Merge pull request #469 from lnis-uofu/dsp_reg
New test case: DSP block with input and output registers
This commit is contained in:
commit
8b06c8790c
|
@ -0,0 +1,32 @@
|
|||
//-------------------------------------------------------
|
||||
// Functionality: A 2-bit multiply circuit with pipelines
|
||||
// Author: Xifan Tang
|
||||
//-------------------------------------------------------
|
||||
|
||||
module mult_2_pipelined(clk, a, b, out);
|
||||
parameter DATA_WIDTH = 2; /* declare a parameter. default required */
|
||||
input [DATA_WIDTH - 1 : 0] a, b;
|
||||
input clk;
|
||||
output [DATA_WIDTH - 1 : 0] out;
|
||||
|
||||
reg [DATA_WIDTH - 1 : 0] a_reg;
|
||||
reg [DATA_WIDTH - 1 : 0] b_reg;
|
||||
reg [DATA_WIDTH - 1 : 0] out_reg;
|
||||
|
||||
always @(posedge clk) begin
|
||||
a_reg <= a;
|
||||
b_reg <= b;
|
||||
out_reg <= a_reg * b_reg;
|
||||
out = out_reg;
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -10,6 +10,10 @@ Note that an OpenFPGA architecture can be applied to multiple VPR architecture f
|
|||
- adder\_chain: If hard adder/carry chain is used inside CLBs
|
||||
- register\_chain: If shift register chain is used inside CLBs
|
||||
- scan\_chain: If scan chain testing infrastructure is used inside CLBs
|
||||
- <wide>\_<frac>\_dsp<dsp\_size>reg: If Digital Signal Processor (DSP) is used or not. If used, the input size should be clarified here.
|
||||
- The keyword 'wide' is to specify if the DSP spans more than 1 column.
|
||||
- The keyword 'frac' is to specify if the DSP is fracturable to operate in different modes.
|
||||
- The keyword 'reg' is to specify if the DSP has input and output registers. If only input or output registers are used, the keyword will be 'regin' or 'regout' respectively.
|
||||
- mem<mem\_size>: If block RAM (BRAM) is used or not. If used, the memory size should be clarified here. The keyword wide is to specify if the BRAM spanns more than 1 column.
|
||||
- aib: If the Advanced Interface Bus (AIB) is used in place of some I/Os.
|
||||
- <bank\|cc\|frame\|standalone>: specify the type of configuration protocol used in the architecture.
|
||||
|
|
|
@ -0,0 +1,205 @@
|
|||
<!-- Architecture annotation for OpenFPGA framework
|
||||
This annotation supports the k6_N10_40nm.xml
|
||||
- General purpose logic block
|
||||
- K = 6, N = 10, I = 40
|
||||
- Single mode
|
||||
- Routing architecture
|
||||
- L = 4, fc_in = 0.15, fc_out = 0.1
|
||||
-->
|
||||
<openfpga_architecture>
|
||||
<technology_library>
|
||||
<device_library>
|
||||
<device_model name="logic" type="transistor">
|
||||
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
|
||||
<design vdd="0.9" pn_ratio="2"/>
|
||||
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
|
||||
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
|
||||
</device_model>
|
||||
<device_model name="io" type="transistor">
|
||||
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
|
||||
<design vdd="2.5" pn_ratio="3"/>
|
||||
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
|
||||
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
|
||||
</device_model>
|
||||
</device_library>
|
||||
<variation_library>
|
||||
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
|
||||
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
|
||||
</variation_library>
|
||||
</technology_library>
|
||||
<circuit_library>
|
||||
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
|
||||
<design_technology type="cmos" topology="inverter" size="1"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
|
||||
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
|
||||
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
|
||||
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="false"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="input" prefix="sel" size="1"/>
|
||||
<port type="input" prefix="selb" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
|
||||
10e-12 5e-12 5e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
|
||||
10e-12 5e-12 5e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="false"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
|
||||
</circuit_model>
