OpenFPGA/openfpga_flow/benchmarks/iwls2005/pci/rtl/pci_master32_sm.v

616 lines
22 KiB
Verilog

//////////////////////////////////////////////////////////////////////
//// ////
//// File name "pci_master32_sm.v" ////
//// ////
//// This file is part of the "PCI bridge" project ////
//// http://www.opencores.org/cores/pci/ ////
//// ////
//// Author(s): ////
//// - Miha Dolenc (mihad@opencores.org) ////
//// ////
//// All additional information is avaliable in the README ////
//// file. ////
//// ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001 Miha Dolenc, mihad@opencores.org ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: pci_master32_sm.v,v $
// Revision 1.5 2003/01/27 16:49:31 mihad
// Changed module and file names. Updated scripts accordingly. FIFO synchronizations changed.
//
// Revision 1.4 2003/01/21 16:06:56 mihad
// Bug fixes, testcases added.
//
// Revision 1.3 2002/02/01 15:25:12 mihad
// Repaired a few bugs, updated specification, added test bench files and design document
//
// Revision 1.2 2001/10/05 08:14:29 mihad
// Updated all files with inclusion of timescale file for simulation purposes.
//
// Revision 1.1.1.1 2001/10/02 15:33:46 mihad
// New project directory structure
//
//
// module includes pci master state machine and surrounding logic
// synopsys translate_off
`include "timescale.v"
// synopsys translate_on
`include "pci_constants.v"
module pci_master32_sm
(
// system inputs
clk_in,
reset_in,
// arbitration
pci_req_out,
pci_gnt_in,
// master in/outs
pci_frame_in,
pci_frame_out,
pci_frame_out_in,
pci_frame_load_out,
pci_frame_en_in,
pci_frame_en_out,
pci_irdy_in,
pci_irdy_out,
pci_irdy_en_out,
// target response inputs
pci_trdy_in,
pci_trdy_reg_in,
pci_stop_in,
pci_stop_reg_in,
pci_devsel_in,
pci_devsel_reg_in,
// address, data, bus command, byte enable in/outs
pci_ad_reg_in,
pci_ad_out,
pci_ad_en_out,
pci_cbe_out,
pci_cbe_en_out,
// other side of state machine
address_in,
bc_in,
data_in,
data_out,
be_in,
req_in,
rdy_in,
last_in,
next_data_in,
next_be_in,
next_last_in,
ad_load_out,
ad_load_on_transfer_out,
wait_out,
wtransfer_out,
rtransfer_out,
retry_out,
rerror_out,
first_out,
mabort_out,
latency_tim_val_in
) ;
// system inputs
input clk_in,
reset_in ;
/*==================================================================================================================
PCI interface signals - bidirectional signals are divided to inputs and outputs in I/O cells instantiation
module. Enables are separate signals.
==================================================================================================================*/
// arbitration
output pci_req_out ;
input pci_gnt_in ;
// master in/outs
input pci_frame_in ;
input pci_frame_en_in ;
input pci_frame_out_in ;
output pci_frame_out,
pci_frame_en_out ;
output pci_frame_load_out ;
input pci_irdy_in ;
output pci_irdy_out,
pci_irdy_en_out;
// target response inputs
input pci_trdy_in,
pci_trdy_reg_in,
pci_stop_in,
pci_stop_reg_in,
pci_devsel_in,
pci_devsel_reg_in ;
// address, data, bus command, byte enable in/outs
input [31:0] pci_ad_reg_in ;
output [31:0] pci_ad_out ;
reg [31:0] pci_ad_out ;
output pci_ad_en_out ;
output [3:0] pci_cbe_out ;
reg [3:0] pci_cbe_out ;
output pci_cbe_en_out ;
input [31:0] address_in ; // current request address input
input [3:0] bc_in ; // current request bus command input
input [31:0] data_in ; // current dataphase data input
output [31:0] data_out ; // for read operations - current request data output
reg [31:0] data_out ;
input [3:0] be_in ; // current dataphase byte enable inputs
input req_in ; // initiator cycle is requested
input rdy_in ; // requestor indicates that data is ready to be sent for write transaction and ready to
// be received on read transaction
input last_in ; // last dataphase in current transaction indicator
// status outputs
output wait_out, // wait indicates to the backend that dataphases are not in progress on PCI bus
wtransfer_out, // on any rising clock edge that this status is 1, data is transferred - heavy constraints here
rtransfer_out, // registered transfer indicator - when 1 indicates that data was transfered on previous clock cycle
retry_out, // retry status output - when target signals a retry
rerror_out, // registered error output - when 1 indicates that error was signalled by a target on previous clock cycle
first_out , // indicates whether or not any data was transfered in current transaction
mabort_out; // master abort indicator
reg wait_out ;
// latency timer value input - state machine starts latency timer whenever it starts a transaction and last is not
// asserted ( meaning burst transfer ).
