OpenFPGA/vpr7_x2p/vpr/SRC/fpga_x2p/verilog/verilog_grid.cpp

1270 lines
63 KiB
C++

/********************************************************************
* This file includes functions to print Verilog modules for a Grid
* (CLBs, I/Os, heterogeneous blocks etc.)
*******************************************************************/
/* System header files */
#include <vector>
#include <fstream>
/* Header files from external libs */
#include "vtr_geometry.h"
#include "util.h"
#include "vtr_assert.h"
#include "circuit_library_utils.h"
/* Header files for VPR */
#include "vpr_types.h"
#include "globals.h"
/* Header files for FPGA X2P tool suite */
#include "fpga_x2p_naming.h"
#include "fpga_x2p_types.h"
#include "fpga_x2p_utils.h"
#include "fpga_x2p_pbtypes_utils.h"
#include "module_manager_utils.h"
#include "fpga_x2p_globals.h"
/* Header files for Verilog generator */
#include "verilog_global.h"
#include "verilog_utils.h"
#include "verilog_writer_utils.h"
#include "verilog_module_writer.h"
#include "verilog_grid.h"
/********************************************************************
* Find the side where I/O pins locate on a grid I/O block
* 1. I/O grids on the top side of FPGA only have ports on its bottom side
* 2. I/O grids on the right side of FPGA only have ports on its left side
* 3. I/O grids on the bottom side of FPGA only have ports on its top side
* 4. I/O grids on the left side of FPGA only have ports on its right side
*******************************************************************/
static
e_side find_grid_module_pin_side(t_type_ptr grid_type_descriptor,
const e_side& border_side) {
VTR_ASSERT(IO_TYPE == grid_type_descriptor);
Side side_manager(border_side);
return side_manager.get_opposite();
}
/********************************************************************
* Add ports/pins to a grid module
* This function will iterate over all the pins that are defined
* in type_descripter and give a name by its height, side and index
*
* In particular, for I/O grid, only part of the ports on required
* on a specific side.
*******************************************************************/
static
void add_grid_module_pb_type_ports(ModuleManager& module_manager,
const ModuleId& grid_module,
t_type_ptr grid_type_descriptor,
const e_side& border_side) {
/* Ensure that we have a valid grid_type_descriptor */
VTR_ASSERT(NULL != grid_type_descriptor);
/* Find the pin side for I/O grids*/
std::vector<e_side> grid_pin_sides;
/* For I/O grids, we care only one side
* Otherwise, we will iterate all the 4 sides
*/
if (IO_TYPE == grid_type_descriptor) {
grid_pin_sides.push_back(find_grid_module_pin_side(grid_type_descriptor, border_side));
} else {
grid_pin_sides.push_back(TOP);
grid_pin_sides.push_back(RIGHT);
grid_pin_sides.push_back(BOTTOM);
grid_pin_sides.push_back(LEFT);
}
/* Create a map between pin class type and grid pin direction */
std::map<e_pin_type, ModuleManager::e_module_port_type> pin_type2type_map;
pin_type2type_map[RECEIVER] = ModuleManager::MODULE_INPUT_PORT;
pin_type2type_map[DRIVER] = ModuleManager::MODULE_OUTPUT_PORT;
/* Iterate over sides, height and pins */
for (const e_side& side : grid_pin_sides) {
for (int iheight = 0; iheight < grid_type_descriptor->height; ++iheight) {
for (int ipin = 0; ipin < grid_type_descriptor->num_pins; ++ipin) {
if (1 != grid_type_descriptor->pinloc[iheight][side][ipin]) {
continue;
}
/* Reach here, it means this pin is on this side */
int class_id = grid_type_descriptor->pin_class[ipin];
e_pin_type pin_class_type = grid_type_descriptor->class_inf[class_id].type;
/* Generate the pin name,
* we give a empty coordinate but it will not be used (see details in the function
*/
vtr::Point<size_t> dummy_coordinate;
std::string port_name = generate_grid_port_name(dummy_coordinate, iheight, side, ipin, false);
BasicPort grid_port(port_name, 0, 0);
/* Add the port to the module */
module_manager.add_port(grid_module, grid_port, pin_type2type_map[pin_class_type]);
}
}
}
}
/********************************************************************
* Add module nets to connect a port of child pb_module
* to the grid module
*******************************************************************/
static
void add_grid_module_net_connect_pb_graph_pin(ModuleManager& module_manager,
const ModuleId& grid_module,
const ModuleId& child_module,
const size_t& child_instance,
t_type_ptr grid_type_descriptor,
t_pb_graph_pin* pb_graph_pin,
const e_side& border_side,
const enum e_spice_pin2pin_interc_type& pin2pin_interc_type) {
/* Find the pin side for I/O grids*/
std::vector<e_side> grid_pin_sides;
/* For I/O grids, we care only one side
* Otherwise, we will iterate all the 4 sides
*/
if (IO_TYPE == grid_type_descriptor) {
grid_pin_sides.push_back(find_grid_module_pin_side(grid_type_descriptor, border_side));
} else {
grid_pin_sides.push_back(TOP);
grid_pin_sides.push_back(RIGHT);
grid_pin_sides.push_back(BOTTOM);
grid_pin_sides.push_back(LEFT);
}
/* num_pins/capacity = the number of pins that each type_descriptor has.