|
||||
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="false"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
|
||||
</circuit_model>
|
||||
<circuit_model type="mux" name="mux_tree" prefix="mux_tree" dump_structural_verilog="true">
|
||||
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<pass_gate_logic circuit_model_name="TGATE"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="mux" name="mux_tree_tapbuf" prefix="mux_tree_tapbuf" is_default="true" dump_structural_verilog="true">
|
||||
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
|
||||
<pass_gate_logic circuit_model_name="TGATE"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="1"/>
|
||||
</circuit_model>
|
||||
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
|
||||
<circuit_model type="ff" name="DFFSRQ" prefix="DFFSRQ" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/dff.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="input" prefix="D" size="1"/>
|
||||
<port type="input" prefix="set" lib_name="SET" size="1" is_global="true" default_val="0" is_set="true"/>
|
||||
<port type="input" prefix="reset" lib_name="RST" size="1" is_global="true" default_val="0" is_reset="true"/>
|
||||
<port type="output" prefix="Q" size="1"/>
|
||||
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true" default_val="0" />
|
||||
</circuit_model>
|
||||
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
|
||||
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
|
||||
<pass_gate_logic circuit_model_name="TGATE"/>
|
||||
<port type="input" prefix="in" size="4"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="16"/>
|
||||
</circuit_model>
|
||||
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
|
||||
<circuit_model type="ccff" name="DFF" prefix="DFF" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/dff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/dff.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="input" prefix="D" size="1"/>
|
||||
<port type="output" prefix="Q" size="1"/>
|
||||
<port type="output" prefix="QN" size="1"/>
|
||||
<port type="clock" prefix="prog_clk" lib_name="CK" size="1" is_global="true" default_val="0" is_prog="true"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/gpio.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/gpio.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="PAD" size="1" is_global="true" is_io="true" is_data_io="true"/>
|
||||
<port type="sram" prefix="DIR" size="1" mode_select="true" circuit_model_name="DFF" default_val="1"/>
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="hard_logic" name="mult_8x8" prefix="mult_8x8" is_default="true" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/mult_8x8.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/mult_8x8.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="input" prefix="A" lib_name="A" size="8"/>
|
||||
<port type="input" prefix="B" lib_name="B" size="8"/>
|
||||
<port type="output" prefix="Y" lib_name="Y" size="16"/>
|
||||
</circuit_model>
|
||||
</circuit_library>
|
||||
<configuration_protocol>
|
||||
<organization type="scan_chain" circuit_model_name="DFF"/>
|
||||
</configuration_protocol>
|
||||
<connection_block>
|
||||
<switch name="ipin_cblock" circuit_model_name="mux_tree_tapbuf"/>
|
||||
</connection_block>
|
||||
<switch_block>
|
||||
<switch name="0" circuit_model_name="mux_tree_tapbuf"/>
|
||||
</switch_block>
|
||||
<routing_segment>
|
||||
<segment name="L4" circuit_model_name="chan_segment"/>
|
||||
</routing_segment>
|
||||
<pb_type_annotations>
|
||||
<!-- physical pb_type binding in complex block IO -->
|
||||
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
|
||||
<pb_type name="io[physical].iopad" circuit_model_name="GPIO" mode_bits="1"/>
|
||||
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
|
||||
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
|
||||
<!-- End physical pb_type binding in complex block IO -->
|
||||
|
||||
<!-- physical pb_type binding in complex block CLB -->
|
||||
<!-- physical mode will be the default mode if not specified -->
|
||||
<pb_type name="clb">
|
||||
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