input [7:0] latency_tim_val_in ;
// next data, byte enable and last inputs
input [31:0] next_data_in ;
input [3:0] next_be_in ;
input next_last_in ;
// clock enable for data output flip-flops - whenever data is transfered, sm loads next data to those flip flops
output ad_load_out,
ad_load_on_transfer_out ;
// parameters - states - one hot
// idle state
parameter S_IDLE = 4'h1 ;
// address state
parameter S_ADDRESS = 4'h2 ;
// transfer state - dataphases
parameter S_TRANSFER = 4'h4 ;
// turn arround state
parameter S_TA_END = 4'h8 ;
// change state - clock enable for sm state register
wire change_state ;
// next state for state machine
reg [3:0] next_state ;
// SM state register
reg [3:0] cur_state ;
// variables for indicating which state state machine is in
// this variables are used to reduce logic levels in case of heavily constrained PCI signals
reg sm_idle ;
reg sm_address ;
reg sm_data_phases ;
reg sm_turn_arround ;
// state machine register control logic with clock enable
always@(posedge reset_in or posedge clk_in)
begin
if (reset_in)
cur_state <= #`FF_DELAY S_IDLE ;
else
if ( change_state )
cur_state <= #`FF_DELAY next_state ;
end
// parameters - data selector - ad and bc lines switch between address/data and bus command/byte enable respectively
parameter SEL_ADDR_BC = 2'b01 ;
parameter SEL_DATA_BE = 2'b00 ;
parameter SEL_NEXT_DATA_BE = 2'b11 ;
reg [1:0] wdata_selector ;
wire u_dont_have_pci_bus = pci_gnt_in || ~pci_frame_in || ~pci_irdy_in ; // pci master can't start a transaction when GNT is deasserted ( 1 ) or
// bus is not in idle state ( FRAME and IRDY both 1 )
wire u_have_pci_bus = ~pci_gnt_in && pci_frame_in && pci_irdy_in ;
// decode count enable - counter that counts cycles passed since address phase
wire sm_decode_count_enable = sm_data_phases ; // counter is enabled when master wants to transfer
wire decode_count_enable = sm_decode_count_enable && pci_trdy_in && pci_stop_in && pci_devsel_in ; // and target is not responding
wire decode_count_load = ~decode_count_enable ;
reg [2:0] decode_count ;
wire decode_to = ~( decode_count[2] || decode_count[1]) ;
always@(posedge reset_in or posedge clk_in)
begin
if ( reset_in )
// initial value of counter is 4
decode_count <= #`FF_DELAY 3'h4 ;
else
if ( decode_count_load )
decode_count <= #`FF_DELAY 3'h4 ;
else
if ( decode_count_enable )
decode_count <= #`FF_DELAY decode_count - 1'b1 ;
end
// Bus commands LSbit indicates whether operation is a read or a write
wire do_write = bc_in[0] ;
// latency timer
reg [7:0] latency_timer ;
wire latency_time_out = ~(
(latency_timer[7] || latency_timer[6] || latency_timer[5] || latency_timer[4]) ||
(latency_timer[3] || latency_timer[2] || latency_timer[1] )
) ;
wire latency_timer_enable = (sm_address || sm_data_phases) && ~latency_time_out ;
wire latency_timer_load = ~sm_address && ~sm_data_phases ;
always@(posedge clk_in or posedge reset_in)
begin
if (reset_in)