* Capacity defines the number of type_descriptors in each grid
* so the pin index at grid level = pin_index_in_type_descriptor
* + type_descriptor_index_in_capacity * num_pins_per_type_descriptor
*/
size_t grid_pin_index = pb_graph_pin->pin_count_in_cluster
+ child_instance * grid_type_descriptor->num_pins / grid_type_descriptor->capacity;
int pin_height = grid_type_descriptor->pin_height[grid_pin_index];
for (const e_side& side : grid_pin_sides) {
if (1 != grid_type_descriptor->pinloc[pin_height][side][grid_pin_index]) {
continue;
}
/* Reach here, it means this pin is on this side */
/* Create a net to connect the grid pin to child module pin */
ModuleNetId net = module_manager.create_module_net(grid_module);
/* Find the port in grid_module */
vtr::Point<size_t> dummy_coordinate;
std::string grid_port_name = generate_grid_port_name(dummy_coordinate, pin_height, side, grid_pin_index, false);
ModulePortId grid_module_port_id = module_manager.find_module_port(grid_module, grid_port_name);
VTR_ASSERT(true == module_manager.valid_module_port_id(grid_module, grid_module_port_id));
/* Grid port always has only 1 pin, it is assumed when adding these ports to the module
* if you need a change, please also change the port adding codes
*/
size_t grid_module_pin_id = 0;
/* Find the port in child module */
std::string child_module_port_name = generate_pb_type_port_name(pb_graph_pin->port);
ModulePortId child_module_port_id = module_manager.find_module_port(child_module, child_module_port_name);
VTR_ASSERT(true == module_manager.valid_module_port_id(child_module, child_module_port_id));
size_t child_module_pin_id = pb_graph_pin->pin_number;
/* Add net sources and sinks:
* For input-to-input connection, net_source is grid pin, while net_sink is pb_graph_pin
* For output-to-output connection, net_source is pb_graph_pin, while net_sink is grid pin
*/
switch (pin2pin_interc_type) {
case INPUT2INPUT_INTERC:
module_manager.add_module_net_source(grid_module, net, grid_module, 0, grid_module_port_id, grid_module_pin_id);
module_manager.add_module_net_sink(grid_module, net, child_module, child_instance, child_module_port_id, child_module_pin_id);
break;
case OUTPUT2OUTPUT_INTERC:
module_manager.add_module_net_source(grid_module, net, child_module, child_instance, child_module_port_id, child_module_pin_id);
module_manager.add_module_net_sink(grid_module, net, grid_module, 0, grid_module_port_id, grid_module_pin_id);
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d]) Invalid pin-to-pin interconnection type!\n",
__FILE__, __LINE__);
exit(1);
}
}
}
/********************************************************************
* Add module nets to connect ports/pins of a grid module
* to its child modules
* This function will iterate over all the pins that are defined
* in type_descripter and find the corresponding pin in the top
* pb_graph_node of the grid
*******************************************************************/
static
void add_grid_module_nets_connect_pb_type_ports(ModuleManager& module_manager,
const ModuleId& grid_module,
const ModuleId& child_module,
const size_t& child_instance,
t_type_ptr grid_type_descriptor,
const e_side& border_side) {
/* Ensure that we have a valid grid_type_descriptor */
VTR_ASSERT(NULL != grid_type_descriptor);
t_pb_graph_node* top_pb_graph_node = grid_type_descriptor->pb_graph_head;
VTR_ASSERT(NULL != top_pb_graph_node);
for (int iport = 0; iport < top_pb_graph_node->num_input_ports; ++iport) {
for (int ipin = 0; ipin < top_pb_graph_node->num_input_pins[iport]; ++ipin) {
add_grid_module_net_connect_pb_graph_pin(module_manager, grid_module,
child_module, child_instance,
grid_type_descriptor,
&(top_pb_graph_node->input_pins[iport][ipin]),
border_side,
INPUT2INPUT_INTERC);
}
}
for (int iport = 0; iport < top_pb_graph_node->num_output_ports; ++iport) {
for (int ipin = 0; ipin < top_pb_graph_node->num_output_pins[iport]; ++ipin) {
add_grid_module_net_connect_pb_graph_pin(module_manager, grid_module,
child_module, child_instance,
grid_type_descriptor,
&(top_pb_graph_node->output_pins[iport][ipin]),
border_side,
OUTPUT2OUTPUT_INTERC);
}
}
for (int iport = 0; iport < top_pb_graph_node->num_clock_ports; ++iport) {
for (int ipin = 0; ipin < top_pb_graph_node->num_clock_pins[iport]; ++ipin) {
add_grid_module_net_connect_pb_graph_pin(module_manager, grid_module,
child_module, child_instance,
grid_type_descriptor,
&(top_pb_graph_node->clock_pins[iport][ipin]),
border_side,
INPUT2INPUT_INTERC);
}
}
}
/********************************************************************
* Print Verilog modules of a primitive node in the pb_graph_node graph
* This generic function can support all the different types of primitive nodes
* i.e., Look-Up Tables (LUTs), Flip-flops (FFs) and hard logic blocks such as adders.
*
* The Verilog module will consist of two parts:
* 1. Logic module of the primitive node
* This module performs the logic function of the block
* 2. Memory module of the primitive node
* This module stores the configuration bits for the logic module
* if the logic module is a programmable resource, such as LUT
*
* Verilog module structure:
*
* Primitive block
* +---------------------------------------+
* | |
* | +---------+ +---------+ |
* in |----->| |--->| |<------|configuration lines
* | | Logic |... | Memory | |
* out|<-----| |--->| | |
* | +---------+ +---------+ |
* | |
* +---------------------------------------+
*
*******************************************************************/
static
void print_verilog_primitive_block(std::fstream& fp,
ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
t_sram_orgz_info* cur_sram_orgz_info,
t_pb_graph_node* primitive_pb_graph_node,
const e_side& io_side,
const bool& use_explicit_mapping) {
/* Ensure a valid file handler */
check_file_handler(fp);
/* Ensure a valid pb_graph_node */
if (NULL == primitive_pb_graph_node) {
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d]) Invalid primitive_pb_graph_node!\n",
__FILE__, __LINE__);
exit(1);
}
/* Find the circuit model id linked to the pb_graph_node */
CircuitModelId& primitive_model = primitive_pb_graph_node->pb_type->circuit_model;
/* Generate the module name for this primitive pb_graph_node*/
std::string primitive_module_name_prefix(grid_verilog_file_name_prefix);
/* Add side string to the name if it is valid, this is mainly for I/O block */
if (NUM_SIDES != io_side) {
Side side_manager(io_side);
primitive_module_name_prefix += std::string(side_manager.to_string());
primitive_module_name_prefix += std::string("_");
}
std::string primitive_module_name = generate_physical_block_module_name(primitive_module_name_prefix, primitive_pb_graph_node->pb_type);
/* Create a module of the primitive LUT and register it to module manager */
ModuleId primitive_module = module_manager.add_module(primitive_module_name);
/* Ensure that the module has been created and thus unique! */
VTR_ASSERT(ModuleId::INVALID() != primitive_module);
/* Find the global ports required by the primitive node, and add them to the module */
std::vector<CircuitPortId> primitive_model_global_ports = circuit_lib.model_global_ports(primitive_model, true);
for (auto port : primitive_model_global_ports) {
/* The global I/O of the FPGA has a special name */
BasicPort module_port(circuit_lib.port_lib_name(port), circuit_lib.port_size(port));
module_manager.add_port(primitive_module, module_port, ModuleManager::MODULE_GLOBAL_PORT);
}
/* Find the inout ports required by the primitive node, and add them to the module
* This is mainly due to the I/O blocks, which have inout ports for the top-level fabric
*/
if (SPICE_MODEL_IOPAD == circuit_lib.model_type(primitive_model)) {
std::vector<CircuitPortId> primitive_model_inout_ports = circuit_lib.model_ports_by_type(primitive_model, SPICE_MODEL_PORT_INOUT);
for (auto port : primitive_model_inout_ports) {
BasicPort module_port(generate_fpga_global_io_port_name(std::string(gio_inout_prefix), circuit_lib, primitive_model), circuit_lib.port_size(port));
module_manager.add_port(primitive_module, module_port, ModuleManager::MODULE_GPIO_PORT);
}
}
/* Note: to cooperate with the pb_type hierarchy and connections, we add the port of primitive pb_type here.
