OpenFPGA/openfpga/src/fpga_sdc/analysis_sdc_routing_writer...

594 lines
24 KiB
C++

/********************************************************************
* This file includes functions that are used to output a SDC file
* that constrain routing modules of a FPGA fabric (P&Red netlist)
* using a benchmark
*******************************************************************/
#include <map>
/* Headers from vtrutil library */
#include "vtr_assert.h"
/* Headers from openfpgautil library */
#include "analysis_sdc_routing_writer.h"
#include "analysis_sdc_writer_utils.h"
#include "build_routing_module_utils.h"
#include "openfpga_digest.h"
#include "openfpga_naming.h"
#include "openfpga_port.h"
#include "openfpga_reserved_words.h"
#include "openfpga_rr_graph_utils.h"
#include "openfpga_side_manager.h"
#include "sdc_writer_utils.h"
/* begin namespace openfpga */
namespace openfpga {
/********************************************************************
* This function will disable
* 1. all the unused port (unmapped by a benchmark) of a connection block
* 2. all the unused inputs (unmapped by a benchmark) of routing multiplexers
* in a connection block
*******************************************************************/
static void print_analysis_sdc_disable_cb_unused_resources(
std::fstream& fp, const AtomContext& atom_ctx,
const ModuleManager& module_manager,
const VprDeviceAnnotation& device_annotation, const DeviceGrid& grids,
const RRGraphView& rr_graph, const VprRoutingAnnotation& routing_annotation,
const DeviceRRGSB& device_rr_gsb, const RRGSB& rr_gsb,
const t_rr_type& cb_type, const bool& compact_routing_hierarchy) {
/* Validate file stream */
valid_file_stream(fp);
vtr::Point<size_t> gsb_coordinate(rr_gsb.get_cb_x(cb_type),
rr_gsb.get_cb_y(cb_type));
std::string cb_instance_name =
generate_connection_block_module_name(cb_type, gsb_coordinate);
/* If we use the compact routing hierarchy, we need to find the module name
* !*/
vtr::Point<size_t> cb_coordinate(rr_gsb.get_cb_x(cb_type),
rr_gsb.get_cb_y(cb_type));
if (true == compact_routing_hierarchy) {
vtr::Point<size_t> cb_coord(rr_gsb.get_x(), rr_gsb.get_y());
/* Note: use GSB coordinate when inquire for unique modules!!! */
const RRGSB& unique_mirror =
device_rr_gsb.get_cb_unique_module(cb_type, cb_coord);
cb_coordinate.set_x(unique_mirror.get_cb_x(cb_type));
cb_coordinate.set_y(unique_mirror.get_cb_y(cb_type));
}
std::string cb_module_name =
generate_connection_block_module_name(cb_type, cb_coordinate);
ModuleId cb_module = module_manager.find_module(cb_module_name);
VTR_ASSERT(true == module_manager.valid_module_id(cb_module));
/* Print comments */
fp << "##################################################" << std::endl;
fp << "# Disable timing for Connection block " << cb_module_name << std::endl;
fp << "##################################################" << std::endl;
/* Disable all the input port (routing tracks), which are not used by
* benchmark */
for (size_t itrack = 0; itrack < rr_gsb.get_cb_chan_width(cb_type);
++itrack) {
const RRNodeId& chan_node =
rr_gsb.get_chan_node(rr_gsb.get_cb_chan_side(cb_type), itrack);
/* Check if this node is used by benchmark */
if (false ==
is_rr_node_to_be_disable_for_analysis(routing_annotation, chan_node)) {
continue;
}
/* Disable both input of the routing track if it is not used! */
std::string port_name =
generate_cb_module_track_port_name(cb_type, IN_PORT, 0 == itrack % 2);
/* Ensure we have this port in the module! */
ModulePortId module_port =
module_manager.find_module_port(cb_module, port_name);
VTR_ASSERT(true ==
module_manager.valid_module_port_id(cb_module, module_port));
BasicPort chan_port(
module_manager.module_port(cb_module, module_port).get_name(), itrack / 2,
