760 lines
36 KiB
C++
760 lines
36 KiB
C++
/***********************************************
|
|
* This file includes functions to generate
|
|
* Verilog submodules for multiplexers.
|
|
* including both fundamental submodules
|
|
* such as a branch in a multiplexer
|
|
* and the full multiplexer
|
|
**********************************************/
|
|
#include <string>
|
|
|
|
#include "util.h"
|
|
#include "vtr_assert.h"
|
|
|
|
/* Device-level header files */
|
|
#include "mux_graph.h"
|
|
#include "module_manager.h"
|
|
#include "physical_types.h"
|
|
#include "vpr_types.h"
|
|
|
|
/* FPGA-X2P context header files */
|
|
#include "spice_types.h"
|
|
#include "fpga_x2p_naming.h"
|
|
#include "fpga_x2p_utils.h"
|
|
|
|
/* FPGA-Verilog context header files */
|
|
#include "verilog_global.h"
|
|
#include "verilog_writer_utils.h"
|
|
#include "verilog_mux.h"
|
|
|
|
/*********************************************************************
|
|
* Generate structural Verilog codes (consist of transmission-gates or
|
|
* pass-transistor) modeling an branch circuit
|
|
* for a multiplexer with the given size
|
|
*********************************************************************/
|
|
static
|
|
void generate_verilog_cmos_mux_branch_body_structural(ModuleManager& module_manager,
|
|
const CircuitLibrary& circuit_lib,
|
|
std::fstream& fp,
|
|
const CircuitModelId& tgate_model,
|
|
const ModuleId& module_id,
|
|
const BasicPort& input_port,
|
|
const BasicPort& output_port,
|
|
const BasicPort& mem_port,
|
|
const BasicPort& mem_inv_port,
|
|
const MuxGraph& mux_graph) {
|
|
/* Make sure we have a valid file handler*/
|
|
check_file_handler(fp);
|
|
|
|
/* Get the module id of tgate in Module manager */
|
|
ModuleId tgate_module_id = module_manager.find_module(circuit_lib.model_name(tgate_model));
|
|
VTR_ASSERT(ModuleId::INVALID() != tgate_module_id);
|
|
|
|
/* TODO: move to check_circuit_library? Get model ports of tgate */
|
|
std::vector<CircuitPortId> tgate_input_ports = circuit_lib.model_ports_by_type(tgate_model, SPICE_MODEL_PORT_INPUT, true);
|
|
std::vector<CircuitPortId> tgate_output_ports = circuit_lib.model_ports_by_type(tgate_model, SPICE_MODEL_PORT_OUTPUT, true);
|
|
VTR_ASSERT(3 == tgate_input_ports.size());
|
|
VTR_ASSERT(1 == tgate_output_ports.size());
|
|
|
|
/* Verilog Behavior description for a MUX */
|
|
print_verilog_comment(fp, std::string("---- Structure-level description -----"));
|
|
|
|
/* Output the netlist following the connections in mux_graph */
|
|
/* Iterate over the inputs */
|
|
for (const auto& mux_input : mux_graph.inputs()) {
|
|
BasicPort cur_input_port(input_port.get_name(), size_t(mux_graph.input_id(mux_input)), size_t(mux_graph.input_id(mux_input)));
|
|
/* Iterate over the outputs */
|
|
for (const auto& mux_output : mux_graph.outputs()) {
|
|
BasicPort cur_output_port(output_port.get_name(), size_t(mux_graph.output_id(mux_output)), size_t(mux_graph.output_id(mux_output)));
|
|
/* if there is a connection between the input and output, a tgate will be outputted */
|
|
std::vector<MuxEdgeId> edges = mux_graph.find_edges(mux_input, mux_output);
|
|
/* There should be only one edge or no edge*/
|
|
VTR_ASSERT((1 == edges.size()) || (0 == edges.size()));
|
|
/* No need to output tgates if there are no edges between two nodes */
|
|
if (0 == edges.size()) {
|
|
continue;
|
|
}
|
|
/* TODO: Output a tgate use a module manager */
|
|
/* Create a port-to-port name map */
|
|
std::map<std::string, BasicPort> port2port_name_map;
|
|
/* input port */
|
|
port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[0])] = cur_input_port;
|
|
/* output port */
|
|
port2port_name_map[circuit_lib.port_lib_name(tgate_output_ports[0])] = cur_output_port;
|
|
/* Find the mem_id controlling the edge */
|
|
MuxMemId mux_mem = mux_graph.find_edge_mem(edges[0]);
|
|
BasicPort cur_mem_port(mem_port.get_name(), size_t(mux_mem), size_t(mux_mem));
|
|
BasicPort cur_mem_inv_port(mem_inv_port.get_name(), size_t(mux_mem), size_t(mux_mem));
|
|
/* mem port */
|
|
if (false == mux_graph.is_edge_use_inv_mem(edges[0])) {
|
|
/* wire mem to mem of module, and wire mem_inv to mem_inv of module */
|
|
port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[1])] = cur_mem_port;
|
|
port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[2])] = cur_mem_inv_port;
|
|
} else {
|
|
/* wire mem_inv to mem of module, wire mem to mem_inv of module */
|
|
port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[1])] = cur_mem_inv_port;
|
|
port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[2])] = cur_mem_port;
|
|
}
|
|
/* Output an instance of the module */
|
|
print_verilog_module_instance(fp, module_manager, module_id, tgate_module_id, port2port_name_map, circuit_lib.dump_explicit_port_map(tgate_model));
|
|
/* IMPORTANT: this update MUST be called after the instance outputting!!!!