|
||||
<interconnect name="crossbar" circuit_model_name="mux_tree"/>
|
||||
</pb_type>
|
||||
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
|
||||
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="DFFSRQ"/>
|
||||
<!-- End physical pb_type binding in complex block IO -->
|
||||
|
||||
<!-- physical pb_type binding in complex block dsp -->
|
||||
<pb_type name="mult_8" physical_mode_name="mult_8x8" idle_mode_name="mult_8x8"/>
|
||||
<!-- Bind the primitive pb_type in the physical mode to a circuit model -->
|
||||
<pb_type name="mult_8[mult_8x8].mult_8x8_slice.mult_8x8" circuit_model_name="mult_8x8"/>
|
||||
<pb_type name="mult_8[mult_8x8].mult_8x8_slice.ff_A" circuit_model_name="DFFSRQ"/>
|
||||
<pb_type name="mult_8[mult_8x8].mult_8x8_slice.ff_B" circuit_model_name="DFFSRQ"/>
|
||||
<pb_type name="mult_8[mult_8x8].mult_8x8_slice.ff_Y" circuit_model_name="DFFSRQ"/>
|
||||
</pb_type_annotations>
|
||||
</openfpga_architecture>
|
|
@ -53,6 +53,9 @@ run-task fpga_verilog/dsp/multi_mode_mult_16x16 --debug --show_thread_logs
|
|||
echo -e "Testing Verilog generation with heterogeneous fabric using multi-width 16-bit multi-mode multipliers ";
|
||||
run-task fpga_verilog/dsp/wide_multi_mode_mult_16x16 --debug --show_thread_logs
|
||||
|
||||
echo -e "Testing Verilog generation with heterogeneous fabric using 8-bit single-mode registerable multipliers ";
|
||||
run-task fpga_verilog/dsp/single_mode_mult_8x8_reg --debug --show_thread_logs
|
||||
|
||||
echo -e "Testing Verilog generation with different I/O capacities on each side of an FPGA ";
|
||||
run-task fpga_verilog/io/multi_io_capacity --debug --show_thread_logs
|
||||
|
||||
|
|
|
@ -0,0 +1,43 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = false
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=yosys_vpr
|
||||
|
||||
[OpenFPGA_SHELL]
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/fix_heterogeneous_device_example_script.openfpga
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_dsp8reg_cc_openfpga.xml
|
||||
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/fixed_sim_openfpga.xml
|
||||
# Yosys script parameters
|
||||
yosys_cell_sim_verilog=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/k4_frac_N8_tileable_reset_softadder_register_scan_chain_dsp8_nonLR_caravel_io_skywater130nm_cell_sim.v
|
||||
yosys_dsp_map_verilog=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/k4_frac_N8_tileable_reset_softadder_register_scan_chain_dsp8_nonLR_caravel_io_skywater130nm_dsp_map.v
|
||||
yosys_dsp_map_parameters=-D DSP_A_MAXWIDTH=8 -D DSP_B_MAXWIDTH=8 -D DSP_A_MINWIDTH=2 -D DSP_B_MINWIDTH=2 -D DSP_NAME=mult_8x8
|
||||
# VPR parameter
|
||||
openfpga_vpr_device_layout=3x2
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_dsp8reg_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/mult/mult_2_pipelined/mult_2_pipelined.v
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench_yosys_common=${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_yosys_vpr_dsp_flow.ys
|
||||
bench_yosys_rewrite_common=${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_yosys_vpr_flow_with_rewrite.ys;${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_rewrite_flow.ys
|
||||
|
||||
bench0_top = mult_2_pipelined
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -12,7 +12,11 @@ Please reveal the following architecture features in the names to help quickly s
|
|||
- register\_chain: If shift register chain is used inside CLBs
|
||||
- scan\_chain: If scan chain testing infrastructure is used inside CLBs
|
||||
- <wide>\_<frac>\_mem<mem\_size>: If block RAM (BRAM) is used or not. If used, the memory size should be clarified here. The keyword 'wide' is to specify if the BRAM spans more than 1 column. The keyword 'frac' is to specify if the BRAM is fracturable to operate in different modes.
|
||||
- <wide>\_<frac>\_dsp<dsp\_size>: If Digital Signal Processor (DSP) is used or not. If used, the input size should be clarified here. The keyword 'wide' is to specify if the DSP spans more than 1 column. The keyword 'frac' is to specify if the DSP is fracturable to operate in different modes.