latency_timer <= #`FF_DELAY 8'h00 ;
else
if ( latency_timer_load )
latency_timer <= #`FF_DELAY latency_tim_val_in ;
else
if ( latency_timer_enable) // latency timer counts down until it expires - then it stops
latency_timer <= #`FF_DELAY latency_timer - 1'b1 ;
end
// master abort indicators - when decode time out occurres and still no target response is received
wire do_master_abort = decode_to && pci_trdy_in && pci_stop_in && pci_devsel_in ;
reg mabort1 ;
always@(posedge reset_in or posedge clk_in)
begin
if (reset_in)
mabort1 <= #`FF_DELAY 1'b0 ;
else
mabort1 <= #`FF_DELAY do_master_abort ;
end
reg mabort2 ;
always@(posedge reset_in or posedge clk_in)
begin
if ( reset_in )
mabort2 <= #`FF_DELAY 1'b0 ;
else
mabort2 <= #`FF_DELAY mabort1 ;
end
// master abort is only asserted for one clock cycle
assign mabort_out = mabort1 && ~mabort2 ;
// register indicating when master should do timeout termination (latency timer expires)
reg timeout ;
always@(posedge reset_in or posedge clk_in)
begin
if (reset_in)
timeout <= #`FF_DELAY 1'b0 ;
else
timeout <= #`FF_DELAY (latency_time_out && ~pci_frame_out_in && pci_gnt_in || timeout ) && ~wait_out ;
end
wire timeout_termination = sm_turn_arround && timeout && pci_stop_reg_in ;
// frame control logic
// frame is forced to 0 (active) when state machine is in idle state, since only possible next state is address state which always drives frame active
wire force_frame = ~sm_idle ;
// slow signal for frame calculated from various registers in the core
wire slow_frame = last_in || (latency_time_out && pci_gnt_in) || (next_last_in && sm_data_phases) || mabort1 ;
// critical timing frame logic in separate module - some combinations of target signals force frame to inactive state immediately after sampled asserted
// (STOP)
pci_frame_crit frame_iob_feed
(
.pci_frame_out (pci_frame_out),
.force_frame_in (force_frame),
.slow_frame_in (slow_frame),
.pci_stop_in (pci_stop_in)
) ;
// frame IOB flip flop's clock enable signal
// slow clock enable - calculated from internal - non critical paths
wire frame_load_slow = sm_idle || sm_address || mabort1 ;
// critical clock enable for frame IOB in separate module - target response signals actually allow frame value change - critical timing
pci_frame_load_crit frame_iob_ce
(
.pci_frame_load_out (pci_frame_load_out),
.sm_data_phases_in (sm_data_phases),
.frame_load_slow_in (frame_load_slow),
.pci_trdy_in (pci_trdy_in),
.pci_stop_in (pci_stop_in)
) ;
// IRDY driving
// non critical path for IRDY calculation
wire irdy_slow = pci_frame_out_in && mabort1 || mabort2 ;
// critical path in separate module
pci_irdy_out_crit irdy_iob_feed
(
.pci_irdy_out (pci_irdy_out),
.irdy_slow_in (irdy_slow),
.pci_frame_out_in (pci_frame_out_in),
.pci_trdy_in (pci_trdy_in),
.pci_stop_in (pci_stop_in)
) ;
// transfer FF indicator - when first transfer occurs it is set to 1 so backend can distinguish between disconnects and retries.