* Since we have linked pb_type ports to circuit models when setting up FPGA-X2P,
* no ports of the circuit model will be missing here
*/
add_primitive_pb_type_ports_to_module_manager(module_manager, primitive_module, primitive_pb_graph_node->pb_type);
/* Add configuration ports */
/* Shared SRAM ports*/
size_t num_shared_config_bits = find_circuit_num_shared_config_bits(circuit_lib, primitive_model, cur_sram_orgz_info->type);
if (0 < num_shared_config_bits) {
/* Check: this SRAM organization type must be memory-bank ! */
VTR_ASSERT( SPICE_SRAM_MEMORY_BANK == cur_sram_orgz_info->type );
/* Generate a list of ports */
add_reserved_sram_ports_to_module_manager(module_manager, primitive_module,
num_shared_config_bits);
}
/* TODO: this should be added to the cur_sram_orgz_info !!! */
t_spice_model* mem_model = NULL;
get_sram_orgz_info_mem_model(cur_sram_orgz_info, & mem_model);
CircuitModelId sram_model = circuit_lib.model(mem_model->name);
VTR_ASSERT(CircuitModelId::INVALID() != sram_model);
/* Regular (independent) SRAM ports */
size_t num_config_bits = find_circuit_num_config_bits(circuit_lib, primitive_model);
if (0 < num_config_bits) {
add_sram_ports_to_module_manager(module_manager, primitive_module,
circuit_lib, sram_model, cur_sram_orgz_info->type,
num_config_bits);
}
/* Find the module id in the module manager */
ModuleId logic_module = module_manager.find_module(circuit_lib.model_name(primitive_model));
VTR_ASSERT(ModuleId::INVALID() != logic_module);
size_t logic_instance_id = module_manager.num_instance(primitive_module, logic_module);
/* Add the logic module as a child of primitive module */
module_manager.add_child_module(primitive_module, logic_module);
/* Add nets to connect the logic model ports to pb_type ports */
add_primitive_pb_type_module_nets(module_manager, primitive_module, logic_module, logic_instance_id, circuit_lib, primitive_pb_graph_node->pb_type);
/* Add the associated memory module as a child of primitive module */
std::string memory_module_name = generate_memory_module_name(circuit_lib, primitive_model, sram_model, std::string(verilog_mem_posfix));
ModuleId memory_module = module_manager.find_module(memory_module_name);
/* Vectors to record all the memory modules have been added
* They are used to add module nets of configuration bus
*/
std::vector<ModuleId> memory_modules;
std::vector<size_t> memory_instances;
/* If there is no memory module required, we can skip the assocated net addition */
if (ModuleId::INVALID() != memory_module) {
size_t memory_instance_id = module_manager.num_instance(primitive_module, memory_module);
/* Add the memory module as a child of primitive module */
module_manager.add_child_module(primitive_module, memory_module);
/* Add nets to connect regular and mode-select SRAM ports to the SRAM port of memory module */
add_module_nets_between_logic_and_memory_sram_bus(module_manager, primitive_module,
logic_module, logic_instance_id,
memory_module, memory_instance_id,
circuit_lib, primitive_model);
/* Record memory-related information */
memory_modules.push_back(memory_module);
memory_instances.push_back(memory_instance_id);
}
/* Add all the nets to connect configuration ports from memory module to primitive modules
* This is a one-shot addition that covers all the memory modules in this primitive module!
*/
if (false == memory_modules.empty()) {
add_module_nets_memory_config_bus(module_manager, primitive_module,
memory_modules, memory_instances,
cur_sram_orgz_info->type, circuit_lib.design_tech_type(sram_model));
}
/* Write the verilog module */
write_verilog_module_to_file(fp, module_manager, primitive_module, use_explicit_mapping);
/* Add an empty line as a splitter */
fp << std::endl;
}
/********************************************************************
* This function add a net for a pin-to-pin connection defined in pb_graph
* It supports two cases for the pin-to-pin connection
* 1. The net source is a pb_graph_pin while the net sink is a pin of an interconnection
* 2. The net source is a pin of an interconnection while the net sink a pb_graph_pin
* The type is enabled by an argument pin2pin_interc_type
*******************************************************************/
static
void add_module_pb_graph_pin2pin_net(ModuleManager& module_manager,
const ModuleId& pb_module,
const ModuleId& interc_module,
const size_t& interc_instance,
const std::string& interc_port_name,
const size_t& interc_pin_id,
const std::string& module_name_prefix,
t_pb_graph_pin* pb_graph_pin,
const enum e_spice_pin2pin_interc_type& pin2pin_interc_type) {
ModuleNetId pin2pin_net = module_manager.create_module_net(pb_module);
/* Find port and pin ids for the module, which is the parent of pb_graph_pin */
t_pb_type* pin_pb_type = pb_graph_pin->parent_node->pb_type;
/* Find the module contains the source pin */
ModuleId pin_pb_type_module = module_manager.find_module(generate_physical_block_module_name(module_name_prefix, pin_pb_type));
VTR_ASSERT(true == module_manager.valid_module_id(pin_pb_type_module));
size_t pin_pb_type_instance = 0; /* Deposite the instance with a zero, which is the default value is the source module is actually pb_module itself */
if (pin_pb_type_module != pb_module) {
pin_pb_type_instance = pb_graph_pin->parent_node->placement_index;
/* Ensure this is an valid instance */
VTR_ASSERT(pin_pb_type_instance < module_manager.num_instance(pb_module, pin_pb_type_module));
}
ModulePortId pin_module_port_id = module_manager.find_module_port(pin_pb_type_module, generate_pb_type_port_name(pb_graph_pin->port));
VTR_ASSERT(true == module_manager.valid_module_port_id(pin_pb_type_module, pin_module_port_id));
size_t pin_module_pin_id = pb_graph_pin->pin_number;
/* Ensure this is an valid pin index */
VTR_ASSERT(pin_module_pin_id < module_manager.module_port(pin_pb_type_module, pin_module_port_id).get_width());
/* Find port and pin ids for the interconnection module */
ModulePortId interc_port_id = module_manager.find_module_port(interc_module, interc_port_name);
VTR_ASSERT(true == module_manager.valid_module_port_id(interc_module, interc_port_id));
/* Ensure this is an valid pin index */
VTR_ASSERT(interc_pin_id < module_manager.module_port(interc_module, interc_port_id).get_width());
/* Add net sources and sinks:
* For input-to-input connection, net_source is pin_graph_pin, while net_sink is interc pin
* For output-to-output connection, net_source is interc pin, while net_sink is pin_graph pin
*/
switch (pin2pin_interc_type) {
case INPUT2INPUT_INTERC:
module_manager.add_module_net_source(pb_module, pin2pin_net, pin_pb_type_module, pin_pb_type_instance, pin_module_port_id, pin_module_pin_id);
module_manager.add_module_net_sink(pb_module, pin2pin_net, interc_module, interc_instance, interc_port_id, interc_pin_id);