itrack / 2);
fp << "set_disable_timing ";
fp << cb_instance_name << "/";
fp << generate_sdc_port(chan_port);
fp << std::endl;
}
/* Disable all the output port (routing tracks), which are not used by
* benchmark */
for (size_t itrack = 0; itrack < rr_gsb.get_cb_chan_width(cb_type);
++itrack) {
const RRNodeId& chan_node =
rr_gsb.get_chan_node(rr_gsb.get_cb_chan_side(cb_type), itrack);
/* Check if this node is used by benchmark */
if (false ==
is_rr_node_to_be_disable_for_analysis(routing_annotation, chan_node)) {
continue;
}
/* Disable both input of the routing track if it is not used! */
std::string port_name =
generate_cb_module_track_port_name(cb_type, OUT_PORT, 0 == itrack % 2);
/* Ensure we have this port in the module! */
ModulePortId module_port =
module_manager.find_module_port(cb_module, port_name);
VTR_ASSERT(true ==
module_manager.valid_module_port_id(cb_module, module_port));
BasicPort chan_port(
module_manager.module_port(cb_module, module_port).get_name(), itrack / 2,
itrack / 2);
fp << "set_disable_timing ";
fp << cb_instance_name << "/";
fp << generate_sdc_port(chan_port);
fp << std::endl;
}
/* Build a map between mux_instance name and net_num */
std::map<std::string, AtomNetId> mux_instance_to_net_map;
/* Disable all the output port (grid input pins), which are not used by
* benchmark */
std::vector<enum e_side> cb_sides = rr_gsb.get_cb_ipin_sides(cb_type);
for (size_t side = 0; side < cb_sides.size(); ++side) {
enum e_side cb_ipin_side = cb_sides[side];
for (size_t inode = 0; inode < rr_gsb.get_num_ipin_nodes(cb_ipin_side);
++inode) {
RRNodeId ipin_node = rr_gsb.get_ipin_node(cb_ipin_side, inode);
/* Find the MUX instance that drives the IPIN! */
std::string mux_instance_name = generate_cb_mux_instance_name(
CONNECTION_BLOCK_MUX_INSTANCE_PREFIX,
get_rr_graph_single_node_side(rr_graph, ipin_node), inode,
std::string(""));
mux_instance_to_net_map[mux_instance_name] =
atom_ctx.lookup.atom_net(routing_annotation.rr_node_net(ipin_node));
if (false == is_rr_node_to_be_disable_for_analysis(routing_annotation,
ipin_node)) {
continue;
}
if (0 ==
std::distance(rr_graph.node_configurable_in_edges(ipin_node).begin(),
rr_graph.node_configurable_in_edges(ipin_node).end())) {
continue;
}
std::string port_name = generate_cb_module_grid_port_name(
cb_ipin_side, grids, device_annotation, rr_graph, ipin_node);
/* Find the port in unique mirror! */
if (true == compact_routing_hierarchy) {
/* Note: use GSB coordinate when inquire for unique modules!!! */
vtr::Point<size_t> cb_coord(rr_gsb.get_x(), rr_gsb.get_y());
const RRGSB& unique_mirror =
device_rr_gsb.get_cb_unique_module(cb_type, cb_coord);
const RRNodeId& unique_mirror_ipin_node =
unique_mirror.get_ipin_node(cb_ipin_side, inode);
port_name = generate_cb_module_grid_port_name(
cb_ipin_side, grids, device_annotation, rr_graph,
unique_mirror_ipin_node);
}
/* Ensure we have this port in the module! */
ModulePortId module_port =
module_manager.find_module_port(cb_module, port_name);
VTR_ASSERT(true ==
module_manager.valid_module_port_id(cb_module, module_port));
fp << "set_disable_timing ";
fp << cb_instance_name << "/";
fp << generate_sdc_port(
module_manager.module_port(cb_module, module_port));
fp << std::endl;
}
}
/* Disable all the unused inputs of routing multiplexers, which are not used
* by benchmark Here, we start from each input of the Connection Blocks, and
* traverse forward to the sink port of the module net whose source is the
* input We will find the instance name which is the parent of the sink port,
* and search the net id through the instance_name_to_net_map The the net id
* does not match the net id of this input, we will disable the sink port!