|
||||
- <wide>\_<frac>\_dsp<dsp\_size>reg: If Digital Signal Processor (DSP) is used or not. If used, the input size should be clarified here.
|
||||
- The keyword 'wide' is to specify if the DSP spans more than 1 column.
|
||||
- The keyword 'frac' is to specify if the DSP is fracturable to operate in different modes.
|
||||
- The keyword 'reg' is to specify if the DSP has input and output registers. If only input or output registers are used, the keyword will be 'regin' or 'regout' respectively.
|
||||
- mem<mem\_size>: If block RAM (BRAM) is used or not. If used, the memory size should be clarified here. The keyword wide is to specify if the BRAM spanns more than 1 column.
|
||||
- aib: If the Advanced Interface Bus (AIB) is used in place of some I/Os.
|
||||
- multi\_io\_capacity: If I/O capacity is different on each side of FPGAs.
|
||||
- reduced\_io: If I/Os only appear a certain or multiple sides of FPGAs
|
||||
|
|
|
@ -0,0 +1,442 @@
|
|||
<!--
|
||||
Architecture with no fracturable LUTs
|
||||
|
||||
- 40 nm technology
|
||||
- General purpose logic block:
|
||||
K = 4, N = 4
|
||||
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
|
||||
- DSP block
|
||||
- 8-bit multiplier
|
||||
- input and output registers
|
||||
|
||||
Details on Modelling:
|
||||
|
||||
Based on flagship k6_frac_N10_mem32K_40nm.xml architecture. This architecture has no fracturable LUTs nor any heterogeneous blocks.
|
||||
|
||||
|
||||
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
|
||||
-->
|
||||
<architecture>
|
||||
<!--
|
||||
ODIN II specific config begins
|
||||
Describes the types of user-specified netlist blocks (in blif, this corresponds to
|
||||
".model [type_of_block]") that this architecture supports.
|
||||
|
||||
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
|
||||
already special structures in blif (.names, .input, .output, and .latch)
|
||||
that describe them.
|
||||
-->
|
||||
<models>
|
||||
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||
<model name="io">
|
||||
<input_ports>
|
||||
<port name="outpad"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="inpad"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
<model name="mult_8">
|
||||
<input_ports>
|
||||
<port name="A" combinational_sink_ports="Y"/>
|
||||
<port name="B" combinational_sink_ports="Y"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="Y"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
</models>
|
||||
<tiles>
|
||||
<tile name="io" capacity="8" area="0">
|
||||
<equivalent_sites>
|
||||
<site pb_type="io"/>
|
||||
</equivalent_sites>
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">io.outpad io.inpad</loc>
|
||||
<loc side="top">io.outpad io.inpad</loc>
|
||||
<loc side="right">io.outpad io.inpad</loc>
|
||||
<loc side="bottom">io.outpad io.inpad</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<tile name="clb" area="53894">
|
||||
<equivalent_sites>
|
||||
<site pb_type="clb"/>
|
||||
</equivalent_sites>
|
||||
<input name="I" num_pins="10" equivalent="full"/>
|
||||
<output name="O" num_pins="4" equivalent="none"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="spread"/>
|
||||
</tile>
|
||||
<tile name="mult_8" height="2" area="396000">
|
||||
<equivalent_sites>
|
||||
<site pb_type="mult_8" pin_mapping="direct"/>
|
||||
</equivalent_sites>
|
||||
<input name="a" num_pins="8"/>
|
||||
<input name="b" num_pins="8"/>
|
||||
<output name="out" num_pins="16"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<!-- Highly recommand to customize pin location when direct connection is used!!! -->
|
||||
<!-- pinlocations are designed to spread pin on 4 sides evenly -->
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">mult_8.a[0:3] mult_8.b[0:3] mult_8.out[0:7]</loc>
|
||||
<loc side="top">mult_8.clk</loc>
|
||||
<loc side="right">mult_8.a[4:7] mult_8.b[4:7] mult_8.out[8:15]</loc>
|
||||
<loc side="bottom"></loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
</tiles>
|
||||
<!-- ODIN II specific config ends -->
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true">
|
||||
<auto_layout aspect_ratio="1.0">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</auto_layout>
|
||||
<fixed_layout name="2x2" width="4" height="4">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</fixed_layout>
|
||||
<fixed_layout name="3x2" width="5" height="4">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
<!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical offset by 1 for perimeter.-->
|
||||
<col type="mult_8" startx="2" starty="1" repeatx="8" priority="20"/>
|
||||
<col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
|
||||
</fixed_layout>
|
||||
</layout>
|
||||
<device>
|
||||
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
|
||||
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
|
||||
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
|
||||
lined up with Stratix IV.
