OpenFPGA/openfpga/src/fpga_verilog/verilog_mux.cpp

1587 lines
66 KiB
C++

/***********************************************
* This file includes functions to generate
* Verilog submodules for multiplexers.
* including both fundamental submodules
* such as a branch in a multiplexer
* and the full multiplexer
**********************************************/
#include <algorithm>
#include <map>
#include <string>
/* Headers from vtrutil library */
#include "vtr_assert.h"
#include "vtr_log.h"
/* Headers from readarch library */
#include "physical_types.h"
/* Headers from readarcopenfpga library */
#include "circuit_types.h"
/* Headers from openfpgautil library */
#include "circuit_library_utils.h"
#include "decoder_library_utils.h"
#include "module_manager.h"
#include "mux_graph.h"
#include "mux_utils.h"
#include "openfpga_digest.h"
#include "openfpga_naming.h"
#include "verilog_constants.h"
#include "verilog_module_writer.h"
#include "verilog_mux.h"
#include "verilog_writer_utils.h"
/* begin namespace openfpga */
namespace openfpga {
/*********************************************************************
* Generate behavior-level Verilog codes modeling an branch circuit
* for a multiplexer with the given size
*********************************************************************/
static void generate_verilog_cmos_mux_branch_body_behavioral(
std::fstream& fp, const BasicPort& input_port, const BasicPort& output_port,
const BasicPort& mem_port, const MuxGraph& mux_graph,
const size_t& default_mem_val) {
/* Make sure we have a valid file handler*/
VTR_ASSERT(true == valid_file_stream(fp));
/* Verilog Behavior description for a MUX */
print_verilog_comment(fp,
std::string("---- Behavioral-level description -----"));
/* Add an internal register for the output */
BasicPort outreg_port("out_reg", mux_graph.num_outputs());
/* Print the port */
fp << "\t" << generate_verilog_port(VERILOG_PORT_REG, outreg_port) << ";"
<< std::endl;
/* Generate the case-switch table */
fp << "\talways @(" << generate_verilog_port(VERILOG_PORT_CONKT, input_port)
<< ", " << generate_verilog_port(VERILOG_PORT_CONKT, mem_port) << ")"
<< std::endl;
fp << "\tcase (" << generate_verilog_port(VERILOG_PORT_CONKT, mem_port) << ")"
<< std::endl;
/* Output the netlist following the connections in mux_graph */
/* Iterate over the inputs */
for (const auto& mux_input : mux_graph.inputs()) {
BasicPort cur_input_port(input_port.get_name(),
size_t(mux_graph.input_id(mux_input)),
size_t(mux_graph.input_id(mux_input)));
/* Iterate over the outputs */
for (const auto& mux_output : mux_graph.outputs()) {
BasicPort cur_output_port(output_port.get_name(),
size_t(mux_graph.output_id(mux_output)),
size_t(mux_graph.output_id(mux_output)));
/* if there is a connection between the input and output, a tgate will be
* outputted */
std::vector<MuxEdgeId> edges =
mux_graph.find_edges(mux_input, mux_output);
/* There should be only one edge or no edge*/
VTR_ASSERT((1 == edges.size()) || (0 == edges.size()));
/* No need to output tgates if there are no edges between two nodes */
if (0 == edges.size()) {
continue;
}
/* For each case, generate the logic levels for all the inputs */
/* In each case, only one mem is enabled */
fp << "\t\t" << mem_port.get_width() << "'b";
std::string case_code(mem_port.get_width(), default_mem_val);
/* Find the mem_id controlling the edge */
MuxMemId mux_mem = mux_graph.find_edge_mem(edges[0]);
/* Flip a bit by the mem_id */
if (false == mux_graph.is_edge_use_inv_mem(edges[0])) {
case_code[size_t(mux_mem)] = '1';
} else {
case_code[size_t(mux_mem)] = '0';
}
fp << case_code << ": "
<< generate_verilog_port(VERILOG_PORT_CONKT, outreg_port) << " <= ";
fp << generate_verilog_port(VERILOG_PORT_CONKT, cur_input_port) << ";"
<< std::endl;
}
}
/* Default case: outputs are at high-impedance state 'z' */
std::string default_case(mux_graph.num_outputs(), 'z');
fp << "\t\tdefault: "
<< generate_verilog_port(VERILOG_PORT_CONKT, outreg_port) << " <= ";
fp << mux_graph.num_outputs() << "'b" << default_case << ";" << std::endl;
/* End the case */
fp << "\tendcase" << std::endl;
/* Wire registers to output ports */
fp << "\tassign " << generate_verilog_port(VERILOG_PORT_CONKT, output_port)
<< " = ";
fp << generate_verilog_port(VERILOG_PORT_CONKT, outreg_port) << ";"
<< std::endl;
}
/*********************************************************************
* Generate Verilog codes modeling an branch circuit
* for a CMOS multiplexer with the given size
* Support structural and behavioral Verilog codes
*********************************************************************/
static void print_verilog_cmos_mux_branch_module_behavioral(
ModuleManager& module_manager, const CircuitLibrary& circuit_lib,
std::fstream& fp, const CircuitModelId& mux_model,
const std::string& module_name, const MuxGraph& mux_graph,
const e_verilog_default_net_type& default_net_type) {
/* Get the tgate model */
CircuitModelId tgate_model = circuit_lib.pass_gate_logic_model(mux_model);
/* Skip output if the tgate model is a MUX2, it is handled by essential-gate
* generator */
if (CIRCUIT_MODEL_GATE == circuit_lib.model_type(tgate_model)) {
VTR_ASSERT(CIRCUIT_MODEL_GATE_MUX2 == circuit_lib.gate_type(tgate_model));
return;
}
/* Make sure we have a valid file handler*/
VTR_ASSERT(true == valid_file_stream(fp));
/* Generate the Verilog netlist according to the mux_graph */
/* Find out the number of inputs */
size_t num_inputs = mux_graph.num_inputs();
/* Find out the number of outputs */
size_t num_outputs = mux_graph.num_outputs();
/* Find out the number of memory bits */
size_t num_mems = mux_graph.num_memory_bits();
/* Check codes to ensure the port of Verilog netlists will match */
/* MUX graph must have only 1 output */
VTR_ASSERT(1 == num_outputs);
/* MUX graph must have only 1 level*/
VTR_ASSERT(1 == mux_graph.num_levels());
/* Create a Verilog Module based on the circuit model, and add to module
* manager */
ModuleId mux_module = module_manager.find_module(module_name);
VTR_ASSERT(true == module_manager.valid_module_id(mux_module));
/* Find module ports */
/* Find each input port */
BasicPort input_port("in", num_inputs);
/* Find each output port */
BasicPort output_port("out", num_outputs);
/* Find each memory port */
BasicPort mem_port("mem", num_mems);
/* dump module definition + ports */
print_verilog_module_declaration(fp, module_manager, mux_module,
default_net_type);
/* Print the internal logic in behavioral Verilog codes */
/* Get the default value of SRAM ports */
std::vector<CircuitPortId> regular_sram_ports =
find_circuit_regular_sram_ports(circuit_lib, mux_model);
VTR_ASSERT(1 == regular_sram_ports.size());
std::string mem_default_val =
std::to_string(circuit_lib.port_default_value(regular_sram_ports[0]));
/* Mem string must be only 1-bit! */
VTR_ASSERT(1 == mem_default_val.length());
generate_verilog_cmos_mux_branch_body_behavioral(
fp, input_port, output_port, mem_port, mux_graph, mem_default_val[0]);
/* Put an end to the Verilog module */
print_verilog_module_end(fp, module_name, default_net_type);
}
/*********************************************************************
* Dump a structural verilog for RRAM MUX basis module
* This is only called when structural verilog dumping option is enabled for
*this spice model IMPORTANT: the structural verilog can NOT be used for
*functionality verification!!!
* TODO: This part is quite restricted to the way we implemented our RRAM FPGA
* Should be reworked to be more generic !!!