wire sm_transfer = sm_data_phases ;
reg transfer ;
wire transfer_input = sm_transfer && (~(pci_trdy_in || pci_devsel_in) || transfer) ;
always@(posedge clk_in or posedge reset_in)
begin
if (reset_in)
transfer <= #`FF_DELAY 1'b0 ;
else
transfer <= #`FF_DELAY transfer_input ;
end
assign first_out = ~transfer ;
// xfast transfer status output - it's only negated target ready, since wait indicator qualifies valid transfer
assign wtransfer_out = ~pci_trdy_in ;
// registered transfer status output - calculated from registered target response inputs
assign rtransfer_out = ~(pci_trdy_reg_in || pci_devsel_reg_in) ;
// registered error status - calculated from registered target response inputs
assign rerror_out = (~pci_stop_reg_in && pci_devsel_reg_in) ;
// retry is signalled to backend depending on registered target response or when latency timer expires
assign retry_out = timeout_termination || (~pci_stop_reg_in && ~pci_devsel_reg_in) ;
// AD output flip flops' clock enable
// new data is loaded to AD outputs whenever state machine is idle, bus was granted and bus is in idle state or
// when address phase is about to be finished
wire ad_load_slow = sm_address ;
wire ad_load_on_grant = sm_idle && pci_frame_in && pci_irdy_in ;
pci_mas_ad_load_crit mas_ad_load_feed
(
.ad_load_out (ad_load_out),
.ad_load_in (ad_load_slow),
.ad_load_on_grant_in (ad_load_on_grant),
.pci_gnt_in (pci_gnt_in)
);
// next data loading is allowed when state machine is in transfer state and operation is a write
assign ad_load_on_transfer_out = sm_data_phases && do_write ;
// request for a bus is issued anytime when backend is requesting a transaction and state machine is in idle state
assign pci_req_out = ~(req_in && sm_idle) ;
// change state signal is actually clock enable for state register
// Non critical path for state change enable:
// state is always changed when:
// - address phase is finishing
// - state machine is in turn arround state
// - state machine is in transfer state and master abort termination is in progress
wire ch_state_slow = sm_address || sm_turn_arround || sm_data_phases && ( pci_frame_out_in && mabort1 || mabort2 ) ;
// a bit more critical change state enable is calculated with GNT signal
wire ch_state_med = ch_state_slow || sm_idle && u_have_pci_bus && req_in && rdy_in ;
// most critical change state enable - calculated from target response signals
pci_mas_ch_state_crit state_machine_ce
(
.change_state_out (change_state),
.ch_state_med_in (ch_state_med),
.sm_data_phases_in (sm_data_phases),
.pci_trdy_in (pci_trdy_in),
.pci_stop_in (pci_stop_in)
) ;
// ad enable driving
// also divided in several categories - from less critical to most critical in separate module
//wire ad_en_slowest = do_write && (sm_address || sm_data_phases && ~pci_frame_out_in) ;
//wire ad_en_on_grant = sm_idle && pci_frame_in && pci_irdy_in || sm_turn_arround ;
//wire ad_en_slow = ad_en_on_grant && ~pci_gnt_in || ad_en_slowest ;
//wire ad_en_keep = sm_data_phases && do_write && (pci_frame_out_in && ~mabort1 && ~mabort2) ;
wire ad_en_slow = do_write && ( sm_address || ( sm_data_phases && !( ( pci_frame_out_in && mabort1 ) || mabort2 ) ) ) ;
wire ad_en_on_grant = ( sm_idle && pci_frame_in && pci_irdy_in ) || sm_turn_arround ;
// critical timing ad enable - calculated from grant input
pci_mas_ad_en_crit ad_iob_oe_feed
(
.pci_ad_en_out (pci_ad_en_out),
.ad_en_slow_in (ad_en_slow),
.ad_en_on_grant_in (ad_en_on_grant),
.pci_gnt_in (pci_gnt_in)
) ;
// cbe enable driving