|
||||
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
|
||||
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
|
||||
by 2.5x when looking up in Jeff's tables.
|
||||
The delay values are lined up with Stratix IV, which has an architecture similar to this
|
||||
proposed FPGA, and which is also 40 nm
|
||||
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
|
||||
4x minimum drive strength buffer. -->
|
||||
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
|
||||
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
|
||||
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
|
||||
-->
|
||||
<area grid_logic_tile_area="0"/>
|
||||
<chan_width_distr>
|
||||
<x distr="uniform" peak="1.000000"/>
|
||||
<y distr="uniform" peak="1.000000"/>
|
||||
</chan_width_distr>
|
||||
<switch_block type="wilton" fs="3"/>
|
||||
<connection_block input_switch_name="ipin_cblock"/>
|
||||
</device>
|
||||
<switchlist>
|
||||
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
|
||||
book area formula. This means the mux transistors are about 5x minimum drive strength.
|
||||
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
|
||||
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
|
||||
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
|
||||
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||
2.5x when looking up in Jeff's tables.
|
||||
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
|
||||
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
|
||||
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
|
||||
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
|
||||
</switchlist>
|
||||
<segmentlist>
|
||||
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
|
||||
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
|
||||
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||
<mux name="0"/>
|
||||
<sb type="pattern">1 1 1 1 1</sb>
|
||||
<cb type="pattern">1 1 1 1</cb>
|
||||
</segment>
|
||||
</segmentlist>
|
||||
<complexblocklist>
|
||||
<!-- Define I/O pads begin -->
|
||||
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
|
||||
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
|
||||
<pb_type name="io">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<!-- A mode denotes the physical implementation of an I/O
|
||||
This mode will be not packable but is mainly used for fabric verilog generation
|
||||
-->
|
||||
<mode name="physical" disable_packing="true">
|
||||
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="iopad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
|
||||
</direct>
|
||||
<direct name="inpad" input="iopad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- IOs can operate as either inputs or outputs.
|
||||
Delays below come from Ian Kuon. They are small, so they should be interpreted as
|
||||
the delays to and from registers in the I/O (and generally I/Os are registered
|
||||
today and that is when you timing analyze them.
|
||||
-->
|
||||
<mode name="inpad">
|
||||
<pb_type name="inpad" blif_model=".input" num_pb="1">
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="inpad" input="inpad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="outpad">
|
||||
<pb_type name="outpad" blif_model=".output" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="outpad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- IOs go on the periphery of the FPGA, for consistency,
|
||||
make it physically equivalent on all sides so that only one definition of I/Os is needed.
|
||||
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
|
||||
-->
|
||||
<!-- Place I/Os on the sides of the FPGA -->
|
||||
<power method="ignore"/>
|
||||
</pb_type>
|
||||
<!-- Define I/O pads ends -->
|
||||
<!-- Define general purpose logic block (CLB) begin -->
|
||||
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
|
||||
area is 60 L^2 yields a tile area of 84375 MWTAs.
|
||||
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
|
||||
This means that only 37% of our area is in the general routing, and 63% is inside the logic
|
||||
block. Note that the crossbar / local interconnect is considered part of the logic block
|
||||
area in this analysis. That is a lower proportion of of routing area than most academics
|
||||
assume, but note that the total routing area really includes the crossbar, which would push
|
||||
routing area up significantly, we estimate into the ~70% range.
