OpenFPGA/openfpga_flow/benchmarks/iwls2005/pci/rtl/pci_delayed_sync.v

470 lines
18 KiB
Verilog

//////////////////////////////////////////////////////////////////////
//// ////
//// File name "delayed_sync.v" ////
//// ////
//// This file is part of the "PCI bridge" project ////
//// http://www.opencores.org/cores/pci/ ////
//// ////
//// Author(s): ////
//// - Miha Dolenc (mihad@opencores.org) ////
//// ////
//// All additional information is avaliable in the README ////
//// file. ////
//// ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001 Miha Dolenc, mihad@opencores.org ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: pci_delayed_sync.v,v $
// Revision 1.3 2003/08/14 13:06:02 simons
// synchronizer_flop replaced with pci_synchronizer_flop, artisan ram instance updated.
//
// Revision 1.2 2003/03/26 13:16:18 mihad
// Added the reset value parameter to the synchronizer flop module.
// Added resets to all synchronizer flop instances.
// Repaired initial sync value in fifos.
//
// Revision 1.1 2003/01/27 16:49:31 mihad
// Changed module and file names. Updated scripts accordingly. FIFO synchronizations changed.
//
// Revision 1.5 2002/09/25 09:54:50 mihad
// Added completion expiration test for WB Slave unit. Changed expiration signalling
//
// Revision 1.4 2002/03/05 11:53:47 mihad
// Added some testcases, removed un-needed fifo signals
//
// Revision 1.3 2002/02/01 15:25:12 mihad
// Repaired a few bugs, updated specification, added test bench files and design document
//
// Revision 1.2 2001/10/05 08:14:28 mihad
// Updated all files with inclusion of timescale file for simulation purposes.
//
// Revision 1.1.1.1 2001/10/02 15:33:46 mihad
// New project directory structure
//
//
// module provides synchronization mechanism between requesting and completing side of the bridge
`include "pci_constants.v"
`include "bus_commands.v"
// synopsys translate_off
`include "timescale.v"
// synopsys translate_on
module pci_delayed_sync
(
reset_in,
req_clk_in,
comp_clk_in,
req_in,
comp_in,
done_in,
in_progress_in,
comp_req_pending_out,
req_req_pending_out,
req_comp_pending_out,
comp_comp_pending_out,
addr_in,
be_in,
addr_out,
be_out,
we_in,
we_out,
bc_in,
bc_out,
status_in,
status_out,
comp_flush_out,
burst_in,
burst_out,
retry_expired_in
);
// system inputs
input reset_in, // reset input
req_clk_in, // requesting clock input
comp_clk_in ; // completing clock input
// request, completion, done and in progress indication inputs
input req_in, // request qualifier - when 1 it indicates that valid request data is provided on inputs
comp_in, // completion qualifier - when 1, completing side indicates that request has completed
done_in, // done input - when 1 indicates that requesting side of the bridge has completed a transaction on requesting bus
in_progress_in ; // in progress indicator - indicates that current completion is in progress on requesting side of the bridge
// pending indication outputs
output comp_req_pending_out, // completion side request output - resynchronized from requesting clock to completing clock
req_req_pending_out, // request pending output for requesting side
req_comp_pending_out, // completion pending output for requesting side of the bridge - it indicates when completion is ready for completing on requesting bus
comp_comp_pending_out ; // completion pending output for completing side of the bridge
// additional signals and wires for clock domain passage of signals
reg comp_req_pending,
req_req_pending,
req_comp_pending,
req_comp_pending_sample,
comp_comp_pending,
req_done_reg,
comp_done_reg_main,
comp_done_reg_clr,
req_rty_exp_reg,
req_rty_exp_clr,
comp_rty_exp_reg,
comp_rty_exp_clr ;
wire sync_comp_req_pending,
sync_req_comp_pending,
sync_comp_done,
sync_req_rty_exp,
sync_comp_rty_exp_clr ;