*
* cb_module
* +-----------------------
* | MUX instance A
* | +-----------
* input_port--->|--+---x-->| sink port (disable!)
* | | +----------
* | | MUX instance B
* | | +----------
* | +------>| sink port (do not disable!)
*/
for (size_t itrack = 0; itrack < rr_gsb.get_cb_chan_width(cb_type);
++itrack) {
const RRNodeId& chan_node =
rr_gsb.get_chan_node(rr_gsb.get_cb_chan_side(cb_type), itrack);
/* Disable both input of the routing track if it is not used! */
std::string port_name =
generate_cb_module_track_port_name(cb_type, OUT_PORT, 0 == itrack % 2);
/* Ensure we have this port in the module! */
ModulePortId module_port =
module_manager.find_module_port(cb_module, port_name);
VTR_ASSERT(true ==
module_manager.valid_module_port_id(cb_module, module_port));
AtomNetId mapped_atom_net =
atom_ctx.lookup.atom_net(routing_annotation.rr_node_net(chan_node));
disable_analysis_module_input_pin_net_sinks(
fp, module_manager, cb_module, cb_instance_name, module_port, itrack / 2,
mapped_atom_net, mux_instance_to_net_map);
}
}
/********************************************************************
* Iterate over all the connection blocks in a device
* and disable unused ports for each of them
*******************************************************************/
static void print_analysis_sdc_disable_unused_cb_ports(
std::fstream& fp, const AtomContext& atom_ctx,
const ModuleManager& module_manager,
const VprDeviceAnnotation& device_annotation, const DeviceGrid& grids,
const RRGraphView& rr_graph, const VprRoutingAnnotation& routing_annotation,
const DeviceRRGSB& device_rr_gsb, const t_rr_type& cb_type,
const bool& compact_routing_hierarchy) {
/* Build unique X-direction connection block modules */
vtr::Point<size_t> cb_range = device_rr_gsb.get_gsb_range();
for (size_t ix = 0; ix < cb_range.x(); ++ix) {
for (size_t iy = 0; iy < cb_range.y(); ++iy) {
/* Check if the connection block exists in the device!
* Some of them do NOT exist due to heterogeneous blocks (height > 1)
* We will skip those modules
*/
const RRGSB& rr_gsb = device_rr_gsb.get_gsb(ix, iy);
if (false == rr_gsb.is_cb_exist(cb_type)) {
continue;
}
print_analysis_sdc_disable_cb_unused_resources(
fp, atom_ctx, module_manager, device_annotation, grids, rr_graph,
routing_annotation, device_rr_gsb, rr_gsb, cb_type,
compact_routing_hierarchy);
}
}
}
/********************************************************************
* Iterate over all the connection blocks in a device
* and disable unused ports for each of them
*******************************************************************/
void print_analysis_sdc_disable_unused_cbs(
std::fstream& fp, const AtomContext& atom_ctx,
const ModuleManager& module_manager,
const VprDeviceAnnotation& device_annotation, const DeviceGrid& grids,
const RRGraphView& rr_graph, const VprRoutingAnnotation& routing_annotation,
const DeviceRRGSB& device_rr_gsb, const bool& compact_routing_hierarchy) {
print_analysis_sdc_disable_unused_cb_ports(
fp, atom_ctx, module_manager, device_annotation, grids, rr_graph,
routing_annotation, device_rr_gsb, CHANX, compact_routing_hierarchy);
print_analysis_sdc_disable_unused_cb_ports(
fp, atom_ctx, module_manager, device_annotation, grids, rr_graph,
routing_annotation, device_rr_gsb, CHANY, compact_routing_hierarchy);
}
/********************************************************************
* This function will disable
* 1. all the unused port (unmapped by a benchmark) of a switch block
* 2. all the unused inputs (unmapped by a benchmark) of routing multiplexers
* in a switch block
