Merge pull request #69 from LNIS-Projects/dev

Bug fix in yosys-vpr flow using OpenFPGA shell;
This commit is contained in:
Laboratory for Nano Integrated Systems (LNIS) 2020-07-22 14:39:09 -06:00 committed by GitHub
commit 734b8ea1d0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
67 changed files with 2851 additions and 270 deletions

View File

@ -31,7 +31,7 @@ write_verilog_testbench
- ``--reference_benchmark_file_path`` Must specify the reference benchmark Verilog file if you want to output any testbenches - ``--reference_benchmark_file_path`` Must specify the reference benchmark Verilog file if you want to output any testbenches
- ``--fast_configuration`` Enable fast configuration phase for the top-level testbench in order to reduce runtime of simulations. It is applicable to memory bank and frame-based configuration protocols. When enabled, all the zero configuration bits will be skipped. So ensure that your memory cells can be correctly reset to zero with a reset signal. - ``--fast_configuration`` Enable fast configuration phase for the top-level testbench in order to reduce runtime of simulations. It is applicable to configuration chain, memory bank and frame-based configuration protocols. For configuration chain, when enabled, the zeros at the head of the bitstream will be skipped. For memory bank and frame-based, when enabled, all the zero configuration bits will be skipped. So ensure that your memory cells can be correctly reset to zero with a reset signal.
- ``--print_top_testbench`` Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA - ``--print_top_testbench`` Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA

View File

@ -39,7 +39,7 @@ int write_fabric_spice(OpenfpgaContext& openfpga_ctx,
int status = CMD_EXEC_SUCCESS; int status = CMD_EXEC_SUCCESS;
status = fpga_fabric_spice(openfpga_ctx.module_graph(), status = fpga_fabric_spice(openfpga_ctx.module_graph(),
openfpga_ctx.mutable_spice_netlists(), openfpga_ctx.mutable_spice_netlists(),
openfpga_ctx.arch().tech_lib, openfpga_ctx.arch(),
options); options);
return status; return status;

View File

@ -39,7 +39,7 @@ namespace openfpga {
********************************************************************/ ********************************************************************/
int fpga_fabric_spice(const ModuleManager& module_manager, int fpga_fabric_spice(const ModuleManager& module_manager,
NetlistManager& netlist_manager, NetlistManager& netlist_manager,
const TechnologyLibrary& tech_lib, const Arch& openfpga_arch,
const FabricSpiceOption& options) { const FabricSpiceOption& options) {
vtr::ScopedStartFinishTimer timer("Write SPICE netlists for FPGA fabric\n"); vtr::ScopedStartFinishTimer timer("Write SPICE netlists for FPGA fabric\n");
@ -71,7 +71,8 @@ int fpga_fabric_spice(const ModuleManager& module_manager,
int status = CMD_EXEC_SUCCESS; int status = CMD_EXEC_SUCCESS;
status = print_spice_submodule(netlist_manager, status = print_spice_submodule(netlist_manager,
tech_lib, module_manager,
openfpga_arch,
submodule_dir_path); submodule_dir_path);
if (CMD_EXEC_SUCCESS != status) { if (CMD_EXEC_SUCCESS != status) {

View File

@ -9,7 +9,7 @@
#include <vector> #include <vector>
#include "netlist_manager.h" #include "netlist_manager.h"
#include "module_manager.h" #include "module_manager.h"
#include "technology_library.h" #include "openfpga_arch.h"
#include "fabric_spice_options.h" #include "fabric_spice_options.h"
/******************************************************************** /********************************************************************
@ -21,7 +21,7 @@ namespace openfpga {
int fpga_fabric_spice(const ModuleManager& module_manager, int fpga_fabric_spice(const ModuleManager& module_manager,
NetlistManager& netlist_manager, NetlistManager& netlist_manager,
const TechnologyLibrary& tech_lib, const Arch& openfpga_arch,
const FabricSpiceOption& options); const FabricSpiceOption& options);
} /* end namespace openfpga */ } /* end namespace openfpga */

