OpenFPGA/vpr7_x2p/vpr/SRC/fpga_spice/verilog/verilog_decoder.c

231 lines
8.0 KiB
C

/***********************************/
/* Synthesizable Verilog Dumping */
/* Xifan TANG, EPFL/LSI */
/***********************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <assert.h>
#include <sys/stat.h>
#include <unistd.h>
/* Include vpr structs*/
#include "util.h"
#include "physical_types.h"
#include "vpr_types.h"
#include "globals.h"
#include "rr_graph.h"
#include "vpr_utils.h"
#include "path_delay.h"
#include "stats.h"
/* Include FPGA-SPICE utils */
#include "linkedlist.h"
#include "fpga_spice_utils.h"
#include "spice_mux.h"
#include "fpga_spice_globals.h"
/* Include verilog utils */
#include "verilog_global.h"
#include "verilog_utils.h"
/***** Subroutines *****/
void determine_verilog_blwl_decoder_size(INP t_sram_orgz_info* cur_sram_verilog_orgz_info,
OUTP int* num_array_bl, OUTP int* num_array_wl,
OUTP int* bl_decoder_size, OUTP int* wl_decoder_size) {
t_spice_model* mem_model = NULL;
int num_mem_bit;
int num_reserved_bl, num_reserved_wl;
/* Check */
assert(SPICE_SRAM_MEMORY_BANK == sram_verilog_orgz_info->type);
num_mem_bit = get_sram_orgz_info_num_mem_bit(sram_verilog_orgz_info);
get_sram_orgz_info_num_blwl(sram_verilog_orgz_info, num_array_bl, num_array_wl);
get_sram_orgz_info_reserved_blwl(sram_verilog_orgz_info, &num_reserved_bl, &num_reserved_wl);
/* Sizes of decodes depend on the Memory technology */
get_sram_orgz_info_mem_model(sram_verilog_orgz_info, &mem_model);
switch (mem_model->design_tech) {
/* CMOS SRAM*/
case SPICE_MODEL_DESIGN_CMOS:
/* SRAMs can efficiently share BLs and WLs,
* Actual number of BLs and WLs will be sqrt(num_bls) and sqrt(num_wls)
*/
assert(0 == num_reserved_bl);
assert(0 == num_reserved_wl);
(*num_array_bl) = ceil(sqrt(*num_array_bl));
(*num_array_wl) = ceil(sqrt(*num_array_wl));
(*bl_decoder_size) = determine_decoder_size(*num_array_bl);
(*wl_decoder_size) = determine_decoder_size(*num_array_wl);
break;
/* RRAM */
case SPICE_MODEL_DESIGN_RRAM:
/* Currently we do not have more efficient way to share the BLs and WLs as CMOS SRAMs */
(*bl_decoder_size) = determine_decoder_size(*num_array_bl);
(*wl_decoder_size) = determine_decoder_size(*num_array_wl);
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,"(File:%s,[LINE%d])Invalid design technology [CMOS|RRAM] for memory technology!\n",
__FILE__, __LINE__);
exit(1);
}
return;
}
void dump_verilog_decoder(char* submodule_dir) {
int num_array_bl, num_array_wl;
int bl_decoder_size, wl_decoder_size;
FILE* fp = NULL;
t_spice_model* mem_model = NULL;
boolean bl_inverted = FALSE;
boolean wl_inverted = FALSE;
char* verilog_name = my_strcat(submodule_dir, decoders_verilog_file_name);
/* Print the muxes netlist*/
fp = fopen(verilog_name, "w");
if (NULL == fp) {
vpr_printf(TIO_MESSAGE_ERROR,"(FILE:%s,LINE[%d])Failure in create decoder SPICE netlist %s",__FILE__, __LINE__, verilog_name);
exit(1);
}
/* Check */
assert(SPICE_SRAM_MEMORY_BANK == sram_verilog_orgz_info->type);
/* Get number of BLs,WLs and decoder sizes */
determine_verilog_blwl_decoder_size(sram_verilog_orgz_info,
&num_array_bl, &num_array_wl,
&bl_decoder_size, &wl_decoder_size);
/* Generate file header*/
vpr_printf(TIO_MESSAGE_INFO, "Writing Decoder verilog netlist...\n");
/* Generate the descriptions*/
dump_verilog_file_header(fp, " Verilog Decoders");
/* Different design technology requires different BL decoder logic */
get_sram_orgz_info_mem_model(sram_verilog_orgz_info, &mem_model);
/* Find if we need an inversion of the BL */
check_mem_model_blwl_inverted(mem_model, SPICE_MODEL_PORT_BL, &bl_inverted);
check_mem_model_blwl_inverted(mem_model, SPICE_MODEL_PORT_WL, &wl_inverted);