*******************************************************************/
static void print_analysis_sdc_disable_sb_unused_resources(
std::fstream& fp, const AtomContext& atom_ctx,
const ModuleManager& module_manager,
const VprDeviceAnnotation& device_annotation, const DeviceGrid& grids,
const RRGraphView& rr_graph, const VprRoutingAnnotation& routing_annotation,
const DeviceRRGSB& device_rr_gsb, const RRGSB& rr_gsb,
const bool& compact_routing_hierarchy) {
/* Validate file stream */
valid_file_stream(fp);
vtr::Point<size_t> gsb_coordinate(rr_gsb.get_sb_x(), rr_gsb.get_sb_y());
std::string sb_instance_name =
generate_switch_block_module_name(gsb_coordinate);
/* If we use the compact routing hierarchy, we need to find the module name
* !*/
vtr::Point<size_t> sb_coordinate(rr_gsb.get_sb_x(), rr_gsb.get_sb_y());
if (true == compact_routing_hierarchy) {
vtr::Point<size_t> sb_coord(rr_gsb.get_x(), rr_gsb.get_y());
/* Note: use GSB coordinate when inquire for unique modules!!! */
const RRGSB& unique_mirror = device_rr_gsb.get_sb_unique_module(sb_coord);
sb_coordinate.set_x(unique_mirror.get_sb_x());
sb_coordinate.set_y(unique_mirror.get_sb_y());
}
std::string sb_module_name = generate_switch_block_module_name(sb_coordinate);
ModuleId sb_module = module_manager.find_module(sb_module_name);
VTR_ASSERT(true == module_manager.valid_module_id(sb_module));
/* Print comments */
fp << "##################################################" << std::endl;
fp << "# Disable timing for Switch block " << sb_module_name << std::endl;
fp << "##################################################" << std::endl;
/* Build a map between mux_instance name and net_num */
std::map<std::string, AtomNetId> mux_instance_to_net_map;
/* Disable all the input/output port (routing tracks), which are not used by
* benchmark */
for (size_t side = 0; side < rr_gsb.get_num_sides(); ++side) {
SideManager side_manager(side);
for (size_t itrack = 0;
itrack < rr_gsb.get_chan_width(side_manager.get_side()); ++itrack) {
const RRNodeId& chan_node =
rr_gsb.get_chan_node(side_manager.get_side(), itrack);
std::string port_name = generate_sb_module_track_port_name(
rr_graph.node_type(
rr_gsb.get_chan_node(side_manager.get_side(), itrack)),
side_manager.get_side(),
rr_gsb.get_chan_node_direction(side_manager.get_side(), itrack));
if (true == compact_routing_hierarchy) {
/* Note: use GSB coordinate when inquire for unique modules!!! */
vtr::Point<size_t> sb_coord(rr_gsb.get_x(), rr_gsb.get_y());
const RRGSB& unique_mirror =
device_rr_gsb.get_sb_unique_module(sb_coord);
port_name = generate_sb_module_track_port_name(
rr_graph.node_type(
unique_mirror.get_chan_node(side_manager.get_side(), itrack)),
side_manager.get_side(),
unique_mirror.get_chan_node_direction(side_manager.get_side(),
itrack));
}
/* Ensure we have this port in the module! */
ModulePortId module_port =
module_manager.find_module_port(sb_module, port_name);
VTR_ASSERT(true ==
module_manager.valid_module_port_id(sb_module, module_port));
/* Cache the net name for routing tracks which are outputs of the switch
* block */
if (OUT_PORT ==
rr_gsb.get_chan_node_direction(side_manager.get_side(), itrack)) {
/* Generate the name of mux instance related to this output node */
std::string mux_instance_name = generate_sb_memory_instance_name(
SWITCH_BLOCK_MUX_INSTANCE_PREFIX, side_manager.get_side(), itrack,
std::string(""));
mux_instance_to_net_map[mux_instance_name] =
atom_ctx.lookup.atom_net(routing_annotation.rr_node_net(chan_node));
}
/* Check if this node is used by benchmark */
if (false == is_rr_node_to_be_disable_for_analysis(routing_annotation,
chan_node)) {
continue;
}