View File

@ -18,6 +18,7 @@
#include "openfpga_digest.h" #include "openfpga_digest.h"
#include "spice_constants.h" #include "spice_constants.h"
#include "spice_writer_utils.h"
#include "spice_essential_gates.h" #include "spice_essential_gates.h"
/* begin namespace openfpga */ /* begin namespace openfpga */
@ -82,7 +83,7 @@ int print_spice_transistor_wrapper(NetlistManager& netlist_manager,
check_file_stream(spice_fname.c_str(), fp); check_file_stream(spice_fname.c_str(), fp);
/* Create file */ /* Create file */
VTR_LOG("Generating SPICE netlist '%s' for transistor wrappers...", VTR_LOG("Generating SPICE netlist '%s' for essential gates...",
spice_fname.c_str()); spice_fname.c_str());
/* Iterate over the transistor models */ /* Iterate over the transistor models */
@ -110,4 +111,165 @@ int print_spice_transistor_wrapper(NetlistManager& netlist_manager,
return CMD_EXEC_SUCCESS; return CMD_EXEC_SUCCESS;
} }
/************************************************
* Generate the SPICE subckt for an inverter
* Schematic
* LVDD
* |
* -
* +-o||
* | -
* | |
* in-->+ +--> OUT
* | |
* | -
* +--||
* -
* |
* LGND
*
***********************************************/
static
int print_spice_inverter_subckt(std::fstream& fp,
const ModuleManager& module_manager,
const ModuleId& module_id,
const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const TechnologyLibrary& tech_lib,
const TechnologyModelId& tech_model) {
if (false == valid_file_stream(fp)) {
return CMD_EXEC_FATAL_ERROR;
}
/* Print the inverter subckt definition */
print_spice_subckt_definition(fp, module_manager, module_id);
/* Find the input and output ports:
* we do NOT support global ports here,
* it should be handled in another type of inverter subckt (power-gated)
*/
std::vector<CircuitPortId> input_ports = circuit_lib.model_ports_by_type(circuit_model, CIRCUIT_MODEL_PORT_INPUT, true);
std::vector<CircuitPortId> output_ports = circuit_lib.model_ports_by_type(circuit_model, CIRCUIT_MODEL_PORT_OUTPUT, true);
/* Make sure:
* There is only 1 input port and 1 output port,
* each size of which is 1
*/
VTR_ASSERT( (1 == input_ports.size()) && (1 == circuit_lib.port_size(input_ports[0])) );
VTR_ASSERT( (1 == output_ports.size()) && (1 == circuit_lib.port_size(output_ports[0])) );
/* TODO: may consider use size/bin to compact layout etc. */
for (size_t i = 0; i < circuit_lib.buffer_size(circuit_model); ++i) {
/* Write transistor pairs using the technology model */
fp << "Xpmos_" << i << " ";
fp << circuit_lib.port_prefix(output_ports[0]) << " ";
fp << circuit_lib.port_prefix(input_ports[0]) << " ";
fp << "LVDD ";
fp << "LVDD ";
fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_PMOS) << TRANSISTOR_WRAPPER_POSTFIX;
fp << "Xnmos_" << i << " ";
fp << circuit_lib.port_prefix(output_ports[0]) << " ";
fp << circuit_lib.port_prefix(input_ports[0]) << " ";
fp << "LGND ";
fp << "LGND ";
fp << tech_lib.transistor_model_name(tech_model, TECH_LIB_TRANSISTOR_NMOS) << TRANSISTOR_WRAPPER_POSTFIX;
}
print_spice_subckt_end(fp, module_manager.module_name(module_id));
return CMD_EXEC_SUCCESS;