*
* By structural the schematic is splitted into two parts: left part and right
*part The left part includes BLB[0..N-1] and WL[0..N-1] signals as well as
*RRAMs The right part includes BLB[N] and WL[N] Corresponding Schematic is as
*follows:
*
* LEFT PART | RIGHT PART
*
* BLB[0] BLB[N]
* | |
* \|/ \|/
* in[0] ---->RRAM[0]-----+
* |
* BLB[1] |
* | |
* \|/ |
* in[1] ---->RRAM[1]-----+
* |-----> out[0]
* ...
* |
* in[N-1] ---->RRAM[N-1]---+
* /|\ /|\
* | |
* BLB[N-1] WL[N]
*
* Working principle:
* 1. Set a RRAM[i]: enable BLB[i] and WL[N]
* 2. Reset a RRAM[i]: enable BLB[N] and WL[i]
* 3. Operation: disable all BLBs and WLs
*
* The structure is done in the way we implement the physical layout of RRAM MUX
* It is NOT the only road to the goal!!!
*********************************************************************/
static void generate_verilog_rram_mux_branch_body_structural(
ModuleManager& module_manager, const CircuitLibrary& circuit_lib,
std::fstream& fp, const ModuleId& module_id,
const CircuitModelId& circuit_model, const BasicPort& input_port,
const BasicPort& output_port, const BasicPort& blb_port,
const BasicPort& wl_port, const MuxGraph& mux_graph) {
std::string progTE_module_name("PROG_TE");
std::string progBE_module_name("PROG_BE");
/* Make sure we have a valid file handler*/
VTR_ASSERT(true == valid_file_stream(fp));
/* Verilog Behavior description for a MUX */
print_verilog_comment(
fp, std::string("---- Structure-level description of RRAM MUX -----"));
/* Print internal structure of 4T1R programming structures
* Written in structural Verilog
* The whole structure-level description is divided into two parts:
* 1. Left part consists of N PROG_TE modules, each of which
* includes a PMOS, a NMOS and a RRAM, which is actually the left
* part of a 4T1R programming structure
* 2. Right part includes only a PROG_BE module, which consists
* of a PMOS and a NMOS, which is actually the right part of a
* 4T1R programming sturcture
*/
/* Create a module for the progTE and register it in the module manager
* Structure of progTE
*
* +----------+
* in--->| |
* BLB-->| progTE |--> out
* WL--->| |
* +----------+
*/
ModuleId progTE_module_id = module_manager.add_module(progTE_module_name);
/* If there is already such as module inside, we just ned to find the module
* id */
if (ModuleId::INVALID() == progTE_module_id) {
progTE_module_id = module_manager.find_module(progTE_module_name);
/* We should have a valid id! */
VTR_ASSERT(ModuleId::INVALID() != progTE_module_id);
}
/* Add ports to the module */
/* input port */
BasicPort progTE_in_port("A", 1);
module_manager.add_port(progTE_module_id, progTE_in_port,
ModuleManager::MODULE_INPUT_PORT);
/* WL port */
BasicPort progTE_wl_port("WL", 1);
module_manager.add_port(progTE_module_id, progTE_wl_port,
ModuleManager::MODULE_INPUT_PORT);
/* BLB port */
BasicPort progTE_blb_port("BLB", 1);
module_manager.add_port(progTE_module_id, progTE_blb_port,
ModuleManager::MODULE_INPUT_PORT);
/* output port */
BasicPort progTE_out_port("Z", 1);
module_manager.add_port(progTE_module_id, progTE_out_port,
ModuleManager::MODULE_INPUT_PORT);
/* LEFT part: Verilog code generation */
/* Iterate over the inputs */
for (const auto& mux_input : mux_graph.inputs()) {
BasicPort cur_input_port(input_port.get_name(),
size_t(mux_graph.input_id(mux_input)),
size_t(mux_graph.input_id(mux_input)));
/* Iterate over the outputs */
for (const auto& mux_output : mux_graph.outputs()) {
BasicPort cur_output_port(output_port.get_name(),
size_t(mux_graph.output_id(mux_output)),
size_t(mux_graph.output_id(mux_output)));
/* if there is a connection between the input and output, a tgate will be
* outputted */
std::vector<MuxEdgeId> edges =
mux_graph.find_edges(mux_input, mux_output);
/* There should be only one edge or no edge*/
VTR_ASSERT((1 == edges.size()) || (0 == edges.size()));
/* No need to output tgates if there are no edges between two nodes */
if (0 == edges.size()) {
continue;
}
/* Create a port-to-port name map */
std::map<std::string, BasicPort> port2port_name_map;
/* input port */
port2port_name_map[progTE_in_port.get_name()] = cur_input_port;
/* output port */
port2port_name_map[progTE_out_port.get_name()] = cur_output_port;
/* Find the mem_id controlling the edge */
MuxMemId mux_mem = mux_graph.find_edge_mem(edges[0]);
BasicPort cur_blb_port(blb_port.get_name(), size_t(mux_mem),
size_t(mux_mem));
BasicPort cur_wl_port(wl_port.get_name(), size_t(mux_mem),
size_t(mux_mem));
/* RRAM configuration port: there should not be any inverted edge in RRAM
* MUX! */
VTR_ASSERT(false == mux_graph.is_edge_use_inv_mem(edges[0]));
/* wire mem to mem of module, and wire mem_inv to mem_inv of module */
port2port_name_map[progTE_blb_port.get_name()] = cur_blb_port;
port2port_name_map[progTE_wl_port.get_name()] = cur_wl_port;
/* Output an instance of the module */
print_verilog_module_instance(
fp, module_manager, module_id, progTE_module_id, port2port_name_map,
circuit_lib.dump_explicit_port_map(circuit_model));
/* IMPORTANT: this update MUST be called after the instance outputting!!!!
* update the module manager with the relationship between the parent and
* child modules
*/
module_manager.add_child_module(module_id, progTE_module_id);
}
}
/* Create a module for the progBE and register it in the module manager
* Structure of progBE
*
* +----------+
* | |
* BLB-->| progBE |<-> out
* WL--->| |
* +----------+
*/
ModuleId progBE_module_id = module_manager.add_module(progBE_module_name);
/* If there is already such as module inside, we just ned to find the module
* id */
if (ModuleId::INVALID() == progBE_module_id) {
progBE_module_id = module_manager.find_module(progBE_module_name);
/* We should have a valid id! */
VTR_ASSERT(ModuleId::INVALID() != progBE_module_id);
}
/* Add ports to the module */
/* inout port */
BasicPort progBE_inout_port("INOUT", 1);
module_manager.add_port(progBE_module_id, progBE_inout_port,
ModuleManager::MODULE_INOUT_PORT);
/* WL port */
BasicPort progBE_wl_port("WL", 1);
module_manager.add_port(progBE_module_id, progBE_wl_port,
ModuleManager::MODULE_INPUT_PORT);
/* BLB port */
BasicPort progBE_blb_port("BLB", 1);
module_manager.add_port(progBE_module_id, progBE_blb_port,
ModuleManager::MODULE_INPUT_PORT);
/* RIGHT part: Verilog code generation */
/* Iterate over the outputs */
for (const auto& mux_output : mux_graph.outputs()) {
BasicPort cur_output_port(output_port.get_name(),
size_t(mux_graph.output_id(mux_output)),
size_t(mux_graph.output_id(mux_output)));
/* Create a port-to-port name map */
std::map<std::string, BasicPort> port2port_name_map;
/* Wire the output port to the INOUT port */
port2port_name_map[progBE_inout_port.get_name()] = cur_output_port;
/* Find the mem_id controlling the edge */
BasicPort cur_blb_port(blb_port.get_name(), mux_graph.num_memory_bits(),
mux_graph.num_memory_bits());
BasicPort cur_wl_port(wl_port.get_name(), mux_graph.num_memory_bits(),
mux_graph.num_memory_bits());
port2port_name_map[progBE_blb_port.get_name()] = cur_blb_port;
port2port_name_map[progBE_wl_port.get_name()] = cur_wl_port;
/* Output an instance of the module */
print_verilog_module_instance(
fp, module_manager, module_id, progBE_module_id, port2port_name_map,
circuit_lib.dump_explicit_port_map(circuit_model));
/* IMPORTANT: this update MUST be called after the instance outputting!!!!