BasicPort sb_port(
module_manager.module_port(sb_module, module_port).get_name(),
itrack / 2, itrack / 2);
fp << "set_disable_timing ";
fp << sb_instance_name << "/";
fp << generate_sdc_port(sb_port);
fp << std::endl;
}
}
/* Disable all the input port (grid output pins), which are not used by
* benchmark */
for (size_t side = 0; side < rr_gsb.get_num_sides(); ++side) {
SideManager side_manager(side);
for (size_t inode = 0;
inode < rr_gsb.get_num_opin_nodes(side_manager.get_side()); ++inode) {
const RRNodeId& opin_node =
rr_gsb.get_opin_node(side_manager.get_side(), inode);
std::string port_name = generate_sb_module_grid_port_name(
side_manager.get_side(),
get_rr_graph_single_node_side(rr_graph, opin_node), grids,
device_annotation, rr_graph, opin_node);
if (true == compact_routing_hierarchy) {
/* Note: use GSB coordinate when inquire for unique modules!!! */
vtr::Point<size_t> sb_coord(rr_gsb.get_x(), rr_gsb.get_y());
const RRGSB& unique_mirror =
device_rr_gsb.get_sb_unique_module(sb_coord);
const RRNodeId& unique_mirror_opin_node =
unique_mirror.get_opin_node(side_manager.get_side(), inode);
port_name = generate_sb_module_grid_port_name(
side_manager.get_side(),
get_rr_graph_single_node_side(rr_graph, unique_mirror_opin_node),
grids, device_annotation, rr_graph, unique_mirror_opin_node);
}
/* Ensure we have this port in the module! */
ModulePortId module_port =
module_manager.find_module_port(sb_module, port_name);
VTR_ASSERT(true ==
module_manager.valid_module_port_id(sb_module, module_port));
/* Check if this node is used by benchmark */
if (false == is_rr_node_to_be_disable_for_analysis(routing_annotation,
opin_node)) {
continue;
}
fp << "set_disable_timing ";
fp << sb_instance_name << "/";
fp << generate_sdc_port(
module_manager.module_port(sb_module, module_port));
fp << std::endl;
}
}
/* Disable all the unused inputs of routing multiplexers, which are not used
* by benchmark Here, we start from each input of the Switch Blocks, and
* traverse forward to the sink port of the module net whose source is the
* input We will find the instance name which is the parent of the sink port,
* and search the net id through the instance_name_to_net_map The the net id
* does not match the net id of this input, we will disable the sink port!
*
* sb_module
* +-----------------------
* | MUX instance A
* | +-----------
* input_port--->|--+---x-->| sink port (disable! net_id = Y)
* (net_id = X) | | +----------
* | | MUX instance B
* | | +----------
* | +------>| sink port (do not disable! net_id = X)
*
* Because the input ports of a SB module come from
* 1. Grid output pins
* 2. routing tracks
* We will walk through these ports and do conditionally disable_timing
*/
/* Iterate over input ports coming from grid output pins */
for (size_t side = 0; side < rr_gsb.get_num_sides(); ++side) {
SideManager side_manager(side);
for (size_t inode = 0;
inode < rr_gsb.get_num_opin_nodes(side_manager.get_side()); ++inode) {
const RRNodeId& opin_node =
rr_gsb.get_opin_node(side_manager.get_side(), inode);
std::string port_name = generate_sb_module_grid_port_name(
side_manager.get_side(),
get_rr_graph_single_node_side(rr_graph, opin_node), grids,
device_annotation, rr_graph, opin_node);
if (true == compact_routing_hierarchy) {
/* Note: use GSB coordinate when inquire for unique modules!!! */
vtr::Point<size_t> sb_coord(rr_gsb.get_x(), rr_gsb.get_y());
const RRGSB& unique_mirror =
device_rr_gsb.get_sb_unique_module(sb_coord);
const RRNodeId& unique_mirror_opin_node =
unique_mirror.get_opin_node(side_manager.get_side(), inode);
port_name = generate_sb_module_grid_port_name(