// inputs from requesting side - only this side can set address, bus command, byte enables, write enable and burst - outputs are common for both sides
// all signals that identify requests are stored in this module
input [31:0] addr_in ; // address bus input
input [3:0] be_in ; // byte enable input
input we_in ; // write enable input - read/write request indication 1 = write request / 0 = read request
input [3:0] bc_in ; // bus command input
input burst_in ; // burst indicator - qualifies operation as burst/single transfer 1 = burst / 0 = single transfer
// common request outputs used both by completing and requesting sides
// this outputs are not resynchronized, since flags determine the request status
output [31:0] addr_out ;
output [3:0] be_out ;
output we_out ;
output [3:0] bc_out ;
output burst_out ;
// completion side signals encoded termination status - 0 = normal completion / 1 = error terminated completion
input status_in ;
output status_out ;
// input signals that delayed transaction has been retried for max number of times
// on this signal request is ditched, otherwise it would cause a deadlock
// requestor can issue another request and procedure will be repeated
input retry_expired_in ;
// completion flush output - if in 2^^16 clock cycles transaction is not repeated by requesting agent - flush completion data
output comp_flush_out ;
// output registers for common signals
reg [31:0] addr_out ;
reg [3:0] be_out ;
reg we_out ;
reg [3:0] bc_out ;
reg burst_out ;
// delayed transaction information is stored only when request is issued and request nor completion are pending
wire new_request = req_in && ~req_comp_pending_out && ~req_req_pending_out ;
always@(posedge req_clk_in or posedge reset_in)
begin
if (reset_in)
begin
addr_out <= #`FF_DELAY 32'h0000_0000 ;
be_out <= #`FF_DELAY 4'h0 ;
we_out <= #`FF_DELAY 1'b0 ;
bc_out <= #`FF_DELAY `BC_RESERVED0 ;
burst_out <= #`FF_DELAY 1'b0 ;
end
else
if (new_request)
begin
addr_out <= #`FF_DELAY addr_in ;
be_out <= #`FF_DELAY be_in ;
we_out <= #`FF_DELAY we_in ;
bc_out <= #`FF_DELAY bc_in ;
burst_out <= #`FF_DELAY burst_in ;
end
end
// completion pending cycle counter
reg [16:0] comp_cycle_count ;
/*=================================================================================================================================
Passing of requests between clock domains:
request originates on requesting side. It's then synchronized with two flip-flops to cross to completing clock domain
=================================================================================================================================*/
// main request flip-flop triggered on requesting side's clock
// request is cleared whenever completion or retry expired is signalled from opposite side of the bridge
wire req_req_clear = req_comp_pending || (req_rty_exp_reg && ~req_rty_exp_clr) ;
always@(posedge req_clk_in or posedge reset_in)
begin
if ( reset_in )
req_req_pending <= #`FF_DELAY 1'b0 ;
else
if ( req_req_clear )
req_req_pending <= #`FF_DELAY 1'b0 ;
else
if ( req_in )
req_req_pending <= #`FF_DELAY 1'b1 ;
end
// interemediate stage request synchronization flip - flop - this one is prone to metastability
// and should have setup and hold times disabled during simulation
pci_synchronizer_flop #(1, 0) req_sync
(
.data_in (req_req_pending),
.clk_out (comp_clk_in),
.sync_data_out (sync_comp_req_pending),
.async_reset (reset_in)
) ;
// wire for clearing completion side request flag - whenever completion or retry expired are signalled
wire comp_req_pending_clear = comp_req_pending && ( comp_in || retry_expired_in) ;
// wire for enabling request flip - flop - it is enabled when completion is not active and done is not active
wire comp_req_pending_ena = ~comp_comp_pending && ~comp_done_reg_main && ~comp_rty_exp_reg ;