break;
case OUTPUT2OUTPUT_INTERC:
module_manager.add_module_net_source(pb_module, pin2pin_net, interc_module, interc_instance, interc_port_id, interc_pin_id);
module_manager.add_module_net_sink(pb_module, pin2pin_net, pin_pb_type_module, pin_pb_type_instance, pin_module_port_id, pin_module_pin_id);
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d]) Invalid pin-to-pin interconnection type!\n",
__FILE__, __LINE__);
exit(1);
}
}
/********************************************************************
* We check output_pins of cur_pb_graph_node and its the input_edges
* Built the interconnections between outputs of cur_pb_graph_node and outputs of child_pb_graph_node
* src_pb_graph_node.[in|out]_pins -----------------> des_pb_graph_node.[in|out]pins
* /|\
* |
* input_pins, edges, output_pins
*
* This function does the following task:
* 1. identify pin interconnection type,
* 2. Identify the number of fan-in (Consider interconnection edges of only selected mode)
* 3. Add mux/direct connection as a child module to pb_module
* 4. Add nets related to the mux/direction
*******************************************************************/
static
void add_module_pb_graph_pin_interc(ModuleManager& module_manager,
const ModuleId& pb_module,
std::vector<ModuleId>& memory_modules,
std::vector<size_t>& memory_instances,
const CircuitLibrary& circuit_lib,
const std::string& module_name_prefix,
t_pb_graph_pin* des_pb_graph_pin,
t_mode* physical_mode) {
/* Find the number of fan-in and detailed interconnection information
* related to the destination pb_graph_pin
*/
int fan_in = 0;
t_interconnect* cur_interc = NULL;
find_interc_fan_in_des_pb_graph_pin(des_pb_graph_pin, physical_mode, &cur_interc, &fan_in);
/* If no interconnection is needed, we can return early */
if ((NULL == cur_interc) || (0 == fan_in)) {
return;
}
/* Initialize the interconnection type that will be physically implemented in module */
enum e_interconnect verilog_interc_type = determine_actual_pb_interc_type(cur_interc, fan_in);
/* Find input ports of the wire module */
std::vector<CircuitPortId> interc_model_inputs = circuit_lib.model_ports_by_type(cur_interc->circuit_model, SPICE_MODEL_PORT_INPUT, true); /* the last argument to guarantee that we ignore any global inputs */
/* Find output ports of the wire module */
std::vector<CircuitPortId> interc_model_outputs = circuit_lib.model_ports_by_type(cur_interc->circuit_model, SPICE_MODEL_PORT_OUTPUT, true); /* the last argument to guarantee that we ignore any global ports */
/* Ensure that we have only 1 input port and 1 output port, this is valid for both wire and MUX */
VTR_ASSERT(1 == interc_model_inputs.size());
VTR_ASSERT(1 == interc_model_outputs.size());
/* Branch on the type of physical implementation,
* We add instances of programmable interconnection
*/
switch (verilog_interc_type) {
case DIRECT_INTERC: {
/* Ensure direct interc has only one fan-in */
VTR_ASSERT(1 == fan_in);
/* For more than one mode defined, the direct interc has more than one input_edge ,
* We need to find which edge is connected the pin we want
*/
int iedge = 0;
for (iedge = 0; iedge < des_pb_graph_pin->num_input_edges; iedge++) {
if (cur_interc == des_pb_graph_pin->input_edges[iedge]->interconnect) {
break;
}
}
t_pb_graph_pin* src_pb_graph_pin = des_pb_graph_pin->input_edges[iedge]->input_pins[0];
/* Ensure that circuit model is a wire */
VTR_ASSERT(SPICE_MODEL_WIRE == circuit_lib.model_type(cur_interc->circuit_model));
/* Find the wire module in the module manager */
ModuleId wire_module = module_manager.find_module(circuit_lib.model_name(cur_interc->circuit_model));
VTR_ASSERT(true == module_manager.valid_module_id(wire_module));
/* Get the instance id and add an instance of wire */
size_t wire_instance = module_manager.num_instance(pb_module, wire_module);
module_manager.add_child_module(pb_module, wire_module);
/* Ensure input and output ports of the wire model has only 1 pin respectively */
VTR_ASSERT(1 == circuit_lib.port_size(interc_model_inputs[0]));
VTR_ASSERT(1 == circuit_lib.port_size(interc_model_outputs[0]));
/* Add nets to connect the wires to ports of pb_module */
/* First net is to connect input of src_pb_graph_node to input of the wire module */
add_module_pb_graph_pin2pin_net(module_manager, pb_module,
wire_module, wire_instance,
circuit_lib.port_lib_name(interc_model_inputs[0]),
0, /* wire input port has only 1 pin */
module_name_prefix,
src_pb_graph_pin,
INPUT2INPUT_INTERC);
/* Second net is to connect output of the wire module to output of des_pb_graph_pin */
add_module_pb_graph_pin2pin_net(module_manager, pb_module,
wire_module, wire_instance,
circuit_lib.port_lib_name(interc_model_outputs[0]),
0, /* wire output port has only 1 pin */
module_name_prefix,
des_pb_graph_pin,
OUTPUT2OUTPUT_INTERC);
break;
}
case COMPLETE_INTERC:
case MUX_INTERC: {
/* Check: MUX should have at least 2 fan_in */
VTR_ASSERT((2 == fan_in)||(2 < fan_in));
/* Ensure that circuit model is a MUX */
VTR_ASSERT(SPICE_MODEL_MUX == circuit_lib.model_type(cur_interc->circuit_model));
/* Find the wire module in the module manager */
ModuleId mux_module = module_manager.find_module(generate_mux_subckt_name(circuit_lib, cur_interc->circuit_model, fan_in, std::string()));
VTR_ASSERT(true == module_manager.valid_module_id(mux_module));
/* Instanciate the MUX */
size_t mux_instance = module_manager.num_instance(pb_module, mux_module);
module_manager.add_child_module(pb_module, mux_module);
/* Instanciate a memory module for the MUX */
std::string mux_mem_module_name = generate_mux_subckt_name(circuit_lib,
cur_interc->circuit_model,
fan_in,
std::string(verilog_mem_posfix));
ModuleId mux_mem_module = module_manager.find_module(mux_mem_module_name);
VTR_ASSERT(true == module_manager.valid_module_id(mux_mem_module));
size_t mux_mem_instance = module_manager.num_instance(pb_module, mux_mem_module);
module_manager.add_child_module(pb_module, mux_mem_module);
/* Add nets to connect SRAM ports of the MUX to the SRAM port of memory module */
add_module_nets_between_logic_and_memory_sram_bus(module_manager, pb_module,
mux_module, mux_instance,
mux_mem_module, mux_mem_instance,
circuit_lib, cur_interc->circuit_model);
/* Update memory modules and memory instance list */
memory_modules.push_back(mux_mem_module);
memory_instances.push_back(mux_mem_instance);
/* Ensure output port of the MUX model has only 1 pin,
* while the input port size is dependent on the architecture conext,
* no constaints on the circuit model definition
*/
VTR_ASSERT(1 == circuit_lib.port_size(interc_model_outputs[0]));
/* Create nets to wire between the MUX and PB module */
/* Add a net to wire the inputs of the multiplexer to its source pb_graph_pin inside pb_module
* Here is a tricky part.