* update the module manager with the relationship between the parent and
* child modules
*/
module_manager.add_child_module(module_id, progBE_module_id);
}
}
/*********************************************************************
* Generate behavior-level Verilog codes modeling an branch circuit
* for a RRAM-based multiplexer with the given size
* Corresponding Schematic is as follows:
*
* BLB[0] BLB[N]
* | |
* \|/ \|/
* in[0] ---->RRAM[0]-----+
* |
* BLB[1] |
* | |
* \|/ |
* in[1] ---->RRAM[1]-----+
* |-----> out[0]
* ...
* |
* in[N-1] ---->RRAM[N-1]---+
* /|\ /|\
* | |
* BLB[N-1] WL[N]
*
* Working principle:
* 1. Set a RRAM[i]: enable BLB[i] and WL[N]
* 2. Reset a RRAM[i]: enable BLB[N] and WL[i]
* 3. Operation: disable all BLBs and WLs
*
* TODO: Elaborate the codes to output the circuit logic
* following the mux_graph!
*********************************************************************/
static void generate_verilog_rram_mux_branch_body_behavioral(
std::fstream& fp, const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model, const BasicPort& input_port,
const BasicPort& output_port, const BasicPort& blb_port,
const BasicPort& wl_port, const MuxGraph& mux_graph) {
/* Make sure we have a valid file handler*/
VTR_ASSERT(true == valid_file_stream(fp));
/* Verilog Behavior description for a MUX */
print_verilog_comment(
fp, std::string("---- Behavioral-level description of RRAM MUX -----"));
/* Add an internal register for the output */
BasicPort outreg_port("out_reg", mux_graph.num_inputs());
/* Print the port */
fp << "\t" << generate_verilog_port(VERILOG_PORT_REG, outreg_port) << ";"
<< std::endl;
/* Print the internal logics */
fp << "\t"
<< "always @(";
fp << generate_verilog_port(VERILOG_PORT_CONKT, blb_port);
fp << ", ";
fp << generate_verilog_port(VERILOG_PORT_CONKT, wl_port);
fp << ")";
fp << " begin" << std::endl;
/* Only when the last bit of wl is enabled,
* the propagating path can be changed
* (RRAM value can be changed) */
fp << "\t\t"
<< "if (";
BasicPort set_enable_port(wl_port.get_name(), wl_port.get_width() - 1,
wl_port.get_width() - 1);
fp << generate_verilog_port(VERILOG_PORT_CONKT, set_enable_port);
/* We need two config-enable ports: prog_EN and prog_ENb */
bool find_prog_EN = false;
bool find_prog_ENb = false;
for (const auto& port : circuit_lib.model_global_ports(circuit_model, true)) {
/* Bypass non-config-enable ports */
if (false == circuit_lib.port_is_config_enable(port)) {
continue;
}
/* Reach here, the port should be is_config_enable */
/* Create a port object */
fp << " && ";
BasicPort prog_en_port(circuit_lib.port_prefix(port),
circuit_lib.port_size(port));
if (0 == circuit_lib.port_default_value(port)) {
/* Default value = 0 means that this is a prog_EN port */
fp << generate_verilog_port(VERILOG_PORT_CONKT, prog_en_port);
find_prog_EN = true;
} else {
VTR_ASSERT(1 == circuit_lib.port_default_value(port));
/* Default value = 1 means that this is a prog_ENb port, add inversion in
* the if condition */
fp << "(~" << generate_verilog_port(VERILOG_PORT_CONKT, prog_en_port)
<< ")";
find_prog_ENb = true;
}
}
/* Check if we find any config_enable signals */
if (false == find_prog_EN) {
VTR_LOGF_ERROR(__FILE__, __LINE__,
"Unable to find a config_enable signal with default value 0 "
"for a RRAM MUX '%s'!\n",
circuit_lib.model_name(circuit_model).c_str());
exit(1);
}
if (false == find_prog_ENb) {
VTR_LOGF_ERROR(__FILE__, __LINE__,
"Unable to find a config_enable signal with default value 1 "
"for a RRAM MUX '%s'!\n",
circuit_lib.model_name(circuit_model).c_str());
exit(1);
}
/* Finish the if clause */
fp << ") begin" << std::endl;
for (const auto& mux_input : mux_graph.inputs()) {
/* First if clause need tabs */
if (0 == size_t(mux_graph.input_id(mux_input))) {
fp << "\t\t\t";
}
fp << "if (1 == ";
/* Create a temp port of a BLB bit */
BasicPort cur_blb_port(blb_port.get_name(),
size_t(mux_graph.input_id(mux_input)),
size_t(mux_graph.input_id(mux_input)));
fp << generate_verilog_port(VERILOG_PORT_CONKT, cur_blb_port);
fp << ") begin" << std::endl;
fp << "\t\t\t\t"
<< "assign ";
fp << outreg_port.get_name();
fp << " = " << size_t(mux_graph.input_id(mux_input)) << ";" << std::endl;
fp << "\t\t\t"
<< "end else ";
}
fp << "begin" << std::endl;
fp << "\t\t\t\t"
<< "assign ";
fp << outreg_port.get_name();
fp << " = 0;" << std::endl;
fp << "\t\t\t"
<< "end" << std::endl;
fp << "\t\t"
<< "end" << std::endl;
fp << "\t"
<< "end" << std::endl;
fp << "\t"
<< "assign ";
fp << generate_verilog_port(VERILOG_PORT_CONKT, output_port);
fp << " = ";
fp << input_port.get_name() << "[";
fp << outreg_port.get_name();
fp << "];" << std::endl;
}
/*********************************************************************
* Generate Verilog codes modeling an branch circuit
* for a RRAM-based multiplexer with the given size
* Support structural and behavioral Verilog codes
*********************************************************************/
static void generate_verilog_rram_mux_branch_module(
ModuleManager& module_manager, const CircuitLibrary& circuit_lib,
std::fstream& fp, const CircuitModelId& circuit_model,
const std::string& module_name, const MuxGraph& mux_graph,
const e_verilog_default_net_type& default_net_type,
const bool& use_structural_verilog) {
/* Make sure we have a valid file handler*/
VTR_ASSERT(true == valid_file_stream(fp));
/* Get the input ports from the mux */
std::vector<CircuitPortId> mux_input_ports = circuit_lib.model_ports_by_type(
circuit_model, CIRCUIT_MODEL_PORT_INPUT, true);
/* Get the output ports from the mux */
std::vector<CircuitPortId> mux_output_ports = circuit_lib.model_ports_by_type(
circuit_model, CIRCUIT_MODEL_PORT_OUTPUT, true);
/* Get the BL and WL ports from the mux */
std::vector<CircuitPortId> mux_blb_ports = circuit_lib.model_ports_by_type(
circuit_model, CIRCUIT_MODEL_PORT_BLB, true);
std::vector<CircuitPortId> mux_wl_ports =
circuit_lib.model_ports_by_type(circuit_model, CIRCUIT_MODEL_PORT_WL, true);
/* Generate the Verilog netlist according to the mux_graph */
/* Find out the number of inputs */
size_t num_inputs = mux_graph.num_inputs();
/* Find out the number of outputs */
size_t num_outputs = mux_graph.num_outputs();
/* Find out the number of memory bits */
size_t num_mems = mux_graph.num_memory_bits();
/* Check codes to ensure the port of Verilog netlists will match */
/* MUX graph must have only 1 output */
VTR_ASSERT(1 == num_outputs);
/* MUX graph must have only 1 level*/
VTR_ASSERT(1 == mux_graph.num_levels());
/* MUX graph must have only 1 input and 1 BLB and 1 WL port */
VTR_ASSERT(1 == mux_input_ports.size());
VTR_ASSERT(1 == mux_output_ports.size());
VTR_ASSERT(1 == mux_blb_ports.size());
VTR_ASSERT(1 == mux_wl_ports.size());
/* Create a Verilog Module based on the circuit model, and add to module
* manager */
ModuleId module_id = module_manager.find_module(module_name);