}
/************************************************
* Generate the SPICE netlist for essential gates:
* - inverters and their templates
* - buffers and their templates
* - pass-transistor or transmission gates
* - logic gates
***********************************************/
int print_spice_essential_gates(NetlistManager& netlist_manager,
const ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
const TechnologyLibrary& tech_lib,
const std::map<CircuitModelId, TechnologyModelId>& circuit_tech_binding,
const std::string& submodule_dir) {
std::string spice_fname = submodule_dir + std::string(ESSENTIALS_SPICE_FILE_NAME);
std::fstream fp;
/* Create the file stream */
fp.open(spice_fname, std::fstream::out | std::fstream::trunc);
/* Check if the file stream if valid or not */
check_file_stream(spice_fname.c_str(), fp);
/* Create file */
VTR_LOG("Generating SPICE netlist '%s' for transistor wrappers...",
spice_fname.c_str());
int status = CMD_EXEC_SUCCESS;
/* Iterate over the circuit models */
for (const CircuitModelId& circuit_model : circuit_lib.models()) {
/* Bypass models require extern netlists */
if (true == circuit_lib.model_circuit_netlist(circuit_model).empty()) {
continue;
}
/* Spot module id */
const ModuleId& module_id = module_manager.find_module(circuit_lib.model_name(circuit_model));
TechnologyModelId tech_model;
/* Focus on inverter/buffer/pass-gate/logic gates only */
if ( (CIRCUIT_MODEL_INVBUF == circuit_lib.model_type(circuit_model))
|| (CIRCUIT_MODEL_PASSGATE == circuit_lib.model_type(circuit_model))
|| (CIRCUIT_MODEL_GATE == circuit_lib.model_type(circuit_model))) {
auto result = circuit_tech_binding.find(circuit_model);
if (result == circuit_tech_binding.end()) {
VTR_LOGF_ERROR(__FILE__, __LINE__,
"Unable to find technology binding for circuit model '%s'!\n",
circuit_lib.model_name(circuit_model).c_str());
return CMD_EXEC_FATAL_ERROR;
}
/* Valid technology binding. Assign techology model */
tech_model = result->second;
/* Ensure we have a valid technology model */
VTR_ASSERT(true == tech_lib.valid_model_id(tech_model));
VTR_ASSERT(TECH_LIB_MODEL_TRANSISTOR == tech_lib.model_type(tech_model));
}
/* Now branch on netlist writing */
if (CIRCUIT_MODEL_INVBUF == circuit_lib.model_type(circuit_model)) {
if (CIRCUIT_MODEL_BUF_INV == circuit_lib.buffer_type(circuit_model)) {
VTR_ASSERT(true == module_manager.valid_module_id(module_id));
status = print_spice_inverter_subckt(fp,
module_manager, module_id,
circuit_lib, circuit_model,
tech_lib, tech_model);
} else {
VTR_ASSERT(CIRCUIT_MODEL_BUF_BUF == circuit_lib.buffer_type(circuit_model));
}
if (CMD_EXEC_FATAL_ERROR == status) {
break;
}
/* Finish, go to the next */
continue;
}
}
/* Close file handler*/
fp.close();
/* Add fname to the netlist name list */
NetlistId nlist_id = netlist_manager.add_netlist(spice_fname);
VTR_ASSERT(NetlistId::INVALID() != nlist_id);
netlist_manager.set_netlist_type(nlist_id, NetlistManager::SUBMODULE_NETLIST);
VTR_LOG("Done\n");
return status;
}
} /* end namespace openfpga */ } /* end namespace openfpga */