|
|
* update the module manager with the relationship between the parent and child modules
|
|
*/
|
|
module_manager.add_child_module(module_id, tgate_module_id);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Generate behavior-level Verilog codes modeling an branch circuit
|
|
* for a multiplexer with the given size
|
|
*********************************************************************/
|
|
static
|
|
void generate_verilog_cmos_mux_branch_body_behavioral(std::fstream& fp,
|
|
const BasicPort& input_port,
|
|
const BasicPort& output_port,
|
|
const BasicPort& mem_port,
|
|
const MuxGraph& mux_graph,
|
|
const size_t& default_mem_val) {
|
|
/* Make sure we have a valid file handler*/
|
|
check_file_handler(fp);
|
|
|
|
/* Verilog Behavior description for a MUX */
|
|
print_verilog_comment(fp, std::string("---- Behavioral-level description -----"));
|
|
|
|
/* Add an internal register for the output */
|
|
BasicPort outreg_port("out_reg", mux_graph.num_outputs());
|
|
/* Print the port */
|
|
fp << "\t" << generate_verilog_port(VERILOG_PORT_REG, outreg_port) << ";" << std::endl;
|
|
|
|
/* Generate the case-switch table */
|
|
fp << "\talways @(" << generate_verilog_port(VERILOG_PORT_CONKT, input_port) << ", " << generate_verilog_port(VERILOG_PORT_CONKT, mem_port) << ")" << std::endl;
|
|
fp << "\tcase (" << generate_verilog_port(VERILOG_PORT_CONKT, mem_port) << ")" << std::endl;
|
|
|
|
/* Output the netlist following the connections in mux_graph */
|
|
/* Iterate over the inputs */
|
|
for (const auto& mux_input : mux_graph.inputs()) {
|
|
BasicPort cur_input_port(input_port.get_name(), size_t(mux_graph.input_id(mux_input)), size_t(mux_graph.input_id(mux_input)));
|
|
/* Iterate over the outputs */
|
|
for (const auto& mux_output : mux_graph.outputs()) {
|
|
BasicPort cur_output_port(output_port.get_name(), size_t(mux_graph.output_id(mux_output)), size_t(mux_graph.output_id(mux_output)));
|
|
/* if there is a connection between the input and output, a tgate will be outputted */
|
|
std::vector<MuxEdgeId> edges = mux_graph.find_edges(mux_input, mux_output);
|
|
/* There should be only one edge or no edge*/
|
|
VTR_ASSERT((1 == edges.size()) || (0 == edges.size()));
|
|
/* No need to output tgates if there are no edges between two nodes */
|
|
if (0 == edges.size()) {
|
|
continue;
|
|
}
|
|
/* For each case, generate the logic levels for all the inputs */
|
|
/* In each case, only one mem is enabled */
|
|
fp << "\t\t" << mem_port.get_width() << "'b";
|
|
std::string case_code(mem_port.get_width(), default_mem_val);
|
|
|
|
/* Find the mem_id controlling the edge */
|
|
MuxMemId mux_mem = mux_graph.find_edge_mem(edges[0]);
|
|
/* Flip a bit by the mem_id */
|
|
if (false == mux_graph.is_edge_use_inv_mem(edges[0])) {
|
|
case_code[size_t(mux_mem)] = '1';
|
|
} else {
|
|
case_code[size_t(mux_mem)] = '0';
|
|
}
|
|
fp << case_code << ": " << generate_verilog_port(VERILOG_PORT_CONKT, outreg_port) << " <= ";
|
|
fp << generate_verilog_port(VERILOG_PORT_CONKT, cur_input_port) << ";" << std::endl;
|
|
}
|
|
}
|
|
|
|
/* Default case: outputs are at high-impedance state 'z' */
|
|
std::string default_case(mux_graph.num_outputs(), 'z');
|
|
fp << "\t\tdefault: " << generate_verilog_port(VERILOG_PORT_CONKT, outreg_port) << " <= ";
|
|
fp << mux_graph.num_outputs() << "'b" << default_case << ";" << std::endl;
|
|
|
|
/* End the case */
|
|
fp << "\tendcase" << std::endl;
|
|
|
|
/* Wire registers to output ports */
|
|
fp << "\tassign " << generate_verilog_port(VERILOG_PORT_CONKT, output_port) << " = ";
|
|
fp << generate_verilog_port(VERILOG_PORT_CONKT, outreg_port) << ";" << std::endl;
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Generate Verilog codes modeling an branch circuit
|
|
* for a CMOS multiplexer with the given size
|
|
* Support structural and behavioral Verilog codes
|
|
*********************************************************************/
|
|
static
|
|
void generate_verilog_cmos_mux_branch_module(ModuleManager& module_manager,
|
|
const CircuitLibrary& circuit_lib,
|
|
std::fstream& fp,
|
|
const CircuitModelId& circuit_model,
|
|
const std::string& module_name,
|
|
const MuxGraph& mux_graph,
|
|