VTR_ASSERT(true == module_manager.valid_module_id(module_id));
/* Find each input port */
BasicPort input_port(circuit_lib.port_prefix(mux_input_ports[0]), num_inputs);
/* Find each output port */
BasicPort output_port(circuit_lib.port_prefix(mux_output_ports[0]),
num_outputs);
/* Find RRAM programming ports,
* RRAM MUXes require one more pair of BLB and WL
* to configure the memories. See schematic for details
*/
BasicPort blb_port(circuit_lib.port_prefix(mux_blb_ports[0]), num_mems + 1);
BasicPort wl_port(circuit_lib.port_prefix(mux_wl_ports[0]), num_mems + 1);
/* dump module definition + ports */
print_verilog_module_declaration(fp, module_manager, module_id,
default_net_type);
/* Print the internal logic in either structural or behavioral Verilog codes
*/
if (true == use_structural_verilog) {
generate_verilog_rram_mux_branch_body_structural(
module_manager, circuit_lib, fp, module_id, circuit_model, input_port,
output_port, blb_port, wl_port, mux_graph);
} else {
generate_verilog_rram_mux_branch_body_behavioral(
fp, circuit_lib, circuit_model, input_port, output_port, blb_port,
wl_port, mux_graph);
}
/* Put an end to the Verilog module */
print_verilog_module_end(fp, module_name, default_net_type);
}
/***********************************************
* Generate Verilog codes modeling an branch circuit
* for a multiplexer with the given size
**********************************************/
static void generate_verilog_mux_branch_module(
ModuleManager& module_manager, const CircuitLibrary& circuit_lib,
std::fstream& fp, const CircuitModelId& mux_model, const MuxGraph& mux_graph,
const ModuleNameMap& module_name_map, const bool& use_explicit_port_map,
const e_verilog_default_net_type& default_net_type,
std::map<std::string, bool>& branch_mux_module_is_outputted) {
std::string module_name = generate_mux_branch_subckt_name(
circuit_lib, mux_model, mux_graph.num_inputs(), mux_graph.num_memory_bits(),
VERILOG_MUX_BASIS_POSTFIX);
module_name = module_name_map.name(module_name);
/* Skip outputting if the module has already been outputted */
auto result = branch_mux_module_is_outputted.find(module_name);
if ((result != branch_mux_module_is_outputted.end()) &&
(true == result->second)) {
return;
}
/* Multiplexers built with different technology is in different organization
*/
switch (circuit_lib.design_tech_type(mux_model)) {
case CIRCUIT_MODEL_DESIGN_CMOS:
/* Skip module writing if the branch subckt is a standard cell! */
if (true == circuit_lib.valid_model_id(circuit_lib.model(module_name))) {
/* This model must be a MUX2 gate */
VTR_ASSERT(CIRCUIT_MODEL_GATE ==
circuit_lib.model_type(circuit_lib.model(module_name)));
VTR_ASSERT(CIRCUIT_MODEL_GATE_MUX2 ==
circuit_lib.gate_type(circuit_lib.model(module_name)));
break;
}
if (true == circuit_lib.dump_structural_verilog(mux_model)) {
/* Structural verilog can be easily generated by module writer */
ModuleId mux_module = module_manager.find_module(module_name);
VTR_ASSERT(true == module_manager.valid_module_id(mux_module));
write_verilog_module_to_file(
fp, module_manager, mux_module,
use_explicit_port_map ||
circuit_lib.dump_explicit_port_map(mux_model),
default_net_type);
/* Add an empty line as a splitter */
fp << std::endl;
} else {
/* Behavioral verilog requires customized generation */
print_verilog_cmos_mux_branch_module_behavioral(
module_manager, circuit_lib, fp, mux_model, module_name, mux_graph,
default_net_type);
}
break;
case CIRCUIT_MODEL_DESIGN_RRAM:
generate_verilog_rram_mux_branch_module(
module_manager, circuit_lib, fp, mux_model, module_name, mux_graph,
default_net_type, circuit_lib.dump_structural_verilog(mux_model));
break;
default:
VTR_LOGF_ERROR(__FILE__, __LINE__,
"Invalid design technology of multiplexer '%s'\n",
circuit_lib.model_name(mux_model).c_str());
exit(1);
}
/* Record that this branch module has been outputted */
branch_mux_module_is_outputted[module_name] = true;
}
/********************************************************************
* Generate the input bufferes for a multiplexer or LUT in Verilog codes
* 1. If input are required to be buffered (specified by users),
* buffers will be added to all the datapath inputs.
* 2. If input are required to NOT be buffered (specified by users),
* all the datapath inputs will be short wired to MUX inputs.
*
* For those Multiplexers or LUTs require a constant input:
* the last input of multiplexer will be wired to a constant voltage level
*******************************************************************/
static void generate_verilog_cmos_mux_module_input_buffers(
ModuleManager& module_manager, const CircuitLibrary& circuit_lib,
std::fstream& fp, const ModuleId& module_id,
const CircuitModelId& circuit_model, const MuxGraph& mux_graph) {
/* Make sure we have a valid file handler*/
VTR_ASSERT(true == valid_file_stream(fp));
/* Get the input ports from the mux */
std::vector<CircuitPortId> mux_input_ports = circuit_lib.model_ports_by_type(
circuit_model, CIRCUIT_MODEL_PORT_INPUT, true);
/* We should have only 1 input port! */
VTR_ASSERT(1 == mux_input_ports.size());
/* Get the input port from MUX module */
ModulePortId module_input_port_id = module_manager.find_module_port(
module_id, circuit_lib.port_prefix(mux_input_ports[0]));
VTR_ASSERT(ModulePortId::INVALID() != module_input_port_id);
/* Get the port from module */
BasicPort module_input_port =
module_manager.module_port(module_id, module_input_port_id);
/* Iterate over all the inputs in the MUX graph */
for (const auto& input_node : mux_graph.inputs()) {
/* Fetch fundamental information from MUX graph w.r.t. the input node */
MuxInputId input_index = mux_graph.input_id(input_node);
VTR_ASSERT(MuxInputId::INVALID() != input_index);
size_t input_node_level = mux_graph.node_level(input_node);
size_t input_node_index_at_level =
mux_graph.node_index_at_level(input_node);
/* Create the port information of the MUX input, which is the input of
* buffer instance */
BasicPort instance_input_port(module_input_port.get_name(),
size_t(input_index), size_t(input_index));
/* Create the port information of the MUX graph input, which is the output
* of buffer instance */
BasicPort instance_output_port(
generate_mux_node_name(input_node_level, false),
input_node_index_at_level, input_node_index_at_level);
/* For last input:
* Add a constant value to the last input, if this MUX needs a constant
* input
*/
if ((MuxInputId(mux_graph.num_inputs() - 1) ==
mux_graph.input_id(input_node)) &&
(true == circuit_lib.mux_add_const_input(circuit_model))) {
/* Get the constant input value */
size_t const_value = circuit_lib.mux_const_input_value(circuit_model);
VTR_ASSERT((0 == const_value) || (1 == const_value));
/* For the output of the buffer instance:
* Get the last inputs from the MUX graph and generate the node name in
* MUX module.