* Not every input edges from the destination pb_graph_pin is used in the physical_model of pb_type
* So, we will skip these input edges when building nets
*/
int mux_input_pin_id = 0;
for (int iedge = 0; iedge < des_pb_graph_pin->num_input_edges; iedge++) {
if (physical_mode != des_pb_graph_pin->input_edges[iedge]->interconnect->parent_mode) {
continue;
}
/* Ensure that the input edge has only 1 input pin! */
check_pb_graph_edge(*(des_pb_graph_pin->input_edges[iedge]));
t_pb_graph_pin* src_pb_graph_pin = des_pb_graph_pin->input_edges[iedge]->input_pins[0];
/* Add a net, set its source and sink */
add_module_pb_graph_pin2pin_net(module_manager, pb_module,
mux_module, mux_instance,
circuit_lib.port_lib_name(interc_model_inputs[0]),
mux_input_pin_id,
module_name_prefix,
src_pb_graph_pin,
INPUT2INPUT_INTERC);
mux_input_pin_id++;
}
/* Ensure all the fan_in has been covered */
VTR_ASSERT(mux_input_pin_id == fan_in);
/* Add a net to wire the output of the multiplexer to des_pb_graph_pin */
add_module_pb_graph_pin2pin_net(module_manager, pb_module,
mux_module, mux_instance,
circuit_lib.port_lib_name(interc_model_outputs[0]),
0, /* MUX should have only 1 pin in its output port */
module_name_prefix,
des_pb_graph_pin,
OUTPUT2OUTPUT_INTERC);
break;
}
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d])Invalid interconnection type for %s [at Architecture XML LINE%d]!\n",
__FILE__, __LINE__, cur_interc->name, cur_interc->line_num);
exit(1);
}
}
/********************************************************************
* Add modules and nets for programmable/non-programmable interconnections
* which end to a port of pb_module
* This function will add the following elements to a module
* 1. Instances of direct connections
* 2. Instances of programmable routing multiplexers
* 3. nets to connect direct connections/multiplexer
*
* +-----------------------------------------+
* |
* | +--------------+ +------------+
* |--->| |--->| |
* |... | Multiplexers |... | |
* |--->| |--->| |
* | +--------------+ | des_pb_ |
* | | graph_node |
* | +--------------+ | |
* |--->| |--->| |
* | ...| Direct |... | |
* |--->| Connections |--->| |
* | +--------------+ +------------+
* |
* +----------------------------------------+
*
* Note: this function should be run after ALL the child pb_modules
* have been added to the pb_module and ALL the ports defined
* in pb_type have been added to the pb_module!!!
*
********************************************************************/
static
void add_module_pb_graph_port_interc(ModuleManager& module_manager,
const ModuleId& pb_module,
std::vector<ModuleId>& memory_modules,
std::vector<size_t>& memory_instances,
const CircuitLibrary& circuit_lib,
t_pb_graph_node* des_pb_graph_node,
const std::string& module_name_prefix,
const e_spice_pb_port_type& pb_port_type,
t_mode* physical_mode) {
switch (pb_port_type) {
case SPICE_PB_PORT_INPUT: {
for (int iport = 0; iport < des_pb_graph_node->num_input_ports; ++iport) {
for (int ipin = 0; ipin < des_pb_graph_node->num_input_pins[iport]; ++ipin) {
/* Get the selected edge of current pin*/
add_module_pb_graph_pin_interc(module_manager, pb_module,
memory_modules, memory_instances,
circuit_lib,
module_name_prefix,
&(des_pb_graph_node->input_pins[iport][ipin]),
physical_mode);
}
}
break;
}
case SPICE_PB_PORT_OUTPUT: {
for (int iport = 0; iport < des_pb_graph_node->num_output_ports; ++iport) {
for (int ipin = 0; ipin < des_pb_graph_node->num_output_pins[iport]; ++ipin) {
add_module_pb_graph_pin_interc(module_manager, pb_module,
memory_modules, memory_instances,
circuit_lib,
module_name_prefix,
&(des_pb_graph_node->output_pins[iport][ipin]),
physical_mode);
}
}
break;
}
case SPICE_PB_PORT_CLOCK: {
for (int iport = 0; iport < des_pb_graph_node->num_clock_ports; ++iport) {
for (int ipin = 0; ipin < des_pb_graph_node->num_clock_pins[iport]; ++ipin) {
add_module_pb_graph_pin_interc(module_manager, pb_module,
memory_modules, memory_instances,
circuit_lib,
module_name_prefix,
&(des_pb_graph_node->clock_pins[iport][ipin]),
physical_mode);
}
}
break;
}
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d]) Invalid pb port type!\n",
__FILE__, __LINE__);
exit(1);
}
}
/********************************************************************
* TODO:
* Add modules and nets for programmable/non-programmable interconnections
* inside a module of pb_type
* This function will add the following elements to a module
* 1. Instances of direct connections
* 2. Instances of programmable routing multiplexers
* 3. nets to connect direct connections/multiplexer
*
* Pb_module
* +--------------------------------------------------------------+
* | |
* | +--------------+ +------------+ +--------------+ |
* |--->| |--->| |--->| |--->|
* |... | Multiplexers |... | |... | Multiplexers |... |
* |--->| |--->| |--->| |--->|
* | +--------------+ | Child | +--------------+ |
* | | Pb_modules | |
* | +--------------+ | | +--------------+ |
* |--->| |--->| |--->| |--->|
* | ...| Direct |... | |... | Direct |... |
* |--->| Connections |--->| |--->| Connections |--->|
* | +--------------+ +------------+ +--------------+ |
* | |
* +--------------------------------------------------------------+
*
* Note: this function should be run after ALL the child pb_modules
* have been added to the pb_module and ALL the ports defined
* in pb_type have been added to the pb_module!!!