// completion side request flip flop - gets a value from intermediate stage sync flip flop
always@(posedge comp_clk_in or posedge reset_in)
begin
if ( reset_in )
comp_req_pending <= #`FF_DELAY 1'b0 ;
else
if ( comp_req_pending_clear )
comp_req_pending <= #`FF_DELAY 1'b0 ;
else
if ( comp_req_pending_ena )
comp_req_pending <= #`FF_DELAY sync_comp_req_pending ;
end
// completion side request output assignment - when request ff is set and completion ff is not set
assign comp_req_pending_out = comp_req_pending ;
// requesting side request pending output
assign req_req_pending_out = req_req_pending ;
/*=================================================================================================================================
Passing of completions between clock domains:
completion originates on completing side. It's then synchronized with two flip-flops to cross to requesting clock domain
=================================================================================================================================*/
// main completion Flip - Flop - triggered by completing side's clock
// completion side completion pending flag is cleared when done flag propagates through clock domains
wire comp_comp_clear = comp_done_reg_main && ~comp_done_reg_clr ;
always@(posedge comp_clk_in or posedge reset_in)
begin
if ( reset_in )
comp_comp_pending <= #`FF_DELAY 1'b0 ;
else
if ( comp_comp_clear )
comp_comp_pending <= #`FF_DELAY 1'b0 ;
else
if ( comp_in && comp_req_pending )
comp_comp_pending <= #`FF_DELAY 1'b1 ;
end
assign comp_comp_pending_out = comp_comp_pending ;
// interemediate stage completion synchronization flip - flop - this one is prone to metastability
pci_synchronizer_flop #(1, 0) comp_sync
(
.data_in (comp_comp_pending),
.clk_out (req_clk_in),
.sync_data_out (sync_req_comp_pending),
.async_reset (reset_in)
) ;
// request side completion pending flip flop is cleared whenever done is signalled or completion counter expires - 2^^16 clock cycles
wire req_comp_pending_clear = done_in || comp_cycle_count[16];
// request side completion pending flip flop is disabled while done flag is set
wire req_comp_pending_ena = ~req_done_reg ;
// request side completion flip flop - gets a value from intermediate stage sync flip flop
always@(posedge req_clk_in or posedge reset_in)
begin
if ( reset_in )
req_comp_pending <= #`FF_DELAY 1'b0 ;
else
if ( req_comp_pending_clear )
req_comp_pending <= #`FF_DELAY 1'b0 ;
else
if ( req_comp_pending_ena )
req_comp_pending <= #`FF_DELAY sync_req_comp_pending ;
end
// sampling FF - used for sampling incoming completion flag from completing side
always@(posedge req_clk_in or posedge reset_in)
begin
if ( reset_in )
req_comp_pending_sample <= #`FF_DELAY 1'b0 ;
else
req_comp_pending_sample <= #`FF_DELAY sync_req_comp_pending ;
end
// requesting side completion pending output assignment
assign req_comp_pending_out = req_comp_pending && ~req_req_pending ;
/*==================================================================================================================================
Passing of delayed transaction done signal between clock domains.
Done is signalled by requesting side of the bridge and is passed to completing side of the bridge
==================================================================================================================================*/
// main done flip-flop triggered on requesting side's clock
// when completing side removes completion flag, done flag is also removed, so requests can proceede
wire req_done_clear = ~req_comp_pending_sample ;
always@(posedge req_clk_in or posedge reset_in)
begin
if ( reset_in )
req_done_reg <= #`FF_DELAY 1'b0 ;
else
if ( req_done_clear )
req_done_reg <= #`FF_DELAY 1'b0 ;
else
if ( done_in || comp_cycle_count[16] )
req_done_reg <= #`FF_DELAY 1'b1 ;
end
pci_synchronizer_flop #(1, 0) done_sync