View File

@ -5,7 +5,10 @@
* Include header files that are required by function declaration * Include header files that are required by function declaration
*******************************************************************/ *******************************************************************/
#include <string> #include <string>
#include <map>
#include "netlist_manager.h" #include "netlist_manager.h"
#include "module_manager.h"
#include "circuit_library.h"
#include "technology_library.h" #include "technology_library.h"
/******************************************************************** /********************************************************************
@ -19,6 +22,13 @@ int print_spice_transistor_wrapper(NetlistManager& netlist_manager,
const TechnologyLibrary& tech_lib, const TechnologyLibrary& tech_lib,
const std::string& submodule_dir); const std::string& submodule_dir);
int print_spice_essential_gates(NetlistManager& netlist_manager,
const ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
const TechnologyLibrary& tech_lib,
const std::map<CircuitModelId, TechnologyModelId>& circuit_tech_binding,
const std::string& submodule_dir);
} /* end namespace openfpga */ } /* end namespace openfpga */
#endif #endif

View File

@ -28,15 +28,23 @@ namespace openfpga {
* 6. TODO: Configuration memory blocks * 6. TODO: Configuration memory blocks
********************************************************************/ ********************************************************************/
int print_spice_submodule(NetlistManager& netlist_manager, int print_spice_submodule(NetlistManager& netlist_manager,
const TechnologyLibrary& tech_lib, const ModuleManager& module_manager,
const Arch& openfpga_arch,
const std::string& submodule_dir) { const std::string& submodule_dir) {
int status = CMD_EXEC_SUCCESS; int status = CMD_EXEC_SUCCESS;
status = print_spice_transistor_wrapper(netlist_manager, status = print_spice_transistor_wrapper(netlist_manager,
tech_lib, openfpga_arch.tech_lib,
submodule_dir); submodule_dir);
status = print_spice_essential_gates(netlist_manager,
module_manager,
openfpga_arch.circuit_lib,
openfpga_arch.tech_lib,
openfpga_arch.circuit_tech_binding,
submodule_dir);
return status; return status;
} }

View File

@ -5,7 +5,8 @@
* Include header files that are required by function declaration * Include header files that are required by function declaration
*******************************************************************/ *******************************************************************/
#include "netlist_manager.h" #include "netlist_manager.h"
#include "technology_library.h" #include "module_manager.h"
#include "openfpga_arch.h"
/******************************************************************** /********************************************************************
* Function declaration * Function declaration
@ -15,7 +16,8 @@
namespace openfpga { namespace openfpga {
int print_spice_submodule(NetlistManager& netlist_manager, int print_spice_submodule(NetlistManager& netlist_manager,
const TechnologyLibrary& tech_lib, const ModuleManager& module_manager,
const Arch& openfpga_arch,
const std::string& submodule_dir); const std::string& submodule_dir);
} /* end namespace openfpga */ } /* end namespace openfpga */

View File

@ -1154,17 +1154,18 @@ void print_verilog_top_testbench_configuration_chain_bitstream(std::fstream& fp,
/* Attention: when the fast configuration is enabled, we will start from the first bit '1' /* Attention: when the fast configuration is enabled, we will start from the first bit '1'
* This requires a reset signal (as we forced in the first clock cycle) * This requires a reset signal (as we forced in the first clock cycle)
*/ */
bool first_bit_one = false; bool start_config = false;
for (const FabricBitId& bit_id : fabric_bitstream.bits()) { for (const FabricBitId& bit_id : fabric_bitstream.bits()) {
if (true == bitstream_manager.bit_value(fabric_bitstream.config_bit(bit_id))) { if ( (false == start_config)
first_bit_one = true; && (true == bitstream_manager.bit_value(fabric_bitstream.config_bit(bit_id)))) {
start_config = true;
} }
/* In fast configuration mode, we do not output anything /* In fast configuration mode, we do not output anything
* until we have to (the first bit '1' detected) * until we have to (the first bit '1' detected)
*/ */
if ( (true == fast_configuration) if ( (true == fast_configuration)
&& (false == first_bit_one)) { && (false == start_config)) {
continue; continue;
} }