*
********************************************************************/
static
void add_module_pb_graph_interc(ModuleManager& module_manager,
const ModuleId& pb_module,
std::vector<ModuleId>& memory_modules,
std::vector<size_t>& memory_instances,
const CircuitLibrary& circuit_lib,
t_pb_graph_node* physical_pb_graph_node,
const std::string& module_name_prefix,
const int& physical_mode_index) {
/* Check cur_pb_graph_node*/
if (NULL == physical_pb_graph_node) {
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d]) Invalid cur_pb_graph_node.\n",
__FILE__, __LINE__);
exit(1);
}
/* Assign physical mode */
t_mode* physical_mode = &(physical_pb_graph_node->pb_type->modes[physical_mode_index]);
/* We check output_pins of cur_pb_graph_node and its the input_edges
* Built the interconnections between outputs of cur_pb_graph_node and outputs of child_pb_graph_node
* child_pb_graph_node.output_pins -----------------> cur_pb_graph_node.outpins
* /|\
* |
* input_pins, edges, output_pins
*/
add_module_pb_graph_port_interc(module_manager, pb_module,
memory_modules, memory_instances,
circuit_lib,
physical_pb_graph_node,
module_name_prefix,
SPICE_PB_PORT_OUTPUT,
physical_mode);
/* We check input_pins of child_pb_graph_node and its the input_edges
* Built the interconnections between inputs of cur_pb_graph_node and inputs of child_pb_graph_node
* cur_pb_graph_node.input_pins -----------------> child_pb_graph_node.input_pins
* /|\
* |
* input_pins, edges, output_pins
*/
for (int child = 0; child < physical_pb_graph_node->pb_type->modes[physical_mode_index].num_pb_type_children; ++child) {
for (int inst = 0; inst < physical_pb_graph_node->pb_type->modes[physical_mode_index].pb_type_children[child].num_pb; ++inst) {
t_pb_graph_node* child_pb_graph_node = &(physical_pb_graph_node->child_pb_graph_nodes[physical_mode_index][child][inst]);
/* For each child_pb_graph_node input pins*/
add_module_pb_graph_port_interc(module_manager, pb_module,
memory_modules, memory_instances,
circuit_lib,
child_pb_graph_node,
module_name_prefix,
SPICE_PB_PORT_INPUT,
physical_mode);
/* For each child_pb_graph_node clock pins*/
add_module_pb_graph_port_interc(module_manager, pb_module,
memory_modules, memory_instances,
circuit_lib,
child_pb_graph_node,
module_name_prefix,
SPICE_PB_PORT_CLOCK,
physical_mode);
}
}
}
/********************************************************************
* Print Verilog modules of physical blocks inside a grid (CLB, I/O. etc.)
* This function will traverse the graph of complex logic block (t_pb_graph_node)
* in a recursive way, using a Depth First Search (DFS) algorithm.
* As such, primitive physical blocks (LUTs, FFs, etc.), leaf node of the pb_graph
* will be printed out first, while the top-level will be printed out in the last
*
* Note: this function will print a unique Verilog module for each type of
* t_pb_graph_node, i.e., t_pb_type, in the graph, in order to enable highly
* hierarchical Verilog organization as well as simplify the Verilog file sizes.
*
* Note: DFS is the right way. Do NOT use BFS.
* DFS can guarantee that all the sub-modules can be registered properly
* to its parent in module manager
*******************************************************************/
static
void print_verilog_physical_blocks_rec(std::fstream& fp,
ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
const MuxLibrary& mux_lib,
t_sram_orgz_info* cur_sram_orgz_info,
t_pb_graph_node* physical_pb_graph_node,
const e_side& io_side,
const bool& use_explicit_mapping) {
/* Check the file handler*/
check_file_handler(fp);
/* Check cur_pb_graph_node*/
if (NULL == physical_pb_graph_node) {
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d]) Invalid cur_pb_graph_node.\n",
__FILE__, __LINE__);
exit(1);
}
/* Get the pb_type definition related to the node */
t_pb_type* physical_pb_type = physical_pb_graph_node->pb_type;
/* Find the mode that physical implementation of a pb_type */
int physical_mode_index = find_pb_type_physical_mode_index((*physical_pb_type));
/* For non-leaf node in the pb_type graph:
* Recursively Depth-First Generate all the child pb_type at the level
*/
if (FALSE == is_primitive_pb_type(physical_pb_type)) {
for (int ipb = 0; ipb < physical_pb_type->modes[physical_mode_index].num_pb_type_children; ++ipb) {
/* Go recursive to visit the children */
print_verilog_physical_blocks_rec(fp, module_manager, circuit_lib, mux_lib,
cur_sram_orgz_info,
&(physical_pb_graph_node->child_pb_graph_nodes[physical_mode_index][ipb][0]),
io_side,
use_explicit_mapping);
}
}
/* For leaf node, a primitive Verilog module will be generated */
if (TRUE == is_primitive_pb_type(physical_pb_type)) {
print_verilog_primitive_block(fp, module_manager, circuit_lib,
cur_sram_orgz_info,
physical_pb_graph_node,
io_side,
use_explicit_mapping);
/* Finish for primitive node, return */
return;
}
/* Generate the name of the Verilog module for this pb_type */
std::string pb_module_name_prefix(grid_verilog_file_name_prefix);
/* Add side string to the name if it is valid */
if (NUM_SIDES != io_side) {
Side side_manager(io_side);
pb_module_name_prefix += std::string(side_manager.to_string());
pb_module_name_prefix += std::string("_");
}
std::string pb_module_name = generate_physical_block_module_name(pb_module_name_prefix, physical_pb_type);
/* Register the Verilog module in module manager */
ModuleId pb_module = module_manager.add_module(pb_module_name);
VTR_ASSERT(ModuleId::INVALID() != pb_module);
/* Add ports to the Verilog module */
add_pb_type_ports_to_module_manager(module_manager, pb_module, physical_pb_type);
/* Vectors to record all the memory modules have been added
* They are used to add module nets of configuration bus
*/
std::vector<ModuleId> memory_modules;
std::vector<size_t> memory_instances;
/* TODO: this should be added to the cur_sram_orgz_info !!! */
t_spice_model* mem_model = NULL;
get_sram_orgz_info_mem_model(cur_sram_orgz_info, & mem_model);
CircuitModelId sram_model = circuit_lib.model(mem_model->name);
VTR_ASSERT(CircuitModelId::INVALID() != sram_model);
/* Add all the child Verilog modules as instances */
for (int ichild = 0; ichild < physical_pb_type->modes[physical_mode_index].num_pb_type_children; ++ichild) {
/* Get the name and module id for this child pb_type */