side_manager.get_side(),
get_rr_graph_single_node_side(rr_graph, unique_mirror_opin_node),
grids, device_annotation, rr_graph, unique_mirror_opin_node);
}
/* Ensure we have this port in the module! */
ModulePortId module_port =
module_manager.find_module_port(sb_module, port_name);
VTR_ASSERT(true ==
module_manager.valid_module_port_id(sb_module, module_port));
AtomNetId mapped_atom_net =
atom_ctx.lookup.atom_net(routing_annotation.rr_node_net(opin_node));
disable_analysis_module_input_port_net_sinks(
fp, module_manager, sb_module, sb_instance_name, module_port,
mapped_atom_net, mux_instance_to_net_map);
}
}
/* Iterate over input ports coming from routing tracks */
for (size_t side = 0; side < rr_gsb.get_num_sides(); ++side) {
SideManager side_manager(side);
for (size_t itrack = 0;
itrack < rr_gsb.get_chan_width(side_manager.get_side()); ++itrack) {
/* Skip output ports, they have already been disabled or not */
if (OUT_PORT ==
rr_gsb.get_chan_node_direction(side_manager.get_side(), itrack)) {
continue;
}
const RRNodeId& chan_node =
rr_gsb.get_chan_node(side_manager.get_side(), itrack);
std::string port_name = generate_sb_module_track_port_name(
rr_graph.node_type(chan_node), side_manager.get_side(),
rr_gsb.get_chan_node_direction(side_manager.get_side(), itrack));
if (true == compact_routing_hierarchy) {
/* Note: use GSB coordinate when inquire for unique modules!!! */
vtr::Point<size_t> sb_coord(rr_gsb.get_x(), rr_gsb.get_y());
const RRGSB& unique_mirror =
device_rr_gsb.get_sb_unique_module(sb_coord);
const RRNodeId& unique_mirror_chan_node =
unique_mirror.get_chan_node(side_manager.get_side(), itrack);
port_name = generate_sb_module_track_port_name(
rr_graph.node_type(unique_mirror_chan_node), side_manager.get_side(),
unique_mirror.get_chan_node_direction(side_manager.get_side(),
itrack));
}
/* Ensure we have this port in the module! */
ModulePortId module_port =
module_manager.find_module_port(sb_module, port_name);
VTR_ASSERT(true ==
module_manager.valid_module_port_id(sb_module, module_port));
AtomNetId mapped_atom_net =
atom_ctx.lookup.atom_net(routing_annotation.rr_node_net(chan_node));
disable_analysis_module_input_pin_net_sinks(
fp, module_manager, sb_module, sb_instance_name, module_port,
itrack / 2, mapped_atom_net, mux_instance_to_net_map);
}
}
}
/********************************************************************
* Iterate over all the connection blocks in a device
* and disable unused ports for each of them
*******************************************************************/
void print_analysis_sdc_disable_unused_sbs(
std::fstream& fp, const AtomContext& atom_ctx,
const ModuleManager& module_manager,
const VprDeviceAnnotation& device_annotation, const DeviceGrid& grids,
const RRGraphView& rr_graph, const VprRoutingAnnotation& routing_annotation,
const DeviceRRGSB& device_rr_gsb, const bool& compact_routing_hierarchy) {
/* Build unique X-direction connection block modules */
vtr::Point<size_t> sb_range = device_rr_gsb.get_gsb_range();
for (size_t ix = 0; ix < sb_range.x(); ++ix) {
for (size_t iy = 0; iy < sb_range.y(); ++iy) {
/* Check if the connection block exists in the device!
* Some of them do NOT exist due to heterogeneous blocks (height > 1)
* We will skip those modules
*/
const RRGSB& rr_gsb = device_rr_gsb.get_gsb(ix, iy);
if (false == rr_gsb.is_sb_exist(rr_graph)) {
continue;
}
print_analysis_sdc_disable_sb_unused_resources(
fp, atom_ctx, module_manager, device_annotation, grids, rr_graph,
routing_annotation, device_rr_gsb, rr_gsb, compact_routing_hierarchy);
}
}
}
} /* end namespace openfpga */