|
||||
-->
|
||||
<pb_type name="clb">
|
||||
<input name="I" num_pins="10" equivalent="full"/>
|
||||
<output name="O" num_pins="4" equivalent="none"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Describe basic logic element.
|
||||
Each basic logic element has a 4-LUT that can be optionally registered
|
||||
-->
|
||||
<pb_type name="fle" num_pb="4">
|
||||
<input name="in" num_pins="4"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- 4-LUT mode definition begin -->
|
||||
<mode name="n1_lut4">
|
||||
<!-- Define 4-LUT mode -->
|
||||
<pb_type name="ble4" num_pb="1">
|
||||
<input name="in" num_pins="4"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Define LUT -->
|
||||
<pb_type name="lut4" blif_model=".names" num_pb="1" class="lut">
|
||||
<input name="in" num_pins="4" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<!-- Define flip-flop -->
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble4.in" output="lut4[0:0].in"/>
|
||||
<direct name="direct2" input="lut4.out" output="ff.D">
|
||||
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
|
||||
<pack_pattern name="ble4" in_port="lut4.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble4.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut4.out" output="ble4.out">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="lut4.out" out_port="ble4.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble4.out"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in" output="ble4.in"/>
|
||||
<direct name="direct2" input="ble4.out" output="fle.out[0:0]"/>
|
||||
<direct name="direct3" input="fle.clk" output="ble4.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- 6-LUT mode definition end -->
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
|
||||
The delays below come from Stratix IV. the delay through a connection block
|
||||
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
|
||||
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
|
||||
delay within the crossbar is 95 ps.
|
||||
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
|
||||
Since all our outputs LUT outputs go to a BLE output, and have a delay of
|
||||
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
|
||||
to get the part that should be marked on the crossbar. -->
|
||||
<complete name="crossbar" input="clb.I fle[3:0].out" output="fle[3:0].in">
|
||||
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[3:0].in"/>
|
||||
<delay_constant max="75e-12" in_port="fle[3:0].out" out_port="fle[3:0].in"/>
|
||||
</complete>
|
||||
<complete name="clks" input="clb.clk" output="fle[3:0].clk">
|
||||
</complete>
|
||||
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
|
||||
naive specification).
|
||||
-->
|
||||
<direct name="clbouts1" input="fle[3:0].out" output="clb.O"/>
|
||||
</interconnect>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- Place this general purpose logic block in any unspecified column -->
|
||||
</pb_type>
|
||||
<!-- Define general purpose logic block (CLB) ends -->
|
||||
<!-- Define 8-bit multiplier with input and output registers begin -->
|
||||
<pb_type name="mult_8">
|
||||
<input name="a" num_pins="8"/>
|
||||
<input name="b" num_pins="8"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<output name="out" num_pins="16"/>