const bool& use_structural_verilog) {
|
|
/* Get the tgate model */
|
|
CircuitModelId tgate_model = circuit_lib.pass_gate_logic_model(circuit_model);
|
|
|
|
/* Skip output if the tgate model is a MUX2, it is handled by essential-gate generator */
|
|
if (SPICE_MODEL_GATE == circuit_lib.model_type(tgate_model)) {
|
|
VTR_ASSERT(SPICE_MODEL_GATE_MUX2 == circuit_lib.gate_type(tgate_model));
|
|
return;
|
|
}
|
|
|
|
std::vector<CircuitPortId> tgate_global_ports = circuit_lib.model_global_ports_by_type(tgate_model, SPICE_MODEL_PORT_INPUT, true);
|
|
|
|
/* Make sure we have a valid file handler*/
|
|
check_file_handler(fp);
|
|
|
|
/* Generate the Verilog netlist according to the mux_graph */
|
|
/* Find out the number of inputs */
|
|
size_t num_inputs = mux_graph.num_inputs();
|
|
/* Find out the number of outputs */
|
|
size_t num_outputs = mux_graph.num_outputs();
|
|
/* Find out the number of memory bits */
|
|
size_t num_mems = mux_graph.num_memory_bits();
|
|
|
|
/* Check codes to ensure the port of Verilog netlists will match */
|
|
/* MUX graph must have only 1 output */
|
|
VTR_ASSERT(1 == num_outputs);
|
|
/* MUX graph must have only 1 level*/
|
|
VTR_ASSERT(1 == mux_graph.num_levels());
|
|
|
|
/* Create a Verilog Module based on the circuit model, and add to module manager */
|
|
ModuleId module_id = module_manager.add_module(module_name);
|
|
VTR_ASSERT(ModuleId::INVALID() != module_id);
|
|
/* Add module ports */
|
|
/* Add each global port */
|
|
for (const auto& port : tgate_global_ports) {
|
|
/* Configure each global port */
|
|
BasicPort global_port(circuit_lib.port_lib_name(port), circuit_lib.port_size(port));
|
|
module_manager.add_port(module_id, global_port, ModuleManager::MODULE_GLOBAL_PORT);
|
|
}
|
|
/* Add each input port */
|
|
BasicPort input_port("in", num_inputs);
|
|
module_manager.add_port(module_id, input_port, ModuleManager::MODULE_INPUT_PORT);
|
|
/* Add each output port */
|
|
BasicPort output_port("out", num_outputs);
|
|
module_manager.add_port(module_id, output_port, ModuleManager::MODULE_OUTPUT_PORT);
|
|
/* Add each memory port */
|
|
BasicPort mem_port("mem", num_mems);
|
|
module_manager.add_port(module_id, mem_port, ModuleManager::MODULE_INPUT_PORT);
|
|
BasicPort mem_inv_port("mem_inv", num_mems);
|
|
module_manager.add_port(module_id, mem_inv_port, ModuleManager::MODULE_INPUT_PORT);
|
|
|
|
/* dump module definition + ports */
|
|
print_verilog_module_declaration(fp, module_manager, module_id);
|
|
|
|
/* Print the internal logic in either structural or behavioral Verilog codes */
|
|
if (true == use_structural_verilog) {
|
|
generate_verilog_cmos_mux_branch_body_structural(module_manager, circuit_lib, fp, tgate_model, module_id, input_port, output_port, mem_port, mem_inv_port, mux_graph);
|
|
} else {
|
|
VTR_ASSERT_SAFE(false == use_structural_verilog);
|
|
/* Get the default value of SRAM ports */
|
|
std::vector<CircuitPortId> sram_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_SRAM, true);
|
|
std::vector<CircuitPortId> non_mode_select_sram_ports;
|
|
/* We should have only have 1 sram port except those are mode_bits */
|
|
for (const auto& port : sram_ports) {
|
|
if (true == circuit_lib.port_is_mode_select(port)) {
|
|
continue;
|
|
}
|
|
non_mode_select_sram_ports.push_back(port);
|
|
}
|
|
VTR_ASSERT(1 == non_mode_select_sram_ports.size());
|
|
std::string mem_default_val = std::to_string(circuit_lib.port_default_value(non_mode_select_sram_ports[0]));
|
|
/* Mem string must be only 1-bit! */
|
|
VTR_ASSERT(1 == mem_default_val.length());
|
|
generate_verilog_cmos_mux_branch_body_behavioral(fp, input_port, output_port, mem_port, mux_graph, mem_default_val[0]);
|
|
}
|
|
|
|
/* Put an end to the Verilog module */
|
|
print_verilog_module_end(fp, module_name);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Dump a structural verilog for RRAM MUX basis module
|
|
* This is only called when structural verilog dumping option is enabled for this spice model
|
|
* IMPORTANT: the structural verilog can NOT be used for functionality verification!!!
|
|
* TODO: This part is quite restricted to the way we implemented our RRAM FPGA
|
|
* Should be reworked to be more generic !!!