View File

@ -0,0 +1,81 @@
module FSM_hour(
input wire rst,
input wire clk,
input wire [5:0] hour_in,
input wire hour_in_load,
input wire [5:0] min_count,
input wire [5:0] sec_count,
output reg [5:0] hour_out);
reg [2:0] ps, ns;
wire [5:0] hour_data_add;
reg [5:0] hour_data;
reg [5:0] hour_ps, hour_ns;
reg [1:0] hour_sel;
wire hour_count;
always@(posedge clk)
begin
if(rst) ps <= 3'd0;
else ps <= ns;
end
always@(posedge clk)
begin
if(rst) hour_ps <= 6'd0;
else hour_ps <= hour_ns;
end
always@(*)
begin
hour_sel = 2'd0;
case(ps)
3'd0: begin
ns = 3'd1;
end
3'd1: begin
if(hour_in_load) begin
hour_sel = 2'd1;
hour_out = hour_data;
ns = 3'd2;
hour_ns = hour_data;
end
else ns = 3'd1;
end
3'd2: begin
if(hour_count == 1'd1) begin
if(hour_data == 6'd59) begin
hour_out = hour_data;
ns = 3'd2;
hour_ns = 6'd0;
end
else begin
hour_out = hour_data;
ns = 3'd2;
hour_ns = hour_data_add;
end
end
else begin
hour_out = hour_data;
hour_ns = hour_data;
ns = 3'd2;
end
end
default: begin
ns = 3'd0;
end
endcase
end
assign hour_data_add = hour_data + 1;
assign hour_count = ((sec_count == 6'd59)&&(min_count == 6'd59)) ? 1'd1 : 1'd0;
always@(*)
begin
case(hour_sel)
2'd0: hour_data = hour_ps;
2'd1: hour_data = hour_in;
endcase
end
endmodule

View File

@ -0,0 +1,80 @@
module FSM_minute(
input wire rst,
input wire clk,
input wire [5:0] min_in,
input wire min_in_load,
input wire [5:0] sec_count,
output reg [5:0] min_out);
reg [2:0] ps, ns;
wire [5:0] min_data_add;
reg [5:0] min_data;
reg [5:0] min_ps, min_ns;
reg [1:0] min_sel;
wire min_count;
always@(posedge clk)
begin
if(rst) ps <= 3'd0;
else ps <= ns;
end
always@(posedge clk)
begin
if(rst) min_ps <= 6'd0;
else min_ps <= min_ns;
end
always@(*)
begin
min_sel = 2'd0;
case(ps)
3'd0: begin
ns = 3'd1;
end
3'd1: begin
if(min_in_load) begin
min_sel = 2'd1;
min_out = min_data;
ns = 3'd2;
min_ns = min_data;
end
else ns = 3'd1;
end
3'd2: begin
if(min_count == 1'd1) begin
if(min_data == 6'd59) begin
min_out = min_data;
ns = 3'd2;
min_ns = 6'd0;
end
else begin
min_out = min_data;
ns = 3'd2;
min_ns = min_data_add;
end
end
else begin
min_out = min_data;
min_ns = min_data;
ns = 3'd2;
end
end
default: begin
ns = 3'd0;
end
endcase
end
assign min_data_add = min_data + 1;
assign min_count = (sec_count == 6'd59) ? 1'd1 : 1'd0;
always@(*)
begin
case(min_sel)
2'd0: min_data = min_ps;
2'd1: min_data = min_in;
endcase
end
endmodule

View File

@ -0,0 +1,70 @@
module FSM_second(
input wire rst,
input wire clk,
input wire [5:0] sec_in,
input wire sec_in_load,
output reg [5:0] sec_out);
reg [2:0] ps, ns;
wire [5:0] sec_data_add;
reg [5:0] sec_data;
reg [5:0] sec_ps, sec_ns;
reg [1:0] sec_sel;
always@(posedge clk)
begin
if(rst) ps <= 3'd0;
else ps <= ns;
end
always@(posedge clk)
begin
if(rst) sec_ps <= 6'd0;
else sec_ps <= sec_ns;
end
always@(*)
begin
sec_sel = 2'd0;
case(ps)
3'd0: begin
ns = 3'd1;
end
3'd1: begin
if(sec_in_load) begin
sec_sel = 2'd1;
sec_out = sec_data;
ns = 3'd2;
sec_ns = sec_data_add;
end
else ns = 3'd1;
end
3'd2: begin
if(sec_data == 6'd59) begin
sec_out = sec_data;
ns = 3'd2;
sec_ns = 6'd0;
end
else begin
sec_out = sec_data;
ns = 3'd2;
sec_ns = sec_data_add;
end
end
default: begin
ns = 3'd0;
end
endcase
end
assign sec_data_add = sec_data + 1;
always@(*)
begin
case(sec_sel)
2'd0: sec_data = sec_ps;
2'd1: sec_data = sec_in;
endcase
end
endmodule

