_id = netlist_manager.add_netlist(spice_fname);
VTR_ASSERT(NetlistId::INVALID() != nlist_id);
netlist_manager.set_netlist_type(nlist_id, NetlistManager::LOGIC_BLOCK_NETLIST);
VTR_LOG("Done\n");
}
/*****************************************************************************
* Create logic block modules in a compact way:
* 1. Only one module for each I/O on each border side (IO_TYPE)
* 2. Only one module for each CLB (FILL_TYPE)
* 3. Only one module for each heterogeneous block
****************************************************************************/
void print_spice_grids(NetlistManager& netlist_manager,
const ModuleManager& module_manager,
const DeviceContext& device_ctx,
const VprDeviceAnnotation& device_annotation,
const std::string& subckt_dir,
const bool& verbose) {
/* Create a vector to contain all the Verilog netlist names that have been generated in this function */
std::vector<std::string> netlist_names;
/* Enumerate the types of logical tiles, and build a module for each
* Write modules for all the pb_types/pb_graph_nodes
* use a Depth-First Search Algorithm to print the sub-modules
* Note: DFS is the right way. Do NOT use BFS.
* DFS can guarantee that all the sub-modules can be registered properly
* to its parent in module manager
*/
VTR_LOG("Writing logical tiles...");
VTR_LOGV(verbose, "\n");
for (const t_logical_block_type& logical_tile : device_ctx.logical_block_types) {
/* Bypass empty pb_graph */
if (nullptr == logical_tile.pb_graph_head) {
continue;
}
print_spice_logical_tile_netlist(netlist_manager,
module_manager,
device_annotation,
subckt_dir,
logical_tile.pb_graph_head,
verbose);
}
VTR_LOG("Writing logical tiles...");
VTR_LOG("Done\n");
VTR_LOG("\n");
/* Enumerate the types of physical tiles
* Use the logical tile module to build the physical tiles
*/
VTR_LOG("Building physical tiles...");
VTR_LOGV(verbose, "\n");
for (const t_physical_tile_type& physical_tile : device_ctx.physical_tile_types) {
/* Bypass empty type or nullptr */
if (true == is_empty_type(&physical_tile)) {
continue;
} else if (true == is_io_type(&physical_tile)) {
/* Special for I/O block:
* We will search the grids and see where the I/O blocks are located:
* - If a I/O block locates on border sides of FPGA fabric:
* i.e., one or more from {TOP, RIGHT, BOTTOM, LEFT},
* we will generate one module for each border side
* - If a I/O block locates in the center of FPGA fabric:
* we will generate one module with NUM_SIDES (same treatment as regular grids)
*/
std::set<e_side> io_type_sides = find_physical_io_tile_located_sides(device_ctx.grid,
&physical_tile);
for (const e_side& io_type_side : io_type_sides) {
print_spice_physical_tile_netlist(netlist_manager,
module_manager,
subckt_dir,
&physical_tile,
io_type_side);
}
continue;
} else {
/* For CLB and heterogenenous blocks */
print_spice_physical_tile_netlist(netlist_manager,
module_manager,
subckt_dir,
&physical_tile,
NUM_SIDES);
}
}
VTR_LOG("Building physical tiles...");
VTR_LOG("Done\n");
VTR_LOG("\n");
/* Output a header file for all the logic blocks */
/*
std::string grid_spice_fname(LOGIC_BLOCK_VERILOG_FILE_NAME);
VTR_LOG("Writing header file for grid SPICE subckts '%s' ...",
grid_spice_fname.c_str());
print_spice_netlist_include_header_file(netlist_names,
subckt_dir.c_str(),
grid_spice_fname.c_str());
VTR_LOG("Done\n");
*/
}
} /* end namespace openfpga */