*/
print_verilog_comment(
fp, std::string("---- BEGIN short-wire a multiplexing structure input "
"to a constant value -----"));
print_verilog_wire_constant_values(fp, instance_output_port,
std::vector<size_t>(1, const_value));
print_verilog_comment(
fp, std::string("---- END short-wire a multiplexing structure input to "
"a constant value -----"));
fp << std::endl;
continue; /* Finish here */
}
/* If the inputs are not supposed to be buffered */
if (false == circuit_lib.is_input_buffered(circuit_model)) {
print_verilog_comment(
fp, std::string("---- BEGIN short-wire a multiplexing structure input "
"to MUX module input -----"));
/* Short wire all the datapath inputs to the MUX inputs */
print_verilog_wire_connection(fp, instance_output_port,
instance_input_port, false);
print_verilog_comment(
fp, std::string("---- END short-wire a multiplexing structure input to "
"MUX module input -----"));
fp << std::endl;
continue; /* Finish here */
}
/* Reach here, we need a buffer, create a port-to-port map and output the
* buffer instance */
print_verilog_comment(
fp,
std::string("---- BEGIN Instanciation of an input buffer module -----"));
/* Now we need to add intermediate buffers by instanciating the modules */
CircuitModelId buffer_model = circuit_lib.input_buffer_model(circuit_model);
/* We must have a valid model id */
VTR_ASSERT(CircuitModelId::INVALID() != buffer_model);
print_verilog_buffer_instance(fp, module_manager, circuit_lib, module_id,
buffer_model, instance_input_port,
instance_output_port);
print_verilog_comment(
fp,
std::string("---- END Instanciation of an input buffer module -----"));
fp << std::endl;
}
}
/********************************************************************
* Generate the output bufferes for a multiplexer or LUT in Verilog codes
* 1. If output are required to be buffered (specified by users),
* buffers will be added to all the outputs.
* 2. If output are required to NOT be buffered (specified by users),
* all the outputs will be short wired to MUX outputs.
*******************************************************************/
static void generate_verilog_cmos_mux_module_output_buffers(
ModuleManager& module_manager, const CircuitLibrary& circuit_lib,
std::fstream& fp, const ModuleId& module_id,
const CircuitModelId& circuit_model, const MuxGraph& mux_graph) {
/* Make sure we have a valid file handler*/
VTR_ASSERT(true == valid_file_stream(fp));
/* Get the output ports from the mux */
std::vector<CircuitPortId> mux_output_ports = circuit_lib.model_ports_by_type(
circuit_model, CIRCUIT_MODEL_PORT_OUTPUT, true);
/* Iterate over all the outputs in the MUX module */
for (const auto& output_port : mux_output_ports) {
/* Get the output port from MUX module */
ModulePortId module_output_port_id = module_manager.find_module_port(
module_id, circuit_lib.port_prefix(output_port));
VTR_ASSERT(ModulePortId::INVALID() != module_output_port_id);
/* Get the port from module */
BasicPort module_output_port =
module_manager.module_port(module_id, module_output_port_id);
/* Iterate over each pin of the output port */
for (const auto& pin : circuit_lib.pins(output_port)) {
/* Fetch fundamental information from MUX graph w.r.t. the input node */
/* Deposite the last level of the graph, which is a default value */
size_t output_node_level = mux_graph.num_node_levels() - 1;
/* If there is a fracturable level specified for the output, we find the
* exact level */
if (size_t(-1) != circuit_lib.port_lut_frac_level(output_port)) {
output_node_level = circuit_lib.port_lut_frac_level(output_port);
}
/* Deposite a zero, which is a default value */
size_t output_node_index_at_level = 0;
/* If there are output masks, we find the node_index */
if (!circuit_lib.port_lut_output_mask(output_port).empty()) {
output_node_index_at_level =
circuit_lib.port_lut_output_mask(output_port).at(pin);
}
/* Double check the node exists in the Mux Graph */
VTR_ASSERT(
MuxNodeId::INVALID() !=
mux_graph.node_id(output_node_level, output_node_index_at_level));
/* Create the port information of the MUX input, which is the input of
* buffer instance */
BasicPort instance_input_port(
generate_mux_node_name(output_node_level, false),
output_node_index_at_level, output_node_index_at_level);
/* Create the port information of the module output at the given pin
* range, which is the output of buffer instance */
BasicPort instance_output_port(module_output_port.get_name(), pin, pin);
/* If the output is not supposed to be buffered */
if (false == circuit_lib.is_output_buffered(circuit_model)) {
print_verilog_comment(
fp, std::string("---- BEGIN short-wire a multiplexing structure "
"output to MUX module output -----"));
/* Short wire all the datapath inputs to the MUX inputs */
print_verilog_wire_connection(fp, instance_output_port,
instance_input_port, false);
print_verilog_comment(
fp, std::string("---- END short-wire a multiplexing structure output "
"to MUX module output -----"));
fp << std::endl;
continue; /* Finish here */
}
/* Reach here, we need a buffer, create a port-to-port map and output the
* buffer instance */
print_verilog_comment(
fp, std::string(
"---- BEGIN Instanciation of an output buffer module -----"));
/* Now we need to add intermediate buffers by instanciating the modules */
CircuitModelId buffer_model =
circuit_lib.output_buffer_model(circuit_model);
/* We must have a valid model id */
VTR_ASSERT(CircuitModelId::INVALID() != buffer_model);
print_verilog_buffer_instance(fp, module_manager, circuit_lib, module_id,
buffer_model, instance_input_port,
instance_output_port);
print_verilog_comment(
fp,
std::string("---- END Instanciation of an output buffer module -----"));
fp << std::endl;
}
}
}
/********************************************************************
* Generate the 4T1R-based internal logic
* (multiplexing structure) for a multiplexer in Verilog codes
* This function will :
* 1. build a multiplexing structure by instanciating the branch circuits
* generated before
* 2. add intermediate buffers between multiplexing stages if specified.
*******************************************************************/
static void generate_verilog_rram_mux_module_multiplexing_structure(
ModuleManager& module_manager, const CircuitLibrary& circuit_lib,
std::fstream& fp, const ModuleId& module_id,
const CircuitModelId& circuit_model, const MuxGraph& mux_graph) {
/* Make sure we have a valid file handler*/
VTR_ASSERT(true == valid_file_stream(fp));
/* Get the BL and WL ports from the mux */
std::vector<CircuitPortId> mux_blb_ports = circuit_lib.model_ports_by_type(
circuit_model, CIRCUIT_MODEL_PORT_BLB, true);
std::vector<CircuitPortId> mux_wl_ports =
circuit_lib.model_ports_by_type(circuit_model, CIRCUIT_MODEL_PORT_WL, true);
/* MUX graph must have only 1 BLB and 1 WL port */
VTR_ASSERT(1 == mux_blb_ports.size());
VTR_ASSERT(1 == mux_wl_ports.size());
/* Build the location map of intermediate buffers */
std::vector<bool> inter_buffer_location_map =
build_mux_intermediate_buffer_location_map(circuit_lib, circuit_model,
mux_graph.num_node_levels());
print_verilog_comment(
fp,
std::string("---- BEGIN Internal Logic of a RRAM-based MUX module -----"));
print_verilog_comment(
fp,
std::string("---- BEGIN Internal wires of a RRAM-based MUX module -----"));
/* Print local wires which are the nodes in the mux graph */
for (size_t level = 0; level < mux_graph.num_levels(); ++level) {
/* Print the internal wires located at this level */
BasicPort internal_wire_port(generate_mux_node_name(level, false),
mux_graph.num_nodes_at_level(level));
fp << "\t" << generate_verilog_port(VERILOG_PORT_WIRE, internal_wire_port)
<< ";" << std::endl;
/* Identify if an intermediate buffer is needed */
if (false == inter_buffer_location_map[level]) {
continue;
}
BasicPort internal_wire_buffered_port(generate_mux_node_name(level, true),
mux_graph.num_nodes_at_level(level));
fp << "\t"
<< generate_verilog_port(VERILOG_PORT_WIRE, internal_wire_buffered_port)
<< std::endl;
}
print_verilog_comment(
fp,
std::string("---- END Internal wires of a RRAM-based MUX module -----"));
fp << std::endl;
/* Iterate over all the internal nodes and output nodes in the mux graph */
for (const auto& node : mux_graph.non_input_nodes()) {