|
|
*
|
|
* By structural the schematic is splitted into two parts: left part and right part
|
|
* The left part includes BLB[0..N-1] and WL[0..N-1] signals as well as RRAMs
|
|
* The right part includes BLB[N] and WL[N]
|
|
* Corresponding Schematic is as follows:
|
|
*
|
|
* LEFT PART | RIGHT PART
|
|
*
|
|
* BLB[0] BLB[N]
|
|
* | |
|
|
* \|/ \|/
|
|
* in[0] ---->RRAM[0]-----+
|
|
* |
|
|
* BLB[1] |
|
|
* | |
|
|
* \|/ |
|
|
* in[1] ---->RRAM[1]-----+
|
|
* |-----> out[0]
|
|
* ...
|
|
* |
|
|
* in[N-1] ---->RRAM[N-1]---+
|
|
* /|\ /|\
|
|
* | |
|
|
* BLB[N-1] WL[N]
|
|
*
|
|
* Working principle:
|
|
* 1. Set a RRAM[i]: enable BLB[i] and WL[N]
|
|
* 2. Reset a RRAM[i]: enable BLB[N] and WL[i]
|
|
* 3. Operation: disable all BLBs and WLs
|
|
*
|
|
* The structure is done in the way we implement the physical layout of RRAM MUX
|
|
* It is NOT the only road to the goal!!!
|
|
*********************************************************************/
|
|
static
|
|
void generate_verilog_rram_mux_branch_body_structural(ModuleManager& module_manager,
|
|
const CircuitLibrary& circuit_lib,
|
|
std::fstream& fp,
|
|
const ModuleId& module_id,
|
|
const CircuitModelId& circuit_model,
|
|
const BasicPort& input_port,
|
|
const BasicPort& output_port,
|
|
const BasicPort& blb_port,
|
|
const BasicPort& wl_port,
|
|
const MuxGraph& mux_graph) {
|
|
std::string progTE_module_name("PROG_TE");
|
|
std::string progBE_module_name("PROG_BE");
|
|
|
|
/* Make sure we have a valid file handler*/
|
|
check_file_handler(fp);
|
|
|
|
/* Verilog Behavior description for a MUX */
|
|
print_verilog_comment(fp, std::string("---- Structure-level description of RRAM MUX -----"));
|
|
|
|
/* Print internal structure of 4T1R programming structures
|
|
* Written in structural Verilog
|
|
* The whole structure-level description is divided into two parts:
|
|
* 1. Left part consists of N PROG_TE modules, each of which
|
|
* includes a PMOS, a NMOS and a RRAM, which is actually the left
|
|
* part of a 4T1R programming structure
|
|
* 2. Right part includes only a PROG_BE module, which consists
|
|
* of a PMOS and a NMOS, which is actually the right part of a
|
|
* 4T1R programming sturcture
|
|
*/
|
|
/* Create a module for the progTE and register it in the module manager
|
|
* Structure of progTE
|
|
*
|
|
* +----------+
|
|
* in--->| |
|
|
* BLB-->| progTE |--> out
|
|
* WL--->| |
|
|
* +----------+
|
|
*/
|
|
ModuleId progTE_module_id = module_manager.add_module(progTE_module_name);
|
|
/* If there is already such as module inside, we just ned to find the module id */
|
|
if (ModuleId::INVALID() == progTE_module_id) {
|
|
progTE_module_id = module_manager.find_module(progTE_module_name);
|
|
/* We should have a valid id! */
|
|
VTR_ASSERT(ModuleId::INVALID() != progTE_module_id);
|
|
}
|
|
/* Add ports to the module */
|
|
/* input port */
|
|
BasicPort progTE_in_port("A", 1);
|
|
module_manager.add_port(progTE_module_id, progTE_in_port, ModuleManager::MODULE_INPUT_PORT);
|
|
/* WL port */
|
|
BasicPort progTE_wl_port("WL", 1);
|
|
module_manager.add_port(progTE_module_id, progTE_wl_port, ModuleManager::MODULE_INPUT_PORT);
|
|
/* BLB port */
|
|
BasicPort progTE_blb_port("BLB", 1);
|
|
module_manager.add_port(progTE_module_id, progTE_blb_port, ModuleManager::MODULE_INPUT_PORT);
|
|
/* output port */
|
|
BasicPort progTE_out_port("Z", 1);
|
|
module_manager.add_port(progTE_module_id, progTE_out_port, ModuleManager::MODULE_INPUT_PORT);
|
|
|
|
/* LEFT part: Verilog code generation */
|
|
/* Iterate over the inputs */
|
|
for (const auto& mux_input : mux_graph.inputs()) {
|
|
BasicPort cur_input_port(input_port.get_name(), size_t(mux_graph.input_id(mux_input)), size_t(mux_graph.input_id(mux_input)));
|
|
/* Iterate over the outputs */
|
|
for (const auto& mux_output : mux_graph.outputs()) {
|
|
BasicPort cur_output_port(output_port.get_name(), size_t(mux_graph.output_id(mux_output)), size_t(mux_graph.output_id(mux_output)));
|
|