wire cbe_en_on_grant = sm_idle && pci_frame_in && pci_irdy_in || sm_turn_arround ;
wire cbe_en_slow = cbe_en_on_grant && ~pci_gnt_in || sm_address || sm_data_phases && ~pci_frame_out_in ;
wire cbe_en_keep = sm_data_phases && pci_frame_out_in && ~mabort1 && ~mabort2 ;
// most critical cbe enable in separate module - calculated with most critical target inputs
pci_cbe_en_crit cbe_iob_feed
(
.pci_cbe_en_out (pci_cbe_en_out),
.cbe_en_slow_in (cbe_en_slow),
.cbe_en_keep_in (cbe_en_keep),
.pci_stop_in (pci_stop_in),
.pci_trdy_in (pci_trdy_in)
) ;
// IRDY enable is equal to FRAME enable delayed for one clock
assign pci_irdy_en_out = pci_frame_en_in ;
// frame enable driving - sometimes it's calculated from non critical paths
wire frame_en_slow = (sm_idle && u_have_pci_bus && req_in && rdy_in) || sm_address || (sm_data_phases && ~pci_frame_out_in) ;
wire frame_en_keep = sm_data_phases && pci_frame_out_in && ~mabort1 && ~mabort2 ;
// most critical frame enable - calculated from heavily constrained target inputs in separate module
pci_frame_en_crit frame_iob_en_feed
(
.pci_frame_en_out (pci_frame_en_out),
.frame_en_slow_in (frame_en_slow),
.frame_en_keep_in (frame_en_keep),
.pci_stop_in (pci_stop_in),
.pci_trdy_in (pci_trdy_in)
) ;
// state machine next state definitions
always@(
cur_state or
do_write or
pci_frame_out_in
)
begin
// default values for state machine outputs
wait_out = 1'b1 ;
wdata_selector = SEL_ADDR_BC ;
sm_idle = 1'b0 ;
sm_address = 1'b0 ;
sm_data_phases = 1'b0 ;
sm_turn_arround = 1'b0 ;
case ( cur_state )
S_IDLE: begin
// indicate the state
sm_idle = 1'b1 ;
// assign next state - only possible is address - if state machine is supposed to stay in idle state
// outside signals disable the clock
next_state = S_ADDRESS ;
wdata_selector = SEL_DATA_BE ;
end
S_ADDRESS: begin
// indicate the state
sm_address = 1'b1 ;
// select appropriate data/be for outputs
wdata_selector = SEL_NEXT_DATA_BE ;
// only possible next state is transfer state
next_state = S_TRANSFER ;
end
S_TRANSFER: begin
// during transfers wait indicator is inactive - all status signals are now valid
wait_out = 1'b0 ;
// indicate the state
sm_data_phases = 1'b1 ;
// select appropriate data/be for outputs
wdata_selector = SEL_NEXT_DATA_BE ;
if ( pci_frame_out_in )
begin
// when frame is inactive next state will be turn arround
next_state = S_TA_END ;
end
else
// while frame is active state cannot be anything else then transfer
next_state = S_TRANSFER ;
end
S_TA_END: begin
// wait is still inactive because of registered statuses
wait_out = 1'b0 ;
// indicate the state
sm_turn_arround = 1'b1 ;
// next state is always idle
next_state = S_IDLE ;
end
default: next_state = S_IDLE ;
endcase
end
// ad and cbe lines multiplexer for write data
reg [1:0] rdata_selector ;
always@(posedge clk_in or posedge reset_in)
begin
if ( reset_in )
rdata_selector <= #`FF_DELAY SEL_ADDR_BC ;
else
if ( change_state )
rdata_selector <= #`FF_DELAY wdata_selector ;
end
always@(rdata_selector or address_in or bc_in or data_in or be_in or next_data_in or next_be_in)
begin
case ( rdata_selector )
SEL_ADDR_BC: begin
pci_ad_out = address_in ;
pci_cbe_out = bc_in ;
end
SEL_DATA_BE: begin
pci_ad_out = data_in ;
pci_cbe_out = be_in ;
end
SEL_NEXT_DATA_BE,
2'b10: begin
pci_ad_out = next_data_in ;
pci_cbe_out = next_be_in ;
end
endcase
end
// data output mux for reads
always@(mabort_out or pci_ad_reg_in)
begin
if ( mabort_out )
data_out = 32'hFFFF_FFFF ;
else
data_out = pci_ad_reg_in ;
end
endmodule