|
||||
<mode name="mult_8x8">
|
||||
<pb_type name="mult_8x8_slice" num_pb="1">
|
||||
<input name="A_cfg" num_pins="8"/>
|
||||
<input name="B_cfg" num_pins="8"/>
|
||||
<output name="OUT_cfg" num_pins="16"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="mult_8x8" blif_model=".subckt mult_8" num_pb="1">
|
||||
<input name="A" num_pins="8"/>
|
||||
<input name="B" num_pins="8"/>
|
||||
<output name="Y" num_pins="16"/>
|
||||
<delay_constant max="1.523e-9" min="0.776e-9" in_port="mult_8x8.A" out_port="mult_8x8.Y"/>
|
||||
<delay_constant max="1.523e-9" min="0.776e-9" in_port="mult_8x8.B" out_port="mult_8x8.Y"/>
|
||||
</pb_type>
|
||||
<pb_type name="ff_A" blif_model=".latch" num_pb="8" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff_A.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff_A.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<pb_type name="ff_B" blif_model=".latch" num_pb="8" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff_B.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff_B.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<pb_type name="ff_Y" blif_model=".latch" num_pb="16" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff_Y.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff_Y.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<mux name="a2a0" input="mult_8x8_slice.A_cfg[0] ff_A[0].Q" output="mult_8x8.A[0]"/>
|
||||
<mux name="a2a1" input="mult_8x8_slice.A_cfg[1] ff_A[1].Q" output="mult_8x8.A[1]"/>
|
||||
<mux name="a2a2" input="mult_8x8_slice.A_cfg[2] ff_A[2].Q" output="mult_8x8.A[2]"/>
|
||||
<mux name="a2a3" input="mult_8x8_slice.A_cfg[3] ff_A[3].Q" output="mult_8x8.A[3]"/>
|
||||
<mux name="a2a4" input="mult_8x8_slice.A_cfg[4] ff_A[4].Q" output="mult_8x8.A[4]"/>
|
||||
<mux name="a2a5" input="mult_8x8_slice.A_cfg[5] ff_A[5].Q" output="mult_8x8.A[5]"/>
|
||||
<mux name="a2a6" input="mult_8x8_slice.A_cfg[6] ff_A[6].Q" output="mult_8x8.A[6]"/>
|
||||
<mux name="a2a7" input="mult_8x8_slice.A_cfg[7] ff_A[7].Q" output="mult_8x8.A[7]"/>
|
||||
<direct name="a2ff" input="mult_8x8_slice.A_cfg[7:0]" output="ff_A[7:0].D"/>
|
||||
<mux name="b2b0" input="mult_8x8_slice.B_cfg[0] ff_B[0].Q" output="mult_8x8.B[0]"/>
|
||||
<mux name="b2b1" input="mult_8x8_slice.B_cfg[1] ff_B[1].Q" output="mult_8x8.B[1]"/>
|
||||
<mux name="b2b2" input="mult_8x8_slice.B_cfg[2] ff_B[2].Q" output="mult_8x8.B[2]"/>
|
||||
<mux name="b2b3" input="mult_8x8_slice.B_cfg[3] ff_B[3].Q" output="mult_8x8.B[3]"/>
|
||||
<mux name="b2b4" input="mult_8x8_slice.B_cfg[4] ff_B[4].Q" output="mult_8x8.B[4]"/>
|
||||
<mux name="b2b5" input="mult_8x8_slice.B_cfg[5] ff_B[5].Q" output="mult_8x8.B[5]"/>
|
||||
<mux name="b2b6" input="mult_8x8_slice.B_cfg[6] ff_B[6].Q" output="mult_8x8.B[6]"/>
|
||||
<mux name="b2b7" input="mult_8x8_slice.B_cfg[7] ff_B[7].Q" output="mult_8x8.B[7]"/>
|
||||
<direct name="b2ff" input="mult_8x8_slice.B_cfg[7:0]" output="ff_B[7:0].D"/>
|
||||
<mux name="out2out0" input="mult_8x8.Y[0] ff_Y[0].Q" output="mult_8x8_slice.OUT_cfg[0]"/>
|
||||
<mux name="out2out1" input="mult_8x8.Y[1] ff_Y[1].Q" output="mult_8x8_slice.OUT_cfg[1]"/>
|
||||
<mux name="out2out2" input="mult_8x8.Y[2] ff_Y[2].Q" output="mult_8x8_slice.OUT_cfg[2]"/>
|
||||