print_verilog_comment(
fp,
std::string(
"---- BEGIN Instanciation of a branch RRAM-based MUX module -----"));
/* Get the size of branch circuit
* Instanciate an branch circuit by the size (fan-in) of the node
*/
size_t branch_size = mux_graph.node_in_edges(node).size();
/* Get the node level and index in the current level */
size_t output_node_level = mux_graph.node_level(node);
size_t output_node_index_at_level = mux_graph.node_index_at_level(node);
/* Get the nodes which drive the root_node */
std::vector<MuxNodeId> input_nodes;
for (const auto& edge : mux_graph.node_in_edges(node)) {
/* Get the nodes drive the edge */
for (const auto& src_node : mux_graph.edge_src_nodes(edge)) {
input_nodes.push_back(src_node);
}
}
/* Number of inputs should match the branch_input_size!!! */
VTR_ASSERT(input_nodes.size() == branch_size);
/* Get the mems in the branch circuits */
std::vector<MuxMemId> mems;
for (const auto& edge : mux_graph.node_in_edges(node)) {
/* Get the mem control the edge */
MuxMemId mem = mux_graph.find_edge_mem(edge);
/* Add the mem if it is not in the list */
if (mems.end() == std::find(mems.begin(), mems.end(), mem)) {
mems.push_back(mem);
}
}
/* Instanciate the branch module which is a tgate-based module
*/
std::string branch_module_name =
generate_mux_branch_subckt_name(circuit_lib, circuit_model, branch_size,
mems.size(), VERILOG_MUX_BASIS_POSTFIX);
/* Get the moduleId for the submodule */
ModuleId branch_module_id = module_manager.find_module(branch_module_name);
/* We must have one */
VTR_ASSERT(ModuleId::INVALID() != branch_module_id);
/* Create a port-to-port map */
std::map<std::string, BasicPort> port2port_name_map;
/* TODO: the branch module name should NOT be hard-coded. Use the port
* lib_name given by users! */
/* All the input node names organized in bus */
std::vector<BasicPort> branch_node_input_ports;
for (const auto& input_node : input_nodes) {
/* Generate the port info of each input node */
size_t input_node_level = mux_graph.node_level(input_node);
size_t input_node_index_at_level =
mux_graph.node_index_at_level(input_node);
BasicPort branch_node_input_port(
generate_mux_node_name(input_node_level,
inter_buffer_location_map[input_node_level]),
input_node_index_at_level, input_node_index_at_level);
branch_node_input_ports.push_back(branch_node_input_port);
}
/* Create the port info for the input */
/* TODO: the naming could be more flexible? */
BasicPort instance_input_port = generate_verilog_bus_port(
branch_node_input_ports,
std::string(generate_mux_node_name(output_node_level, false) + "_in"));
/* If we have more than 1 port in the combined instance ports ,
* output a local wire */
if (1 < combine_verilog_ports(branch_node_input_ports).size()) {
/* Print a local wire for the merged ports */
fp << "\t"
<< generate_verilog_local_wire(instance_input_port,
branch_node_input_ports)
<< std::endl;
} else {
/* Safety check */
VTR_ASSERT(1 == combine_verilog_ports(branch_node_input_ports).size());
}
/* Link nodes to input ports for the branch module */
ModulePortId module_input_port_id =
module_manager.find_module_port(branch_module_id, "in");
VTR_ASSERT(ModulePortId::INVALID() != module_input_port_id);
/* Get the port from module */
BasicPort module_input_port =
module_manager.module_port(branch_module_id, module_input_port_id);
port2port_name_map[module_input_port.get_name()] = instance_input_port;
/* Link nodes to output ports for the branch module */
BasicPort instance_output_port(
generate_mux_node_name(output_node_level, false),
output_node_index_at_level, output_node_index_at_level);
ModulePortId module_output_port_id =
module_manager.find_module_port(branch_module_id, "out");
VTR_ASSERT(ModulePortId::INVALID() != module_output_port_id);
/* Get the port from module */
BasicPort module_output_port =
module_manager.module_port(branch_module_id, module_output_port_id);
port2port_name_map[module_output_port.get_name()] = instance_output_port;
/* All the mem node names organized in bus
* RRAM-based MUX uses BLB and WL to control memories
*/
std::vector<BasicPort> branch_node_blb_ports;
for (const auto& mem : mems) {
/* Generate the port info of each mem node:
*/
BasicPort branch_node_blb_port(circuit_lib.port_prefix(mux_blb_ports[0]),
size_t(mem), size_t(mem));
branch_node_blb_ports.push_back(branch_node_blb_port);
}
/* Every stage, we have an additonal BLB and WL in controlling purpose
* The additional BLB is arranged at the tail of BLB port
* For example:
* The total port width is BLB[0 ... <num_mem> + <num_levels> - 1]
* The regular BLB used by branches are BLB[0 .. <num_mem> - 1]
* The additional BLB used by branches are BLB[<num_mem> .. <num_mem> +
* <num_levels> - 1]
*
* output_node_level is always larger than the mem_level by 1
*/
branch_node_blb_ports.push_back(
BasicPort(circuit_lib.port_prefix(mux_blb_ports[0]),
mux_graph.num_memory_bits() + output_node_level - 1,
mux_graph.num_memory_bits() + output_node_level - 1));
/* Create the port info for the input */
/* TODO: the naming could be more flexible? */
BasicPort instance_blb_port = generate_verilog_bus_port(
branch_node_blb_ports,
std::string(generate_mux_node_name(output_node_level, false) + "_blb"));
/* If we have more than 1 port in the combined instance ports ,
* output a local wire */
if (1 < combine_verilog_ports(branch_node_blb_ports).size()) {
/* Print a local wire for the merged ports */
fp << "\t"
<< generate_verilog_local_wire(instance_blb_port,
branch_node_blb_ports)
<< std::endl;
} else {
/* Safety check */
VTR_ASSERT(1 == combine_verilog_ports(branch_node_blb_ports).size());
}
/* Link nodes to BLB ports for the branch module */
ModulePortId module_blb_port_id = module_manager.find_module_port(
branch_module_id, circuit_lib.port_prefix(mux_blb_ports[0]));
VTR_ASSERT(ModulePortId::INVALID() != module_blb_port_id);
/* Get the port from module */
BasicPort module_blb_port =
module_manager.module_port(branch_module_id, module_blb_port_id);
port2port_name_map[module_blb_port.get_name()] = instance_blb_port;
std::vector<BasicPort> branch_node_wl_ports;
for (const auto& mem : mems) {
/* Generate the port info of each mem node:
*/
BasicPort branch_node_blb_port(circuit_lib.port_prefix(mux_wl_ports[0]),
size_t(mem), size_t(mem));
branch_node_wl_ports.push_back(branch_node_blb_port);
}
/* Every stage, we have an additonal BLB and WL in controlling purpose
* The additional BLB is arranged at the tail of BLB port
* For example:
* The total port width is WL[0 ... <num_mem> + <num_levels> - 1]
* The regular BLB used by branches are WL[0 .. <num_mem> - 1]
* The additional BLB used by branches are WL[<num_mem> .. <num_mem> +
* <num_levels> - 1]
*
* output_node_level is always larger than the mem_level by 1
*/
branch_node_wl_ports.push_back(
BasicPort(circuit_lib.port_prefix(mux_wl_ports[0]),
mux_graph.num_memory_bits() + output_node_level - 1,
mux_graph.num_memory_bits() + output_node_level - 1));
/* Create the port info for the WL */
/* TODO: the naming could be more flexible? */
BasicPort instance_wl_port = generate_verilog_bus_port(
branch_node_wl_ports,
std::string(generate_mux_node_name(output_node_level, false) + "_wl"));
/* If we have more than 1 port in the combined instance ports ,
* output a local wire */
if (1 < combine_verilog_ports(branch_node_wl_ports).size()) {
/* Print a local wire for the merged ports */
fp << "\t"
<< generate_verilog_local_wire(instance_wl_port, branch_node_wl_ports)
<< std::endl;
} else {
/* Safety check */
VTR_ASSERT(1 == combine_verilog_ports(branch_node_wl_ports).size());
}
/* Link nodes to BLB ports for the branch module */
ModulePortId module_wl_port_id = module_manager.find_module_port(
branch_module_id, circuit_lib.port_prefix(mux_wl_ports[0]));
VTR_ASSERT(ModulePortId::INVALID() != module_wl_port_id);
/* Get the port from module */
BasicPort module_wl_port =
module_manager.module_port(branch_module_id, module_wl_port_id);
port2port_name_map[module_wl_port.get_name()] = instance_wl_port;
/* Output an instance of the module */
print_verilog_module_instance(
fp, module_manager, module_id, branch_module_id, port2port_name_map,
circuit_lib.dump_explicit_port_map(circuit_model));
/* IMPORTANT: this update MUST be called after the instance outputting!!!!