/* if there is a connection between the input and output, a tgate will be outputted */
|
|
std::vector<MuxEdgeId> edges = mux_graph.find_edges(mux_input, mux_output);
|
|
/* There should be only one edge or no edge*/
|
|
VTR_ASSERT((1 == edges.size()) || (0 == edges.size()));
|
|
/* No need to output tgates if there are no edges between two nodes */
|
|
if (0 == edges.size()) {
|
|
continue;
|
|
}
|
|
/* Create a port-to-port name map */
|
|
std::map<std::string, BasicPort> port2port_name_map;
|
|
/* input port */
|
|
port2port_name_map[progTE_in_port.get_name()] = cur_input_port;
|
|
/* output port */
|
|
port2port_name_map[progTE_out_port.get_name()] = cur_output_port;
|
|
/* Find the mem_id controlling the edge */
|
|
MuxMemId mux_mem = mux_graph.find_edge_mem(edges[0]);
|
|
BasicPort cur_blb_port(blb_port.get_name(), size_t(mux_mem), size_t(mux_mem));
|
|
BasicPort cur_wl_port(wl_port.get_name(), size_t(mux_mem), size_t(mux_mem));
|
|
/* RRAM configuration port: there should not be any inverted edge in RRAM MUX! */
|
|
VTR_ASSERT( false == mux_graph.is_edge_use_inv_mem(edges[0]) );
|
|
/* wire mem to mem of module, and wire mem_inv to mem_inv of module */
|
|
port2port_name_map[progTE_blb_port.get_name()] = cur_blb_port;
|
|
port2port_name_map[progTE_wl_port.get_name()] = cur_wl_port;
|
|
/* Output an instance of the module */
|
|
print_verilog_module_instance(fp, module_manager, module_id, progTE_module_id, port2port_name_map, circuit_lib.dump_explicit_port_map(circuit_model));
|
|
/* IMPORTANT: this update MUST be called after the instance outputting!!!!
|
|
* update the module manager with the relationship between the parent and child modules
|
|
*/
|
|
module_manager.add_child_module(module_id, progTE_module_id);
|
|
}
|
|
}
|
|
|
|
/* Create a module for the progBE and register it in the module manager
|
|
* Structure of progBE
|
|
*
|
|
* +----------+
|
|
* | |
|
|
* BLB-->| progBE |<-> out
|
|
* WL--->| |
|
|
* +----------+
|
|
*/
|
|
ModuleId progBE_module_id = module_manager.add_module(progBE_module_name);
|
|
/* If there is already such as module inside, we just ned to find the module id */
|
|
if (ModuleId::INVALID() == progBE_module_id) {
|
|
progBE_module_id = module_manager.find_module(progBE_module_name);
|
|
/* We should have a valid id! */
|
|
VTR_ASSERT(ModuleId::INVALID() != progBE_module_id);
|
|
}
|
|
/* Add ports to the module */
|
|
/* inout port */
|
|
BasicPort progBE_inout_port("INOUT", 1);
|
|
module_manager.add_port(progBE_module_id, progBE_inout_port, ModuleManager::MODULE_INOUT_PORT);
|
|
/* WL port */
|
|
BasicPort progBE_wl_port("WL", 1);
|
|
module_manager.add_port(progBE_module_id, progBE_wl_port, ModuleManager::MODULE_INPUT_PORT);
|
|
/* BLB port */
|
|
BasicPort progBE_blb_port("BLB", 1);
|
|
module_manager.add_port(progBE_module_id, progBE_blb_port, ModuleManager::MODULE_INPUT_PORT);
|
|
|
|
/* RIGHT part: Verilog code generation */
|
|
/* Iterate over the outputs */
|
|
for (const auto& mux_output : mux_graph.outputs()) {
|
|
BasicPort cur_output_port(output_port.get_name(), size_t(mux_graph.output_id(mux_output)), size_t(mux_graph.output_id(mux_output)));
|
|
/* Create a port-to-port name map */
|
|
std::map<std::string, BasicPort> port2port_name_map;
|
|
/* Wire the output port to the INOUT port */
|
|
port2port_name_map[progBE_inout_port.get_name()] = cur_output_port;
|
|
/* Find the mem_id controlling the edge */
|
|
BasicPort cur_blb_port(blb_port.get_name(), mux_graph.num_memory_bits(), mux_graph.num_memory_bits());
|
|
BasicPort cur_wl_port(wl_port.get_name(), mux_graph.num_memory_bits(), mux_graph.num_memory_bits());
|
|
port2port_name_map[progBE_blb_port.get_name()] = cur_blb_port;
|
|
port2port_name_map[progBE_wl_port.get_name()] = cur_wl_port;
|
|
/* Output an instance of the module */
|
|
print_verilog_module_instance(fp, module_manager, module_id, progBE_module_id, port2port_name_map, circuit_lib.dump_explicit_port_map(circuit_model));
|
|
/* IMPORTANT: this update MUST be called after the instance outputting!!!!
