finishing touches for PR

This commit is contained in:
Andrew Pond 2021-07-23 12:08:32 -06:00
parent ce71466b32
commit e39e9b8c26
5 changed files with 3 additions and 312 deletions

View File

@ -1,102 +0,0 @@
# Yosys synthesis script for ${TOP_MODULE}
#########################
# Parse input files
#########################
# Read verilog files
${READ_VERILOG_FILE}
# Read technology library
read_verilog -lib -specify ${YOSYS_CELL_SIM_VERILOG}
#########################
# Prepare for synthesis
#########################
# Identify top module from hierarchy
hierarchy -check -top ${TOP_MODULE}
# - Convert process blocks to AST
proc
# Flatten all the gates/primitives
flatten
# Identify tri-state buffers from 'z' signal in AST
# with follow-up optimizations to clean up AST
tribuf -logic
opt_expr
opt_clean
# demote inout ports to input or output port
# with follow-up optimizations to clean up AST
deminout
opt
opt_expr
opt_clean
check
opt
wreduce -keepdc
peepopt
pmuxtree
opt_clean
########################
# Map multipliers
# Inspired from synth_xilinx.cc
#########################
# Avoid merging any registers into DSP, reserve memory port registers first
memory_dff
wreduce t:$mul
techmap -map +/mul2dsp.v -map ${YOSYS_DSP_MAP_VERILOG} ${YOSYS_DSP_MAP_PARAMETERS}
select a:mul2dsp
setattr -unset mul2dsp
opt_expr -fine
wreduce
select -clear
chtype -set $mul t:$__soft_mul# Extract arithmetic functions
#########################
# Run coarse synthesis
#########################
# Run a tech map with default library
techmap
alumacc
share
opt
fsm
# Run a quick follow-up optimization to sweep out unused nets/signals
opt -fast
# Optimize any memory cells by merging share-able ports and collecting all the ports belonging to memorcy cells
memory -nomap
opt_clean
#########################
# Map muxes to pmuxes
#########################
techmap -map +/pmux2mux.v
#########################
# Map flip-flops
#########################
techmap -map ${YOSYS_DFF_MAP_VERILOG}
opt_expr -mux_undef
simplemap
opt_expr
opt_merge
opt_rmdff
opt_clean
opt
#########################
# Map LUTs
#########################
abc -lut ${LUT_SIZE}
#########################
# Check and show statisitics
#########################
hierarchy -check
stat
#########################
# Output netlists
#########################
opt_clean -purge
write_blif ${OUTPUT_BLIF}

View File

@ -72,4 +72,3 @@ exit
# Note :
# To run verification at the end of the flow maintain source in ./SRC directory
{"mode":"full","isActive":false}

View File

@ -25,3 +25,4 @@ Bottom-right (Br): the pins of a tile are placed on the bottom side and right si
GlobalTileClk: How many clocks are defined through global ports from physical tiles. is the number of clocks
Other features are used in naming should be listed here.
tt/ff/ss: timing coners specified at the end of the file name. Each file under the specific architecture is tied to a certain corner, as the timing values will change with the corner.

View File

@ -56,152 +56,3 @@ module dpram_128x8 (
.data_out (data_out) );
endmodule
//-----------------------------
// Native D-type flip-flop
//-----------------------------
(* abc9_flop, lib_whitebox *)
module dff(
output reg Q,
input D,
(* clkbuf_sink *)
(* invertible_pin = "IS_C_INVERTED" *)
input C
);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
initial Q = INIT;
case(|IS_C_INVERTED)
1'b0:
always @(posedge C)
Q <= D;
1'b1:
always @(negedge C)
Q <= D;
endcase
endmodule
//-----------------------------
// D-type flip-flop with active-high asynchronous reset
//-----------------------------
(* abc9_flop, lib_whitebox *)
module dffr(
output reg Q,
input D,
input R,
(* clkbuf_sink *)
(* invertible_pin = "IS_C_INVERTED" *)
input C
);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
initial Q = INIT;
case(|IS_C_INVERTED)
1'b0:
always @(posedge C or posedge R)
if (R == 1'b1)
Q <= 1'b0;
else
Q <= D;
1'b1:
always @(negedge C or posedge R)
if (R == 1'b1)
Q <= 1'b0;
else
Q <= D;
endcase
endmodule
//-----------------------------
// D-type flip-flop with active-high asynchronous set
//-----------------------------
(* abc9_flop, lib_whitebox *)
module dffs(
output reg Q,
input D,
input S,
(* clkbuf_sink *)
(* invertible_pin = "IS_C_INVERTED" *)
input C
);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
initial Q = INIT;
case(|IS_C_INVERTED)
1'b0:
always @(posedge C or posedge S)
if (S == 1'b1)
Q <= 1'b1;
else
Q <= D;
1'b1:
always @(negedge C or posedge S)
if (S == 1'b1)
Q <= 1'b1;
else
Q <= D;
endcase
endmodule
//-----------------------------
// D-type flip-flop with active-low asynchronous reset
//-----------------------------
(* abc9_flop, lib_whitebox *)
module dffrn(
output reg Q,
input D,
input RN,
(* clkbuf_sink *)
(* invertible_pin = "IS_C_INVERTED" *)
input C
);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
initial Q = INIT;
case(|IS_C_INVERTED)
1'b0:
always @(posedge C or negedge RN)
if (RN == 1'b0)
Q <= 1'b0;
else
Q <= D;
1'b1:
always @(negedge C or negedge RN)
if (RN == 1'b0)
Q <= 1'b0;
else
Q <= D;
endcase
endmodule
//-----------------------------
// D-type flip-flop with active-low asynchronous set
//-----------------------------
(* abc9_flop, lib_whitebox *)
module dffsn(
output reg Q,
input D,
input SN,
(* clkbuf_sink *)
(* invertible_pin = "IS_C_INVERTED" *)
input C
);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
initial Q = INIT;
case(|IS_C_INVERTED)
1'b0:
always @(posedge C or negedge SN)
if (SN == 1'b0)
Q <= 1'b1;
else
Q <= D;
1'b1:
always @(negedge C or negedge SN)
if (SN == 1'b0)
Q <= 1'b1;
else
Q <= D;
endcase
endmodule

View File

@ -1,58 +0,0 @@
//-----------------------------
// Dual-port RAM 128x8 bit (1Kbit)
// Core logic
//-----------------------------
module dpram_128x8_core (
input wclk,
input wen,
input [0:6] waddr,
input [0:7] data_in,
input rclk,
input ren,
input [0:6] raddr,
output [0:7] data_out );
reg [0:7] ram[0:127];
reg [0:7] internal;
assign data_out = internal;
always @(posedge wclk) begin
if(wen) begin
ram[waddr] <= data_in;
end
end
always @(posedge rclk) begin
if(ren) begin
internal <= ram[raddr];
end
end
endmodule
//-----------------------------
// Dual-port RAM 128x8 bit (1Kbit) wrapper
// where the read clock and write clock
// are combined to a unified clock
//-----------------------------
module dpram_128x8 (
input clk,
input wen,
input ren,
input [0:6] waddr,
input [0:6] raddr,
input [0:7] data_in,
output [0:7] data_out );
dpram_128x8_core memory_0 (
.wclk (clk),
.wen (wen),
.waddr (waddr),
.data_in (data_in),
.rclk (clk),
.ren (ren),
.raddr (raddr),
.data_out (data_out) );
endmodule