* update the module manager with the relationship between the parent and
* child modules
*/
module_manager.add_child_module(module_id, branch_module_id);
print_verilog_comment(
fp, std::string(
"---- END Instanciation of a branch RRAM-based MUX module -----"));
fp << std::endl;
if (false == inter_buffer_location_map[output_node_level]) {
continue; /* No need for intermediate buffers */
}
print_verilog_comment(
fp,
std::string(
"---- BEGIN Instanciation of an intermediate buffer modules -----"));
/* Now we need to add intermediate buffers by instanciating the modules */
CircuitModelId buffer_model =
circuit_lib.lut_intermediate_buffer_model(circuit_model);
/* We must have a valid model id */
VTR_ASSERT(CircuitModelId::INVALID() != buffer_model);
BasicPort buffer_instance_input_port(
generate_mux_node_name(output_node_level, false),
output_node_index_at_level, output_node_index_at_level);
BasicPort buffer_instance_output_port(
generate_mux_node_name(output_node_level, true),
output_node_index_at_level, output_node_index_at_level);
print_verilog_buffer_instance(fp, module_manager, circuit_lib, module_id,
buffer_model, buffer_instance_input_port,
buffer_instance_output_port);
print_verilog_comment(
fp, std::string(
"---- END Instanciation of an intermediate buffer module -----"));
fp << std::endl;
}
print_verilog_comment(
fp,
std::string("---- END Internal Logic of a RRAM-based MUX module -----"));
fp << std::endl;
}
/*********************************************************************
* Generate Verilog codes modeling a RRAM-based multiplexer with the given size
* The Verilog module will consist of three parts:
* 1. instances of the branch circuits of multiplexers which are generated
*before This builds up the 4T1R-based multiplexing structure
*
* BLB WL
* | | ...
* v v
* +--------+
* in[0]-->| | BLB WL
* ...| Branch |-----+ | |
* in -->| 0 | | v v
* [N-1] +--------+ | +--------+
* ... -->| |
* BLBs WLs ...| Branch |
* | | ... -->| X |
* v v +--------+
* +--------+ |
* -->| | |
* ...| Branch |----+
* -->| i |
* +--------+
*
* 2. Input buffers/inverters
* 3. Output buffers/inverters
*********************************************************************/
static void generate_verilog_rram_mux_module(
ModuleManager& module_manager, const CircuitLibrary& circuit_lib,
std::fstream& fp, const CircuitModelId& circuit_model,
const std::string& module_name, const MuxGraph& mux_graph,
const e_verilog_default_net_type& default_net_type) {
/* Error out for the conditions where we are not yet supported! */
if (CIRCUIT_MODEL_LUT == circuit_lib.model_type(circuit_model)) {
/* RRAM LUT is not supported now... */
VTR_LOGF_ERROR(__FILE__, __LINE__,
"RRAM-based LUT is not supported for circuit model '%s'!\n",
circuit_lib.model_name(circuit_model).c_str());
exit(1);
}
/* Get the global ports required by MUX (and any submodules) */
std::vector<CircuitPortId> mux_global_ports =
circuit_lib.model_global_ports_by_type(
circuit_model, CIRCUIT_MODEL_PORT_INPUT, true, true);
/* Get the input ports from the mux */
std::vector<CircuitPortId> mux_input_ports = circuit_lib.model_ports_by_type(
circuit_model, CIRCUIT_MODEL_PORT_INPUT, true);
/* Get the output ports from the mux */
std::vector<CircuitPortId> mux_output_ports = circuit_lib.model_ports_by_type(
circuit_model, CIRCUIT_MODEL_PORT_OUTPUT, true);
/* Get the BL and WL ports from the mux */
std::vector<CircuitPortId> mux_blb_ports = circuit_lib.model_ports_by_type(
circuit_model, CIRCUIT_MODEL_PORT_BLB, true);
std::vector<CircuitPortId> mux_wl_ports =
circuit_lib.model_ports_by_type(circuit_model, CIRCUIT_MODEL_PORT_WL, true);
/* Make sure we have a valid file handler*/
VTR_ASSERT(true == valid_file_stream(fp));
/* Generate the Verilog netlist according to the mux_graph */
/* Find out the number of data-path inputs */
size_t num_inputs = find_mux_num_datapath_inputs(circuit_lib, circuit_model,
mux_graph.num_inputs());
/* Find out the number of outputs */
size_t num_outputs = mux_graph.num_outputs();
/* Find out the number of memory bits */
size_t num_mems = mux_graph.num_memory_bits();
/* Check codes to ensure the port of Verilog netlists will match */
/* MUX graph must have only 1 input and 1 BLB and 1 WL port */
VTR_ASSERT(1 == mux_input_ports.size());
VTR_ASSERT(1 == mux_blb_ports.size());
VTR_ASSERT(1 == mux_wl_ports.size());
/* Create a Verilog Module based on the circuit model, and add to module
* manager */
ModuleId module_id = module_manager.add_module(module_name);
VTR_ASSERT(ModuleId::INVALID() != module_id);
/* Add module ports */
/* Add each global port */
for (const auto& port : mux_global_ports) {
/* Configure each global port */
BasicPort global_port(circuit_lib.port_prefix(port),
circuit_lib.port_size(port));
module_manager.add_port(module_id, global_port,
ModuleManager::MODULE_GLOBAL_PORT);
}
/* Add each input port */
size_t input_port_cnt = 0;
for (const auto& port : mux_input_ports) {
BasicPort input_port(circuit_lib.port_prefix(port), num_inputs);
module_manager.add_port(module_id, input_port,
ModuleManager::MODULE_INPUT_PORT);
/* Update counter */
input_port_cnt++;
}
/* Double check: We should have only 1 input port generated here! */
VTR_ASSERT(1 == input_port_cnt);
for (const auto& port : mux_output_ports) {
BasicPort output_port(circuit_lib.port_prefix(port), num_outputs);
if (CIRCUIT_MODEL_LUT == circuit_lib.model_type(circuit_model)) {
output_port.set_width(circuit_lib.port_size(port));
}
module_manager.add_port(module_id, output_port,
ModuleManager::MODULE_OUTPUT_PORT);
}
/* BLB port */
for (const auto& port : mux_blb_ports) {
/* IMPORTANT: RRAM-based MUX has an additional BLB pin per level
* So, the actual port width of BLB should be added by the number of levels
* of the MUX graph
*/
BasicPort blb_port(circuit_lib.port_prefix(port),
num_mems + mux_graph.num_levels());
module_manager.add_port(module_id, blb_port,
ModuleManager::MODULE_INPUT_PORT);
}
/* WL port */
for (const auto& port : mux_wl_ports) {
/* IMPORTANT: RRAM-based MUX has an additional WL pin per level
* So, the actual port width of WL should be added by the number of levels
* of the MUX graph
*/
BasicPort wl_port(circuit_lib.port_prefix(port),
num_mems + mux_graph.num_levels());
module_manager.add_port(module_id, wl_port,
ModuleManager::MODULE_INPUT_PORT);
}
/* dump module definition + ports */
print_verilog_module_declaration(fp, module_manager, module_id,
default_net_type);
/* TODO: Print the internal logic in Verilog codes */
generate_verilog_rram_mux_module_multiplexing_structure(
module_manager, circuit_lib, fp, module_id, circuit_model, mux_graph);
/* Print the input and output buffers in Verilog codes */
/* TODO, we should rename the follow functions to a generic name? Since they
* are applicable to both MUXes */
generate_verilog_cmos_mux_module_input_buffers(
module_manager, circuit_lib, fp, module_id, circuit_model, mux_graph);
generate_verilog_cmos_mux_module_output_buffers(
module_manager, circuit_lib, fp, module_id, circuit_model, mux_graph);
/* Put an end to the Verilog module */
print_verilog_module_end(fp, module_name, default_net_type);