switch (mem_model->design_tech) {
case SPICE_MODEL_DESIGN_CMOS: /* CMOS SRAM*/
/* SRAM technology requires its BL decoder has an additional input called data_in
* only the selected BL will be set to the value of data_in, other BLs will be in high-resistance state
*/
/* Start the BL decoder module definition */
fprintf(fp, "//----- BL Decoder convert %d bits to binary %d bits -----\n",
bl_decoder_size, num_array_bl);
fprintf(fp, "module bl_decoder%dto%d (\n",
bl_decoder_size, num_array_bl);
fprintf(fp, "input wire enable,\n");
fprintf(fp, "input wire [%d:0] addr_in,\n",
bl_decoder_size - 1);
fprintf(fp, "input wire data_in,\n");
fprintf(fp, "output reg [0:%d] addr_out\n",
num_array_bl - 1);
fprintf(fp, ");\n");
/* Wee need to know the default value of bl port and wl port */
/* Internal logics */
fprintf(fp, "always@(addr_out,addr_in,enable, data_in)\n");
fprintf(fp, "begin\n");
fprintf(fp, "\taddr_out = %d'bz;\n", num_array_bl);
fprintf(fp, "\tif (1'b1 == enable) begin\n");
fprintf(fp, "\t\taddr_out[addr_in] = data_in;\n");
fprintf(fp, "\tend\n");
fprintf(fp, "end\n");
fprintf(fp, "endmodule\n");
break;
case SPICE_MODEL_DESIGN_RRAM: /* RRAM */
/* For RRAM technology, BL decoder should be same as the WL decoder */
/* Start the BL decoder module definition */
fprintf(fp, "//----- BL Decoder convert %d bits to binary %d bits -----\n",
bl_decoder_size, num_array_bl);
fprintf(fp, "module bl_decoder%dto%d (\n",
bl_decoder_size, num_array_bl);
fprintf(fp, "input wire enable,\n");
fprintf(fp, "input wire [%d:0] addr_in,\n",
bl_decoder_size-1);
fprintf(fp, "output reg [0:%d] addr_out\n",
num_array_bl-1);
fprintf(fp, ");\n");
/* Internal logics */
fprintf(fp, "always@(addr_out,addr_in,enable)\n");
fprintf(fp, "begin\n");
if (TRUE == bl_inverted) {
fprintf(fp, "\taddr_out = %d'b1;\n", num_array_bl);
} else {
assert (FALSE == bl_inverted);
fprintf(fp, "\taddr_out = %d'b0;\n", num_array_bl);
}
fprintf(fp, "\tif (1'b1 == enable) begin\n");
if (TRUE == bl_inverted) {
fprintf(fp, "\t\taddr_out[addr_in] = 1'b0;\n");
} else {
assert (FALSE == bl_inverted);
fprintf(fp, "\t\taddr_out[addr_in] = 1'b1;\n");
}
fprintf(fp, "\tend\n");
fprintf(fp, "end\n");
fprintf(fp, "endmodule\n");
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,"(File:%s,[LINE%d])Invalid design technology [CMOS|RRAM] for memory technology!\n",
__FILE__, __LINE__);
exit(1);
}
/* WL decoder logic is the same whatever SRAM or RRAM technology is considered */
/* Start the WL module definition */
fprintf(fp, "//----- WL Decoder convert %d bits to binary %d bits -----\n",
wl_decoder_size, num_array_wl);
fprintf(fp, "module wl_decoder%dto%d (\n",
wl_decoder_size, num_array_wl);
fprintf(fp, "input wire enable,\n");
fprintf(fp, "input wire [%d:0] addr_in,\n",
wl_decoder_size-1);
fprintf(fp, "output reg [0:%d] addr_out\n",
num_array_bl-1);
fprintf(fp, ");\n");
/* Internal logics */
fprintf(fp, "always@(addr_out,addr_in,enable)\n");
fprintf(fp, "begin\n");
if (TRUE == wl_inverted) {
fprintf(fp, "\taddr_out = %d'b1;\n", num_array_wl);
} else {
assert (FALSE == wl_inverted);
fprintf(fp, "\taddr_out = %d'b0;\n", num_array_wl);
}
fprintf(fp, "\tif (1'b1 == enable) begin\n");
if (TRUE == wl_inverted) {
fprintf(fp, "\t\taddr_out[addr_in] = 1'b0;\n");
} else {
assert (FALSE == wl_inverted);
fprintf(fp, "\t\taddr_out[addr_in] = 1'b1;\n");
}
fprintf(fp, "\tend\n");
fprintf(fp, "end\n");
fprintf(fp, "endmodule\n");
/* Close the file*/
fclose(fp);
/* Add fname to the linked list */
submodule_verilog_subckt_file_path_head = add_one_subckt_file_name_to_llist(submodule_verilog_subckt_file_path_head, verilog_name);
return;
}