(
.data_in (req_done_reg),
.clk_out (comp_clk_in),
.sync_data_out (sync_comp_done),
.async_reset (reset_in)
) ;
always@(posedge comp_clk_in or posedge reset_in)
begin
if ( reset_in )
comp_done_reg_main <= #`FF_DELAY 1'b0 ;
else
comp_done_reg_main <= #`FF_DELAY sync_comp_done ;
end
always@(posedge comp_clk_in or posedge reset_in)
begin
if ( reset_in )
comp_done_reg_clr <= #`FF_DELAY 1'b0 ;
else
comp_done_reg_clr <= #`FF_DELAY comp_done_reg_main ;
end
/*=================================================================================================================================
Passing of retry expired signal between clock domains
Retry expiration originates on completing side. It's then synchronized with two flip-flops to cross to requesting clock domain
=================================================================================================================================*/
// main retry expired Flip - Flop - triggered by completing side's clock
wire comp_rty_exp_clear = comp_rty_exp_clr && comp_rty_exp_reg ;
// retry expired is a special case of transaction removal - retry expired propagates from completing
// clock domain to requesting clock domain to remove all pending requests and than propagates back
// to completing side to qualify valid new requests
always@(posedge comp_clk_in or posedge reset_in)
begin
if ( reset_in )
comp_rty_exp_reg <= #`FF_DELAY 1'b0 ;
else
if ( comp_rty_exp_clear )
comp_rty_exp_reg <= #`FF_DELAY 1'b0 ;
else
if ( retry_expired_in && comp_req_pending)
comp_rty_exp_reg <= #`FF_DELAY 1'b1 ;
end
// interemediate stage retry expired synchronization flip - flop - this one is prone to metastability
pci_synchronizer_flop #(1, 0) rty_exp_sync
(
.data_in (comp_rty_exp_reg),
.clk_out (req_clk_in),
.sync_data_out (sync_req_rty_exp),
.async_reset (reset_in)
) ;
// request retry expired flip flop - gets a value from intermediate stage sync flip flop
always@(posedge req_clk_in or posedge reset_in)
begin
if ( reset_in )
req_rty_exp_reg <= #`FF_DELAY 1'b0 ;
else
req_rty_exp_reg <= #`FF_DELAY sync_req_rty_exp ;
end
always@(posedge req_clk_in or posedge reset_in)
begin
if ( reset_in )
req_rty_exp_clr <= #`FF_DELAY 1'b0 ;
else
req_rty_exp_clr <= #`FF_DELAY req_rty_exp_reg ;
end
pci_synchronizer_flop #(1, 0) rty_exp_back_prop_sync
(
.data_in (req_rty_exp_reg && req_rty_exp_clr),
.clk_out (comp_clk_in),
.sync_data_out (sync_comp_rty_exp_clr),
.async_reset (reset_in)
) ;
always@(posedge comp_clk_in or posedge reset_in)
begin
if ( reset_in )
comp_rty_exp_clr <= #`FF_DELAY 1'b0 ;
else
comp_rty_exp_clr <= #`FF_DELAY sync_comp_rty_exp_clr ;
end
// completion status flip flop - if 0 when completion is signalled it's finished OK otherwise it means error
reg status_out ;
always@(posedge comp_clk_in or posedge reset_in)
begin
if (reset_in)
status_out <= #`FF_DELAY 1'b0 ;
else
if (comp_in && comp_req_pending)
status_out <= #`FF_DELAY status_in ;
end
// clocks counter - it counts how many clock cycles completion is present without beeing repeated
// if it counts to 2^^16 cycles the completion must be ditched
// wire for clearing this counter
wire clear_count = in_progress_in || ~req_comp_pending_out || comp_cycle_count[16] ;
always@(posedge req_clk_in or posedge reset_in)
begin
if (reset_in)
comp_cycle_count <= #`FF_DELAY 17'h0_0000 ;
else
if (clear_count)
comp_cycle_count <= #`FF_DELAY 17'h0_0000 ;
else
comp_cycle_count <= #`FF_DELAY comp_cycle_count + 1'b1 ;
end
// completion flush output - used for flushing fifos when counter expires
// if counter doesn't expire, fifo flush is up to WISHBONE slave or PCI target state machines
reg comp_flush_out ;
always@(posedge req_clk_in or posedge reset_in)
begin
if (reset_in)
comp_flush_out <= #`FF_DELAY 1'b0 ;
else
comp_flush_out <= #`FF_DELAY comp_cycle_count[16] ;
end
endmodule //delayed_sync