OpenFPGA/openfpga/src/base/openfpga_link_arch_template.h

240 lines
9.7 KiB
C++

#ifndef OPENFPGA_LINK_ARCH_TEMPLATE_H
#define OPENFPGA_LINK_ARCH_TEMPLATE_H
/********************************************************************
* This file includes functions to read an OpenFPGA architecture file
* which are built on the libarchopenfpga library
*******************************************************************/
#include "annotate_bitstream_setting.h"
#include "annotate_clustering.h"
#include "annotate_pb_graph.h"
#include "annotate_pb_types.h"
#include "annotate_physical_tiles.h"
#include "annotate_placement.h"
#include "annotate_rr_graph.h"
#include "annotate_simulation_setting.h"
#include "append_clock_rr_graph.h"
#include "build_tile_direct.h"
#include "command.h"
#include "command_context.h"
#include "command_exit_codes.h"
#include "globals.h"
#include "mux_library_builder.h"
#include "openfpga_annotate_routing.h"
#include "openfpga_rr_graph_support.h"
#include "pb_type_utils.h"
#include "read_activity.h"
#include "read_xml_pin_constraints.h"
#include "route_clock_rr_graph.h"
#include "vpr_device_annotation.h"
#include "vtr_assert.h"
#include "vtr_log.h"
#include "vtr_time.h"
/* begin namespace openfpga */
namespace openfpga {
/********************************************************************
* Top-level function to link openfpga architecture to VPR, including:
* - physical pb_type
* - mode selection bits for pb_type and pb interconnect
* - circuit models for pb_type and pb interconnect
* - physical pb_graph nodes and pb_graph pins
* - circuit models for global routing architecture
*******************************************************************/
template <class T>
int link_arch_template(T& openfpga_ctx, const Command& cmd,
const CommandContext& cmd_context) {
vtr::ScopedStartFinishTimer timer(
"Link OpenFPGA architecture to VPR architecture");
CommandOptionId opt_activity_file = cmd.option("activity_file");
CommandOptionId opt_sort_edge = cmd.option("sort_gsb_chan_node_in_edges");
CommandOptionId opt_verbose = cmd.option("verbose");
/* Build fast look-up between physical tile pin index and port information */
build_physical_tile_pin2port_info(
g_vpr_ctx.device(), openfpga_ctx.mutable_vpr_device_annotation());
/* Annotate pb_type graphs
* - physical pb_type
* - mode selection bits for pb_type and pb interconnect
* - circuit models for pb_type and pb interconnect
*/
annotate_pb_types(g_vpr_ctx.device(), openfpga_ctx.arch(),
openfpga_ctx.mutable_vpr_device_annotation(),
cmd_context.option_enable(cmd, opt_verbose));
/* Annotate pb_graph_nodes
* - Give unique index to each node in the same type
* - Bind operating pb_graph_node to their physical pb_graph_node
* - Bind pins from operating pb_graph_node to their physical pb_graph_node
* pins
*/
annotate_pb_graph(g_vpr_ctx.device(),
openfpga_ctx.mutable_vpr_device_annotation(),
cmd_context.option_enable(cmd, opt_verbose));
/* Annotate routing architecture to circuit library */
annotate_rr_graph_circuit_models(g_vpr_ctx.device(), openfpga_ctx.arch(),
openfpga_ctx.mutable_vpr_device_annotation(),
cmd_context.option_enable(cmd, opt_verbose));
/* Annotate routing results:
* - net mapping to each rr_node
* - previous nodes driving each rr_node
*/
openfpga_ctx.mutable_vpr_routing_annotation().init(
g_vpr_ctx.device().rr_graph);
annotate_vpr_rr_node_nets(g_vpr_ctx.device(), g_vpr_ctx.clustering(),
g_vpr_ctx.routing(),
openfpga_ctx.mutable_vpr_routing_annotation(),
cmd_context.option_enable(cmd, opt_verbose));
annotate_rr_node_previous_nodes(g_vpr_ctx.device(), g_vpr_ctx.clustering(),
g_vpr_ctx.routing(),
openfpga_ctx.mutable_vpr_routing_annotation(),
cmd_context.option_enable(cmd, opt_verbose));
/* Build the routing graph annotation
* - RRGSB
* - DeviceRRGSB
*/
if (false == is_vpr_rr_graph_supported(g_vpr_ctx.device().rr_graph)) {
return CMD_EXEC_FATAL_ERROR;
}
/* Build incoming edges as VPR only builds fan-out edges for each node */
g_vpr_ctx.mutable_device().rr_graph_builder.build_in_edges();
VTR_LOG("Built %ld incoming edges for routing resource graph\n",
g_vpr_ctx.device().rr_graph.in_edges_count());
VTR_ASSERT(g_vpr_ctx.device().rr_graph.validate_in_edges());
annotate_device_rr_gsb(
g_vpr_ctx.device(), openfpga_ctx.mutable_device_rr_gsb(),
!openfpga_ctx.clock_arch().empty(), /* FIXME: consider to be more robust! */
cmd_context.option_enable(cmd, opt_verbose));
if (true == cmd_context.option_enable(cmd, opt_sort_edge)) {
sort_device_rr_gsb_chan_node_in_edges(