std::string child_pb_module_name = generate_physical_block_module_name(pb_module_name_prefix, &(physical_pb_type->modes[physical_mode_index].pb_type_children[ichild]));
ModuleId child_pb_module = module_manager.find_module(child_pb_module_name);
/* We must have one valid id! */
VTR_ASSERT(true == module_manager.valid_module_id(child_pb_module));
/* Each child may exist multiple times in the hierarchy*/
for (int inst = 0; inst < physical_pb_type->modes[physical_mode_index].pb_type_children[ichild].num_pb; ++inst) {
size_t child_instance_id = module_manager.num_instance(pb_module, child_pb_module);
/* Ensure the instance of this child module is the same as placement index,
* This check is necessary because placement_index is used to identify instance id for children
* when adding local interconnection for this pb_type
*/
VTR_ASSERT(child_instance_id == (size_t)physical_pb_graph_node->child_pb_graph_nodes[physical_mode_index][ichild][inst].placement_index);
/* Add the memory module as a child of primitive module */
module_manager.add_child_module(pb_module, child_pb_module);
/* Identify if this sub module includes configuration bits,
* we will update the memory module and instance list
*/
if (0 < find_module_num_config_bits(module_manager, child_pb_module,
circuit_lib, sram_model,
cur_sram_orgz_info->type)) {
memory_modules.push_back(child_pb_module);
memory_instances.push_back(child_instance_id);
}
}
}
/* Add modules and nets for programmable/non-programmable interconnections
* inside the Verilog module
*/
add_module_pb_graph_interc(module_manager, pb_module,
memory_modules, memory_instances,
circuit_lib, physical_pb_graph_node,
pb_module_name_prefix,
physical_mode_index);
/* Add global ports to the pb_module:
* This is a much easier job after adding sub modules (instances),
* we just need to find all the global ports from the child modules and build a list of it
*/
add_module_global_ports_from_child_modules(module_manager, pb_module);
/* Count GPIO ports from the sub-modules under this Verilog module
* This is a much easier job after adding sub modules (instances),
* we just need to find all the I/O ports from the child modules and build a list of it
*/
add_module_gpio_ports_from_child_modules(module_manager, pb_module);
/* Count shared SRAM ports from the sub-modules under this Verilog module
* This is a much easier job after adding sub modules (instances),
* we just need to find all the I/O ports from the child modules and build a list of it
*/
size_t module_num_shared_config_bits = find_module_num_shared_config_bits_from_child_modules(module_manager, pb_module);
if (0 < module_num_shared_config_bits) {
add_reserved_sram_ports_to_module_manager(module_manager, pb_module, module_num_shared_config_bits);
}
/* Count SRAM ports from the sub-modules under this Verilog module
* This is a much easier job after adding sub modules (instances),
* we just need to find all the I/O ports from the child modules and build a list of it
*/
size_t module_num_config_bits = find_module_num_config_bits_from_child_modules(module_manager, pb_module, circuit_lib, sram_model, cur_sram_orgz_info->type);
if (0 < module_num_config_bits) {
add_sram_ports_to_module_manager(module_manager, pb_module, circuit_lib, sram_model, cur_sram_orgz_info->type, module_num_config_bits);
}
/* Add module nets to connect memory cells inside
* This is a one-shot addition that covers all the memory modules in this pb module!
*/
if (false == memory_modules.empty()) {
add_module_nets_memory_config_bus(module_manager, pb_module,
memory_modules, memory_instances,
cur_sram_orgz_info->type, circuit_lib.design_tech_type(sram_model));
}
/* Comment lines */
print_verilog_comment(fp, std::string("----- BEGIN Physical programmable logic block Verilog module: " + std::string(physical_pb_type->name) + " -----"));
/* Write the verilog module */
write_verilog_module_to_file(fp, module_manager, pb_module, use_explicit_mapping);
print_verilog_comment(fp, std::string("----- END Physical programmable logic block Verilog module: " + std::string(physical_pb_type->name) + " -----"));
/* Add an empty line as a splitter */
fp << std::endl;
}
/*****************************************************************************
* This function will create a Verilog file and print out a Verilog netlist
* for a type of physical block
*
* For IO blocks:
* The param 'border_side' is required, which is specify which side of fabric
* the I/O block locates at.
*****************************************************************************/
static
void print_verilog_grid(ModuleManager& module_manager,
const MuxLibrary& mux_lib,
const CircuitLibrary& circuit_lib,
t_sram_orgz_info* cur_sram_orgz_info,
const std::string& verilog_dir,
const std::string& subckt_dir,
t_type_ptr phy_block_type,
const e_side& border_side,
const bool& use_explicit_mapping) {
/* Check code: if this is an IO block, the border side MUST be valid */
if (IO_TYPE == phy_block_type) {
VTR_ASSERT(NUM_SIDES != border_side);
}
/* Give a name to the Verilog netlist */
/* Create the file name for Verilog */
std::string verilog_fname(subckt_dir
+ generate_grid_block_netlist_name(std::string(phy_block_type->name),
IO_TYPE == phy_block_type,
border_side,
std::string(verilog_netlist_file_postfix))
);
/* TODO: remove the bak file when the file is ready */
verilog_fname += ".bak";
/* Echo status */
if (IO_TYPE == phy_block_type) {
Side side_manager(border_side);
vpr_printf(TIO_MESSAGE_INFO,
"Writing FPGA Verilog Netlist (%s) for logic block %s at %s side ...\n",
verilog_fname.c_str(), phy_block_type->name,
side_manager.c_str());
} else {
vpr_printf(TIO_MESSAGE_INFO,
"Writing FPGA Verilog Netlist (%s) for logic block %s...\n",
verilog_fname.c_str(), phy_block_type->name);
}
/* Create the file stream */
std::fstream fp;
fp.open(verilog_fname, std::fstream::out | std::fstream::trunc);
check_file_handler(fp);
print_verilog_file_header(fp, std::string("Verilog modules for physical block: " + std::string(phy_block_type->name) + "]"));
/* Print preprocessing flags */
print_verilog_include_defines_preproc_file(fp, verilog_dir);
/* Print Verilog modules for all the pb_types/pb_graph_nodes
* use a Depth-First Search Algorithm to print the sub-modules
* Note: DFS is the right way. Do NOT use BFS.