}
/***********************************************
* Generate Verilog codes modeling a multiplexer
* with the given graph-level description
**********************************************/
static void generate_verilog_mux_module(
ModuleManager& module_manager, const CircuitLibrary& circuit_lib,
std::fstream& fp, const CircuitModelId& mux_model, const MuxGraph& mux_graph,
const ModuleNameMap& module_name_map, const bool& use_explicit_port_map,
const e_verilog_default_net_type& default_net_type) {
std::string module_name =
generate_mux_subckt_name(circuit_lib, mux_model,
find_mux_num_datapath_inputs(
circuit_lib, mux_model, mux_graph.num_inputs()),
std::string(""));
module_name = module_name_map.name(module_name);
/* Multiplexers built with different technology is in different organization
*/
switch (circuit_lib.design_tech_type(mux_model)) {
case CIRCUIT_MODEL_DESIGN_CMOS: {
/* Use Verilog writer to print the module to file */
ModuleId mux_module = module_manager.find_module(module_name);
VTR_ASSERT(true == module_manager.valid_module_id(mux_module));
write_verilog_module_to_file(
fp, module_manager, mux_module,
(use_explicit_port_map ||
circuit_lib.dump_explicit_port_map(mux_model) ||
circuit_lib.dump_explicit_port_map(
circuit_lib.pass_gate_logic_model(mux_model))),
default_net_type);
/* Add an empty line as a splitter */
fp << std::endl;
break;
}
case CIRCUIT_MODEL_DESIGN_RRAM:
/* TODO: RRAM-based Multiplexer Verilog module generation */
generate_verilog_rram_mux_module(module_manager, circuit_lib, fp,
mux_model, module_name, mux_graph,
default_net_type);
break;
default:
VTR_LOGF_ERROR(__FILE__, __LINE__,
"Invalid design technology of multiplexer '%s'\n",
circuit_lib.model_name(mux_model).c_str());
exit(1);
}
}
/***********************************************
* Generate primitive Verilog modules for all the unique
* multiplexers in the FPGA device
**********************************************/
static void print_verilog_submodule_mux_primitives(
ModuleManager& module_manager, NetlistManager& netlist_manager,
const MuxLibrary& mux_lib, const CircuitLibrary& circuit_lib,
const ModuleNameMap& module_name_map, const std::string& submodule_dir,
const std::string& submodule_dir_name, const FabricVerilogOption& options) {
/* Output primitive cells for MUX modules */
std::string verilog_fname(MUX_PRIMITIVES_VERILOG_FILE_NAME);
std::string verilog_fpath(submodule_dir + verilog_fname);
/* Create the file stream */
std::fstream fp;
fp.open(verilog_fpath, std::fstream::out | std::fstream::trunc);
check_file_stream(verilog_fpath.c_str(), fp);
/* Print out debugging information for if the file is not opened/created
* properly */
VTR_LOG("Writing Verilog netlist for Multiplexer primitives '%s' ...",
verilog_fpath.c_str());
print_verilog_file_header(fp, "Multiplexer primitives", options.time_stamp());
/* Record if the branch module has been outputted
* since different sizes of routing multiplexers may share the same branch
* module
*/
std::map<std::string, bool> branch_mux_module_is_outputted;
/* Generate basis sub-circuit for unique branches shared by the multiplexers
*/
for (auto mux : mux_lib.muxes()) {
const MuxGraph& mux_graph = mux_lib.mux_graph(mux);
CircuitModelId mux_circuit_model = mux_lib.mux_circuit_model(mux);
/* Create a mux graph for the branch circuit */
std::vector<MuxGraph> branch_mux_graphs =
mux_graph.build_mux_branch_graphs();
/* Create branch circuits, which are N:1 one-level or 2:1 tree-like MUXes */
for (auto branch_mux_graph : branch_mux_graphs) {
generate_verilog_mux_branch_module(
module_manager, circuit_lib, fp, mux_circuit_model, branch_mux_graph,
module_name_map, options.explicit_port_mapping(),
options.default_net_type(), branch_mux_module_is_outputted);
}
}
/* Close the file stream */
fp.close();
/* Add fname to the netlist name list */
NetlistId nlist_id = NetlistId::INVALID();
if (options.use_relative_path()) {
nlist_id = netlist_manager.add_netlist(submodule_dir_name + verilog_fname);
} else {
nlist_id = netlist_manager.add_netlist(verilog_fpath);
}
VTR_ASSERT(nlist_id);
netlist_manager.set_netlist_type(nlist_id, NetlistManager::SUBMODULE_NETLIST);
VTR_LOG("Done\n");
}
/***********************************************
* Generate top-level Verilog modules for all the unique
* multiplexers in the FPGA device
**********************************************/
static void print_verilog_submodule_mux_top_modules(
ModuleManager& module_manager, NetlistManager& netlist_manager,
const MuxLibrary& mux_lib, const CircuitLibrary& circuit_lib,
const ModuleNameMap& module_name_map, const std::string& submodule_dir,
const std::string& submodule_dir_name, const FabricVerilogOption& options) {
/* Output top-level MUX modules */
std::string verilog_fname(MUXES_VERILOG_FILE_NAME);
std::string verilog_fpath(submodule_dir + verilog_fname);
/* Create the file stream */
std::fstream fp;
fp.open(verilog_fpath, std::fstream::out | std::fstream::trunc);
check_file_stream(verilog_fpath.c_str(), fp);
/* Print out debugging information for if the file is not opened/created
* properly */
VTR_LOG("Writing Verilog netlist for Multiplexers '%s' ...",
verilog_fpath.c_str());
print_verilog_file_header(fp, "Multiplexers", options.time_stamp());
/* Generate unique Verilog modules for the multiplexers */
for (auto mux : mux_lib.muxes()) {
const MuxGraph& mux_graph = mux_lib.mux_graph(mux);
CircuitModelId mux_circuit_model = mux_lib.mux_circuit_model(mux);
/* Create MUX circuits */
generate_verilog_mux_module(module_manager, circuit_lib, fp,
mux_circuit_model, mux_graph, module_name_map,
options.explicit_port_mapping(),
options.default_net_type());
}
/* Close the file stream */
fp.close();
/* Add fname to the netlist name list */
NetlistId nlist_id = NetlistId::INVALID();
if (options.use_relative_path()) {
nlist_id = netlist_manager.add_netlist(submodule_dir_name + verilog_fname);
} else {
nlist_id = netlist_manager.add_netlist(verilog_fpath);
}
VTR_ASSERT(nlist_id);
netlist_manager.set_netlist_type(nlist_id, NetlistManager::SUBMODULE_NETLIST);
VTR_LOG("Done\n");
}
/***********************************************
* Generate Verilog modules for all the unique
* multiplexers in the FPGA device
* Output to two Verilog netlists:
* - A Verilog netlist contains all the primitive
* cells for build the routing multiplexers
* - A Verilog netlist contains all the top-level
* module for routing multiplexers
**********************************************/
void print_verilog_submodule_muxes(
ModuleManager& module_manager, NetlistManager& netlist_manager,
const MuxLibrary& mux_lib, const CircuitLibrary& circuit_lib,
const ModuleNameMap& module_name_map, const std::string& submodule_dir,
const std::string& submodule_dir_name, const FabricVerilogOption& options) {
print_verilog_submodule_mux_primitives(
module_manager, netlist_manager, mux_lib, circuit_lib, module_name_map,
submodule_dir, submodule_dir_name, options);
print_verilog_submodule_mux_top_modules(
module_manager, netlist_manager, mux_lib, circuit_lib, module_name_map,
submodule_dir, submodule_dir_name, options);
}
} /* end namespace openfpga */