g_vpr_ctx.device().rr_graph, openfpga_ctx.mutable_device_rr_gsb(),
cmd_context.option_enable(cmd, opt_verbose));
sort_device_rr_gsb_ipin_node_in_edges(
g_vpr_ctx.device().rr_graph, openfpga_ctx.mutable_device_rr_gsb(),
cmd_context.option_enable(cmd, opt_verbose));
}
/* Build multiplexer library */
openfpga_ctx.mutable_mux_lib() = build_device_mux_library(
g_vpr_ctx.device(), const_cast<const T&>(openfpga_ctx));
/* Build tile direct annotation */
openfpga_ctx.mutable_tile_direct() = build_device_tile_direct(
g_vpr_ctx.device(), openfpga_ctx.arch().arch_direct,
cmd_context.option_enable(cmd, opt_verbose));
/* Annotate clustering results */
if (CMD_EXEC_FATAL_ERROR ==
annotate_post_routing_cluster_sync_results(
g_vpr_ctx.clustering(),
openfpga_ctx.mutable_vpr_clustering_annotation())) {
return CMD_EXEC_FATAL_ERROR;
}
/* Annotate placement results */
annotate_mapped_blocks(g_vpr_ctx.device(), g_vpr_ctx.clustering(),
g_vpr_ctx.placement(),
openfpga_ctx.mutable_vpr_placement_annotation());
/* Read activity file is manadatory in the following flow-run settings
* - When users specify that number of clock cycles
* should be inferred from FPGA implmentation
* - When FPGA-SPICE is enabled
*/
std::unordered_map<AtomNetId, t_net_power> net_activity;
if (true == cmd_context.option_enable(cmd, opt_activity_file)) {
net_activity =
read_activity(g_vpr_ctx.atom().nlist,
cmd_context.option_value(cmd, opt_activity_file).c_str());
}
/* TODO: Annotate the number of clock cycles and clock frequency by following
* VPR results We SHOULD create a new simulation setting for OpenFPGA use only
* Avoid overwrite the raw data achieved when parsing!!!
*/
/* OVERWRITE the simulation setting in openfpga context from the arch
* TODO: This will be removed when openfpga flow is updated
*/
// openfpga_ctx.mutable_simulation_setting() =
// openfpga_ctx.mutable_arch().sim_setting;
if (CMD_EXEC_FATAL_ERROR ==
annotate_simulation_setting(g_vpr_ctx.atom(), g_vpr_ctx.clustering(),
net_activity,
openfpga_ctx.mutable_simulation_setting())) {
return CMD_EXEC_FATAL_ERROR;
}
/* Build bitstream annotation based on bitstream settings */
if (CMD_EXEC_FATAL_ERROR ==
annotate_bitstream_setting(
openfpga_ctx.bitstream_setting(), g_vpr_ctx.device(),
openfpga_ctx.vpr_device_annotation(),
openfpga_ctx.mutable_vpr_bitstream_annotation())) {
return CMD_EXEC_FATAL_ERROR;
}
/* TODO: should identify the error code from internal function execution */
return CMD_EXEC_SUCCESS;
}
/********************************************************************
* Top-level function to append a clock network to VPR's routing resource graph,
*including:
* - Routing tracks dedicated to clock network
* - Programmable switches to enable reconfigurability of clock network
* - Adding virtual sources for clock signals
*******************************************************************/
template <class T>
int append_clock_rr_graph_template(T& openfpga_ctx, const Command& cmd,
const CommandContext& cmd_context) {
vtr::ScopedStartFinishTimer timer(
"Append clock network to routing resource graph");
CommandOptionId opt_verbose = cmd.option("verbose");
return append_clock_rr_graph(
g_vpr_ctx.mutable_device(), openfpga_ctx.mutable_clock_rr_lookup(),
openfpga_ctx.clock_arch(), cmd_context.option_enable(cmd, opt_verbose));
}
/********************************************************************
* Top-level function to route a clock network based on the clock spines
* defined in clock architecture
*******************************************************************/
template <class T>
int route_clock_rr_graph_template(T& openfpga_ctx, const Command& cmd,
const CommandContext& cmd_context) {
vtr::ScopedStartFinishTimer timer("Route clock routing resource graph");
/* add an option '--pin_constraints_file in short '-pcf' */
CommandOptionId opt_pcf = cmd.option("pin_constraints_file");
CommandOptionId opt_verbose = cmd.option("verbose");
/* If pin constraints are enabled by command options, read the file */
PinConstraints pin_constraints;
if (true == cmd_context.option_enable(cmd, opt_pcf)) {
pin_constraints =
read_xml_pin_constraints(cmd_context.option_value(cmd, opt_pcf).c_str());
}
return route_clock_rr_graph(
openfpga_ctx.mutable_vpr_routing_annotation(), g_vpr_ctx.device(),
g_vpr_ctx.atom(), g_vpr_ctx.clustering().clb_nlist,
openfpga_ctx.vpr_netlist_annotation(), openfpga_ctx.clock_rr_lookup(),
openfpga_ctx.clock_arch(), pin_constraints,
cmd_context.option_enable(cmd, opt_verbose));
}
} /* end namespace openfpga */
#endif