* DFS can guarantee that all the sub-modules can be registered properly
* to its parent in module manager
*/
print_verilog_comment(fp, std::string("---- BEGIN Sub-module of physical block:" + std::string(phy_block_type->name) + " ----"));
/* Print Verilog modules starting from the top-level pb_type/pb_graph_node, and traverse the graph in a recursive way */
print_verilog_physical_blocks_rec(fp, module_manager, circuit_lib, mux_lib,
cur_sram_orgz_info,
phy_block_type->pb_graph_head,
border_side,
use_explicit_mapping);
print_verilog_comment(fp, std::string("---- END Sub-module of physical block:" + std::string(phy_block_type->name) + " ----"));
/* Create a Verilog Module for the top-level physical block, and add to module manager */
std::string grid_module_name = generate_grid_block_module_name(std::string(grid_verilog_file_name_prefix), phy_block_type->name, IO_TYPE == phy_block_type, border_side);
ModuleId grid_module = module_manager.add_module(grid_module_name);
VTR_ASSERT(true == module_manager.valid_module_id(grid_module));
/* Vectors to record all the memory modules have been added
* They are used to add module nets of configuration bus
*/
std::vector<ModuleId> memory_modules;
std::vector<size_t> memory_instances;
/* TODO: this should be added to the cur_sram_orgz_info !!! */
t_spice_model* mem_model = NULL;
get_sram_orgz_info_mem_model(cur_sram_orgz_info, & mem_model);
CircuitModelId sram_model = circuit_lib.model(mem_model->name);
VTR_ASSERT(CircuitModelId::INVALID() != sram_model);
/* Generate the name of the Verilog module for this pb_type */
std::string pb_module_name_prefix(grid_verilog_file_name_prefix);
/* Add side string to the name if it is valid */
if (NUM_SIDES != border_side) {
Side side_manager(border_side);
pb_module_name_prefix += std::string(side_manager.to_string());
pb_module_name_prefix += std::string("_");
}
std::string pb_module_name = generate_physical_block_module_name(pb_module_name_prefix, phy_block_type->pb_graph_head->pb_type);
ModuleId pb_module = module_manager.find_module(pb_module_name);
VTR_ASSERT(true == module_manager.valid_module_id(pb_module));
/* Add all the sub modules */
for (int iz = 0; iz < phy_block_type->capacity; ++iz) {
size_t pb_instance_id = module_manager.num_instance(grid_module, pb_module);
module_manager.add_child_module(grid_module, pb_module);
/* Identify if this sub module includes configuration bits,
* we will update the memory module and instance list
*/
if (0 < find_module_num_config_bits(module_manager, pb_module,
circuit_lib, sram_model,
cur_sram_orgz_info->type)) {
memory_modules.push_back(pb_module);
memory_instances.push_back(pb_instance_id);
}
}
/* Add grid ports(pins) to the module */
add_grid_module_pb_type_ports(module_manager, grid_module,
phy_block_type, border_side);
/* Add module nets to connect the pb_type ports to sub modules */
for (const size_t& child_instance : module_manager.child_module_instances(grid_module, pb_module)) {
add_grid_module_nets_connect_pb_type_ports(module_manager, grid_module,
pb_module, child_instance,
phy_block_type, border_side);
}
/* Add global ports to the pb_module:
* This is a much easier job after adding sub modules (instances),
* we just need to find all the global ports from the child modules and build a list of it
*/
add_module_global_ports_from_child_modules(module_manager, grid_module);
/* Count GPIO ports from the sub-modules under this Verilog module
* This is a much easier job after adding sub modules (instances),
* we just need to find all the I/O ports from the child modules and build a list of it
*/
add_module_gpio_ports_from_child_modules(module_manager, grid_module);
/* Count shared SRAM ports from the sub-modules under this Verilog module
* This is a much easier job after adding sub modules (instances),
* we just need to find all the I/O ports from the child modules and build a list of it
*/
size_t module_num_shared_config_bits = find_module_num_shared_config_bits_from_child_modules(module_manager, grid_module);
if (0 < module_num_shared_config_bits) {
add_reserved_sram_ports_to_module_manager(module_manager, grid_module, module_num_shared_config_bits);
}
/* Count SRAM ports from the sub-modules under this Verilog module
* This is a much easier job after adding sub modules (instances),
* we just need to find all the I/O ports from the child modules and build a list of it
*/
size_t module_num_config_bits = find_module_num_config_bits_from_child_modules(module_manager, grid_module, circuit_lib, sram_model, cur_sram_orgz_info->type);
if (0 < module_num_config_bits) {
add_sram_ports_to_module_manager(module_manager, grid_module, circuit_lib, sram_model, cur_sram_orgz_info->type, module_num_config_bits);
}
/* Add module nets to connect memory cells inside
* This is a one-shot addition that covers all the memory modules in this pb module!
*/
if (false == memory_modules.empty()) {
add_module_nets_memory_config_bus(module_manager, grid_module,
memory_modules, memory_instances,
cur_sram_orgz_info->type, circuit_lib.design_tech_type(sram_model));
}
/* Write the verilog module */
print_verilog_comment(fp, std::string("----- BEGIN Grid Verilog module: " + module_manager.module_name(grid_module) + " -----"));
write_verilog_module_to_file(fp, module_manager, grid_module, use_explicit_mapping);
print_verilog_comment(fp, std::string("----- END Grid Verilog module: " + module_manager.module_name(grid_module) + " -----"));
/* Add an empty line as a splitter */
fp << std::endl;
/* Close file handler */
fp.close();
/* Add fname to the linked list */
/* TODO: add it when it is ready
grid_verilog_subckt_file_path_head = add_one_subckt_file_name_to_llist(grid_verilog_subckt_file_path_head, verilog_fname.c_str());
*/
}
/*****************************************************************************
* Create logic block modules in a compact way:
* 1. Only one module for each I/O on each border side (IO_TYPE)
* 2. Only one module for each CLB (FILL_TYPE)
* 3. Only one module for each heterogeneous block
****************************************************************************/
void print_verilog_grids(ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
const MuxLibrary& mux_lib,
t_sram_orgz_info* cur_sram_orgz_info,
const std::string& verilog_dir,
const std::string& subckt_dir,
const bool& is_explicit_mapping) {
/* Enumerate the types, dump one Verilog module for each */
for (int itype = 0; itype < num_types; itype++) {
if (EMPTY_TYPE == &type_descriptors[itype]) {
/* Bypass empty type or NULL */
continue;
} else if (IO_TYPE == &type_descriptors[itype]) {
/* Special for I/O block, generate one module for each border side */
for (int iside = 0; iside < NUM_SIDES; iside++) {
Side side_manager(iside);
print_verilog_grid(module_manager, mux_lib, circuit_lib,
cur_sram_orgz_info,
verilog_dir, subckt_dir,
&type_descriptors[itype],
side_manager.get_side(),
is_explicit_mapping);
}
continue;
} else if (FILL_TYPE == &type_descriptors[itype]) {
/* For CLB */
print_verilog_grid(module_manager, mux_lib, circuit_lib,
cur_sram_orgz_info,
verilog_dir, subckt_dir,
&type_descriptors[itype],
NUM_SIDES,
is_explicit_mapping);
continue;
} else {
/* For heterogenenous blocks */
print_verilog_grid(module_manager, mux_lib, circuit_lib,
cur_sram_orgz_info,
verilog_dir, subckt_dir,
&type_descriptors[itype],
NUM_SIDES,
is_explicit_mapping);
}
}
/* Output a header file for all the logic blocks */
vpr_printf(TIO_MESSAGE_INFO, "Generating header file for grid Verilog modules...\n");
std::string grid_verilog_fname(logic_block_verilog_file_name);
/* TODO: remove .bak when it is ready */
grid_verilog_fname += ".bak";
dump_verilog_subckt_header_file(grid_verilog_subckt_file_path_head,
subckt_dir.c_str(),
grid_verilog_fname.c_str());
}