|
|
* update the module manager with the relationship between the parent and child modules
|
|
*/
|
|
module_manager.add_child_module(module_id, progBE_module_id);
|
|
}
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Generate behavior-level Verilog codes modeling an branch circuit
|
|
* for a RRAM-based multiplexer with the given size
|
|
* Corresponding Schematic is as follows:
|
|
*
|
|
* BLB[0] BLB[N]
|
|
* | |
|
|
* \|/ \|/
|
|
* in[0] ---->RRAM[0]-----+
|
|
* |
|
|
* BLB[1] |
|
|
* | |
|
|
* \|/ |
|
|
* in[1] ---->RRAM[1]-----+
|
|
* |-----> out[0]
|
|
* ...
|
|
* |
|
|
* in[N-1] ---->RRAM[N-1]---+
|
|
* /|\ /|\
|
|
* | |
|
|
* BLB[N-1] WL[N]
|
|
*
|
|
* Working principle:
|
|
* 1. Set a RRAM[i]: enable BLB[i] and WL[N]
|
|
* 2. Reset a RRAM[i]: enable BLB[N] and WL[i]
|
|
* 3. Operation: disable all BLBs and WLs
|
|
*
|
|
* TODO: Elaborate the codes to output the circuit logic
|
|
* following the mux_graph!
|
|
*********************************************************************/
|
|
static
|
|
void generate_verilog_rram_mux_branch_body_behavioral(std::fstream& fp,
|
|
const CircuitLibrary& circuit_lib,
|
|
const CircuitModelId& circuit_model,
|
|
const BasicPort& input_port,
|
|
const BasicPort& output_port,
|
|
const BasicPort& blb_port,
|
|
const BasicPort& wl_port,
|
|
const MuxGraph& mux_graph) {
|
|
/* Make sure we have a valid file handler*/
|
|
check_file_handler(fp);
|
|
|
|
/* Verilog Behavior description for a MUX */
|
|
print_verilog_comment(fp, std::string("---- Behavioral-level description of RRAM MUX -----"));
|
|
|
|
/* Add an internal register for the output */
|
|
BasicPort outreg_port("out_reg", mux_graph.num_inputs());
|
|
/* Print the port */
|
|
fp << "\t" << generate_verilog_port(VERILOG_PORT_REG, outreg_port) << ";" << std::endl;
|
|
|
|
/* Print the internal logics */
|
|
fp << "\t" << "always @(";
|
|
fp << generate_verilog_port(VERILOG_PORT_CONKT, blb_port);
|
|
fp << ", ";
|
|
fp << generate_verilog_port(VERILOG_PORT_CONKT, wl_port);
|
|
fp << ")";
|
|
fp << " begin" << std::endl;
|
|
|
|
/* Only when the last bit of wl is enabled,
|
|
* the propagating path can be changed
|
|
* (RRAM value can be changed) */
|
|
fp << "\t\t" << "if (";
|
|
BasicPort set_enable_port(wl_port.get_name(), wl_port.get_width() - 1, wl_port.get_width() - 1);
|
|
fp << generate_verilog_port(VERILOG_PORT_CONKT, set_enable_port);
|
|
/* We need two config-enable ports: prog_EN and prog_ENb */
|
|
bool find_prog_EN = false;
|
|
bool find_prog_ENb = false;
|
|
for (const auto& port : circuit_lib.model_global_ports(circuit_model, true)) {
|
|
/* Bypass non-config-enable ports */
|
|
if (false == circuit_lib.port_is_config_enable(port)) {
|
|
continue;
|
|
}
|
|
/* Reach here, the port should be is_config_enable */
|
|
/* Create a port object */
|
|
fp << " && ";
|
|
BasicPort prog_en_port(circuit_lib.port_prefix(port), circuit_lib.port_size(port));
|
|
if ( 0 == circuit_lib.port_default_value(port)) {
|
|
/* Default value = 0 means that this is a prog_EN port */
|
|
fp << generate_verilog_port(VERILOG_PORT_CONKT, prog_en_port);
|
|
find_prog_EN = true;
|
|
} else {
|
|
VTR_ASSERT ( 1 == circuit_lib.port_default_value(port));
|
|
/* Default value = 1 means that this is a prog_ENb port, add inversion in the if condition */
|
|
fp << "(~" << generate_verilog_port(VERILOG_PORT_CONKT, prog_en_port) << ")";
|
|
find_prog_ENb = true;
|
|
}
|
|
}
|
|
/* Check if we find any config_enable signals */
|
|
if (false == find_prog_EN) {
|
|
vpr_printf(TIO_MESSAGE_ERROR,
|
|
"(File:%s,[LINE%d])Unable to find a config_enable signal with default value 0 for a RRAM MUX (%s)!\n",
|
|
__FILE__, __LINE__, circuit_lib.model_name(circuit_model).c_str());
|
|
exit(1);
|
|
}
|
|
if (false == find_prog_ENb) {
|
|
vpr_printf(TIO_MESSAGE_ERROR,
|
|
"(File:%s,[LINE%d])Unable to find a config_enable signal with default value 1 for a RRAM MUX (%s)!\n",
|
|
__FILE__, __LINE__, circuit_lib.model_name(circuit_model).c_str());
|
|
exit(1);
|
|
}
|
|
|
|
/* Finish the if clause */
|
|
fp << ") begin" << std::endl;
|
|
|
|
for (const auto& mux_input : mux_graph.inputs()) {
|
|
/* First if clause need tabs */
|
|