<mux name="out2out3" input="mult_8x8.Y[3] ff_Y[3].Q" output="mult_8x8_slice.OUT_cfg[3]"/>
|
||||
<mux name="out2out4" input="mult_8x8.Y[4] ff_Y[4].Q" output="mult_8x8_slice.OUT_cfg[4]"/>
|
||||
<mux name="out2out5" input="mult_8x8.Y[5] ff_Y[5].Q" output="mult_8x8_slice.OUT_cfg[5]"/>
|
||||
<mux name="out2out6" input="mult_8x8.Y[6] ff_Y[6].Q" output="mult_8x8_slice.OUT_cfg[6]"/>
|
||||
<mux name="out2out7" input="mult_8x8.Y[7] ff_Y[7].Q" output="mult_8x8_slice.OUT_cfg[7]"/>
|
||||
<mux name="out2out8" input="mult_8x8.Y[8] ff_Y[8].Q" output="mult_8x8_slice.OUT_cfg[8]"/>
|
||||
<mux name="out2out9" input="mult_8x8.Y[9] ff_Y[9].Q" output="mult_8x8_slice.OUT_cfg[9]"/>
|
||||
<mux name="out2out10" input="mult_8x8.Y[10] ff_Y[10].Q" output="mult_8x8_slice.OUT_cfg[10]"/>
|
||||
<mux name="out2out11" input="mult_8x8.Y[11] ff_Y[11].Q" output="mult_8x8_slice.OUT_cfg[11]"/>
|
||||
<mux name="out2out12" input="mult_8x8.Y[12] ff_Y[12].Q" output="mult_8x8_slice.OUT_cfg[12]"/>
|
||||
<mux name="out2out13" input="mult_8x8.Y[13] ff_Y[13].Q" output="mult_8x8_slice.OUT_cfg[13]"/>
|
||||
<mux name="out2out14" input="mult_8x8.Y[14] ff_Y[14].Q" output="mult_8x8_slice.OUT_cfg[14]"/>
|
||||
<mux name="out2out15" input="mult_8x8.Y[15] ff_Y[15].Q" output="mult_8x8_slice.OUT_cfg[15]"/>
|
||||
<direct name="out2ff" input="mult_8x8.Y[15:0]" output="ff_Y[15:0].D"/>
|
||||
<complete name="clk_ff_A" input="mult_8x8_slice.clk" output="ff_A.clk"/>
|
||||
<complete name="clk_ff_B" input="mult_8x8_slice.clk" output="ff_B.clk"/>
|
||||
<complete name="clk_ff_Y" input="mult_8x8_slice.clk" output="ff_Y.clk"/>
|
||||
</interconnect>
|
||||
<power method="pin-toggle">
|
||||
<port name="A_cfg" energy_per_toggle="2.13e-12"/>
|
||||
<port name="B_cfg" energy_per_toggle="2.13e-12"/>
|
||||
<static_power power_per_instance="0.0"/>
|
||||
</power>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<!-- Stratix IV input delay of 207ps is conservative for this architecture because this architecture does not have an input crossbar in the multiplier.
|
||||
Subtract 72.5 ps delay, which is already in the connection block input mux, leading
|
||||
to a 134 ps delay.
|
||||
The interconnect difference for DSP blocks is 0.5523, which leads to a minimum delay of 74 ps
|
||||
-->
|
||||
<direct name="a2a" input="mult_8.a" output="mult_8x8_slice.A_cfg">
|
||||
<delay_constant max="134e-12" min="74e-12" in_port="mult_8.a" out_port="mult_8x8_slice.A_cfg"/>
|
||||
</direct>
|
||||
<direct name="b2b" input="mult_8.b" output="mult_8x8_slice.B_cfg">
|
||||
<delay_constant max="134e-12" min="74e-12" in_port="mult_8.b" out_port="mult_8x8_slice.B_cfg"/>
|
||||
</direct>
|
||||
<direct name="out2out" input="mult_8x8_slice.OUT_cfg" output="mult_8.out">
|
||||
<delay_constant max="1.93e-9" min="74e-12" in_port="mult_8x8_slice.OUT_cfg" out_port="mult_8.out"/>
|
||||
</direct>
|
||||
<complete name="clk" input="mult_8.clk" output="mult_8x8_slice.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Place this multiplier block every 8 columns from (and including) the sixth column -->
|
||||
<power method="sum-of-children"/>
|
||||
</pb_type>
|
||||
<!-- Define fracturable multiplier end -->
|
||||
|
||||
</complexblocklist>
|
||||
</architecture>
|
Loading…
Reference in New Issue