if ( 0 == size_t(mux_graph.input_id(mux_input)) ) {
|
|
fp << "\t\t\t";
|
|
}
|
|
fp << "if (1 == ";
|
|
/* Create a temp port of a BLB bit */
|
|
BasicPort cur_blb_port(blb_port.get_name(), size_t(mux_graph.input_id(mux_input)), size_t(mux_graph.input_id(mux_input)));
|
|
fp << generate_verilog_port(VERILOG_PORT_CONKT, cur_blb_port);
|
|
fp << ") begin" << std::endl;
|
|
fp << "\t\t\t\t" << "assign ";
|
|
fp << outreg_port.get_name();
|
|
fp << " = " << size_t(mux_graph.input_id(mux_input)) << ";" << std::endl;
|
|
fp << "\t\t\t" << "end else ";
|
|
}
|
|
fp << "begin" << std::endl;
|
|
fp << "\t\t\t\t" << "assign ";
|
|
fp << outreg_port.get_name();
|
|
fp << " = 0;" << std::endl;
|
|
fp << "\t\t\t" << "end" << std::endl;
|
|
fp << "\t\t" << "end" << std::endl;
|
|
fp << "\t" << "end" << std::endl;
|
|
|
|
fp << "\t" << "assign ";
|
|
fp << generate_verilog_port(VERILOG_PORT_CONKT, output_port);
|
|
fp << " = ";
|
|
fp << input_port.get_name() << "[";
|
|
fp << outreg_port.get_name();
|
|
fp << "];" << std::endl;
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Generate Verilog codes modeling an branch circuit
|
|
* for a RRAM-based multiplexer with the given size
|
|
* Support structural and behavioral Verilog codes
|
|
*********************************************************************/
|
|
static
|
|
void generate_verilog_rram_mux_branch_module(ModuleManager& module_manager,
|
|
const CircuitLibrary& circuit_lib,
|
|
std::fstream& fp,
|
|
const CircuitModelId& circuit_model,
|
|
const std::string& module_name,
|
|
const MuxGraph& mux_graph,
|
|
const bool& use_structural_verilog) {
|
|
/* Make sure we have a valid file handler*/
|
|
check_file_handler(fp);
|
|
|
|
/* Generate the Verilog netlist according to the mux_graph */
|
|
/* Find out the number of inputs */
|
|
size_t num_inputs = mux_graph.num_inputs();
|
|
/* Find out the number of outputs */
|
|
size_t num_outputs = mux_graph.num_outputs();
|
|
/* Find out the number of memory bits */
|
|
size_t num_mems = mux_graph.num_memory_bits();
|
|
|
|
/* Check codes to ensure the port of Verilog netlists will match */
|
|
/* MUX graph must have only 1 output */
|
|
VTR_ASSERT(1 == num_outputs);
|
|
/* MUX graph must have only 1 level*/
|
|
VTR_ASSERT(1 == mux_graph.num_levels());
|
|
|
|
/* Create a Verilog Module based on the circuit model, and add to module manager */
|
|
ModuleId module_id = module_manager.add_module(module_name);
|
|
VTR_ASSERT(ModuleId::INVALID() != module_id);
|
|
|
|
/* Add module ports */
|
|
/* Add each global programming enable/disable ports */
|
|
std::vector<CircuitPortId> prog_enable_ports = circuit_lib.model_global_ports_by_type(circuit_model, SPICE_MODEL_PORT_INPUT, true);
|
|
for (const auto& port : prog_enable_ports) {
|
|
/* Configure each global port */
|
|
BasicPort global_port(circuit_lib.port_lib_name(port), circuit_lib.port_size(port));
|
|
module_manager.add_port(module_id, global_port, ModuleManager::MODULE_GLOBAL_PORT);
|
|
}
|
|
/* Add each input port */
|
|
BasicPort input_port("in", num_inputs);
|
|
module_manager.add_port(module_id, input_port, ModuleManager::MODULE_INPUT_PORT);
|
|
/* Add each output port */
|
|
BasicPort output_port("out", num_outputs);
|
|
module_manager.add_port(module_id, output_port, ModuleManager::MODULE_OUTPUT_PORT);
|
|
/* Add RRAM programming ports,
|
|
* RRAM MUXes require one more pair of BLB and WL
|
|
* to configure the memories. See schematic for details
|
|
*/
|
|
BasicPort blb_port("blb", num_mems + 1);
|
|
module_manager.add_port(module_id, blb_port, ModuleManager::MODULE_INPUT_PORT);
|
|
BasicPort wl_port("wl", num_mems + 1);
|
|
module_manager.add_port(module_id, wl_port, ModuleManager::MODULE_INPUT_PORT);
|
|
|
|
/* dump module definition + ports */
|
|
print_verilog_module_declaration(fp, module_manager, module_id);
|
|
|
|
/* Print the internal logic in either structural or behavioral Verilog codes */
|
|
if (true == use_structural_verilog) {
|
|
generate_verilog_rram_mux_branch_body_structural(module_manager, circuit_lib, fp, module_id, circuit_model, input_port, output_port, blb_port, wl_port, mux_graph);
|
|
} else {
|
|
generate_verilog_rram_mux_branch_body_behavioral(fp, circuit_lib, circuit_model, input_port, output_port, blb_port, wl_port, mux_graph);
|
|
}
|
|
|
|
/* Put an end to the Verilog module */
|
|
print_verilog_module_end(fp, module_name);
|
|
}
|
|
|
|
/***********************************************
|
|
* Generate Verilog codes modeling an branch circuit
|
|
* for a multiplexer with the given size
|
|
**********************************************/
|
|
static
|
|
void generate_verilog_mux_branch_module(ModuleManager& module_manager,
|
|
const CircuitLibrary& circuit_lib,
|
|
std::fstream& fp,
|
|
const CircuitModelId& circuit_model,
|
|
const size_t& mux_size,
|
|
const MuxGraph& mux_graph) {
|
|
std::string module_name = generate_verilog_mux_branch_subckt_name(circuit_lib, circuit_model, mux_size, mux_graph.num_inputs(), verilog_mux_basis_posfix);
|
|
|
|
/* Multiplexers built with different technology is in different organization */
|
|
switch (circuit_lib.design_tech_type(circuit_model)) {
|
|
case SPICE_MODEL_DESIGN_CMOS:
|
|
generate_verilog_cmos_mux_branch_module(module_manager, circuit_lib, fp, circuit_model, module_name, mux_graph,
|
|
circuit_lib.dump_structural_verilog(circuit_model));
|
|
break;
|
|
case SPICE_MODEL_DESIGN_RRAM:
|
|
generate_verilog_rram_mux_branch_module(module_manager, circuit_lib, fp, circuit_model, module_name, mux_graph,
|
|
circuit_lib.dump_structural_verilog(circuit_model));
|
|
break;
|
|
default:
|
|
vpr_printf(TIO_MESSAGE_ERROR,
|
|
"(FILE:%s,LINE[%d]) Invalid design technology of multiplexer (name: %s)\n",
|
|
__FILE__, __LINE__, circuit_lib.model_name(circuit_model).c_str());
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/***********************************************
|
|
* Generate Verilog modules for all the unique
|
|
* multiplexers in the FPGA device
|
|
**********************************************/
|
|
void print_verilog_submodule_muxes(ModuleManager& module_manager,
|
|
const MuxLibrary& mux_lib,
|
|
const CircuitLibrary& circuit_lib,
|
|
t_sram_orgz_info* cur_sram_orgz_info,
|
|
char* verilog_dir,
|
|
char* submodule_dir) {
|
|
|
|
/* TODO: Generate modules into a .bak file now. Rename after it is verified */
|
|
std::string verilog_fname(my_strcat(submodule_dir, muxes_verilog_file_name));
|
|
verilog_fname += ".bak";
|
|
|
|
/* Create the file stream */
|
|
std::fstream fp;
|
|
fp.open(verilog_fname, std::fstream::out | std::fstream::trunc);
|
|
|
|
check_file_handler(fp);
|
|
|
|
/* Print out debugging information for if the file is not opened/created properly */
|
|
vpr_printf(TIO_MESSAGE_INFO,
|
|
"Creating Verilog netlist for Multiplexers (%s) ...\n",
|
|
verilog_fname.c_str());
|
|
|
|
print_verilog_file_header(fp, "Multiplexers");
|
|
|
|
print_verilog_include_defines_preproc_file(fp, verilog_dir);
|
|
|
|
/* Generate basis sub-circuit for unique branches shared by the multiplexers */
|
|
for (auto mux : mux_lib.muxes()) {
|
|
const MuxGraph& mux_graph = mux_lib.mux_graph(mux);
|
|
CircuitModelId mux_circuit_model = mux_lib.mux_circuit_model(mux);
|
|
/* Create a mux graph for the branch circuit */
|
|
std::vector<MuxGraph> branch_mux_graphs = mux_graph.build_mux_branch_graphs();
|
|
/* Create branch circuits, which are N:1 one-level or 2:1 tree-like MUXes */
|
|
for (auto branch_mux_graph : branch_mux_graphs) {
|
|
generate_verilog_mux_branch_module(module_manager, circuit_lib, fp, mux_circuit_model,
|
|
mux_graph.num_inputs(), branch_mux_graph);
|
|
}
|
|
/* TODO: create MUX modules */
|
|
}
|
|
|
|
/* Dump MUX graph one by one */
|
|
|
|
/* Close the file steam */
|
|
fp.close();
|
|
|
|
/* TODO:
|
|
* Scan-chain configuration circuit does not need any BLs/WLs!
|
|
* SRAM MUX does not need any reserved BL/WLs!
|
|
*/
|
|
/* Determine reserved Bit/Word Lines if a memory bank is specified,
|
|
* At least 1 BL/WL should be reserved!
|
|
*/
|
|
try_update_sram_orgz_info_reserved_blwl(cur_sram_orgz_info,
|
|
mux_lib.max_mux_size(), mux_lib.max_mux_size());
|
|
|
|
/* TODO: Add fname to the linked list when debugging is finished */
|
|
/*
|
|
submodule_verilog_subckt_file_path_head = add_one_subckt_file_name_to_llist(submodule_verilog_subckt_file_path_head, verilog_name);
|
|
*/
|
|
}
|
|
|