View File

@ -0,0 +1,34 @@
module FSM_three_tb;
reg rst;
reg clk;
reg [5:0] sec_in, min_in, hour_in;
reg load_in;
wire [5:0] sec_out, min_out, hour_out;
FSM_top FSM_1(
.rst(rst),
.clk(clk),
.sec_in(sec_in),
.load_in(load_in),
.sec_out(sec_out),
.min_in(min_in),
.min_out(min_out),
.hour_in(hour_in),
.hour_out(hour_out));
initial begin
#0 rst = 1'd1; clk = 1'd0; load_in = 1'd1; sec_in = 6'd33; min_in = 6'd14; hour_in = 6'd5;
#100 rst = 1'd0;
#50 load_in = 1'd0;
end
always begin
#10 clk = ~clk;
end
initial begin
#100000 $stop;
end
endmodule

View File

@ -0,0 +1,37 @@
module FSM_top(
input wire rst,
input wire clk,
input wire load_in,
input wire [5:0] sec_in,
input wire [5:0] min_in,
input wire [5:0] hour_in,
output wire [5:0] sec_out,
output wire [5:0] min_out,
output wire [5:0] hour_out
);
FSM_second FSM_sec(
.rst(rst),
.clk(clk),
.sec_in(sec_in),
.sec_in_load(load_in),
.sec_out(sec_out));
FSM_minute FSM_min(
.rst(rst),
.clk(clk),
.min_in(min_in),
.min_in_load(load_in),
.sec_count(sec_out),
.min_out(min_out));
FSM_hour FSM_hr(
.rst(rst),
.clk(clk),
.hour_in(hour_in),
.hour_in_load(load_in),
.min_count(min_out),
.hour_out(hour_out),
.sec_count(sec_out));
endmodule

View File

@ -0,0 +1,27 @@
module ALU(zero_flag_out,alu_out,Reg_Y_in,Bus_1_in,IR_code);
output zero_flag_out;
output reg [7:0]alu_out;
input [7:0]Reg_Y_in,Bus_1_in;
input [7:0]IR_code;
wire [3:0]opcode=IR_code[7:4];
always@(*)
begin
case(opcode)
1: alu_out=Reg_Y_in+Bus_1_in;
2: alu_out=Bus_1_in+~(Reg_Y_in)+1;
3: alu_out=Reg_Y_in&(Bus_1_in);
4: alu_out=~(Bus_1_in);
default:alu_out=8'b0;
endcase
end
assign zero_flag_out=~|alu_out;
endmodule

View File

@ -0,0 +1,211 @@
module Controller(L_R0,L_R1,L_R2,L_R3,L_PC,Inc_PC,
Sel_Bus1,L_IR,L_ADD_R,L_R_Y,L_R_Z,Sel_Bus2,write,
zero,instruction,nclk,rst);
//狀態
parameter S_idle=0,S_fet1=1,S_fet2=2,S_dec=3,
S_ex1=4,S_rd1=5,S_rd2=6,S_wr1=7,S_wr2=8,
S_br1=9,S_br2=10,S_halt=11;
//指令
parameter NOP=0,ADD=1,SUB=2,AND=3,NOT=4,
RD=5,WR=6,BR=7,BRZ=8;
output reg L_R0,L_R1,L_R2,L_R3,L_PC,Inc_PC,
L_IR,L_ADD_R,L_R_Y,L_R_Z,write;
output reg[2:0]Sel_Bus1;
output reg [1:0]Sel_Bus2;
input zero,nclk,rst;
input [7:0]instruction;
reg [15:0]Con_out;
reg [3:0]PS,NS;
reg err_flag;
wire [1:0]src=instruction[3:2];
wire [1:0]dest=instruction[1:0];
wire [3:0]opcode=instruction[7:4];
always@(posedge nclk)
begin
if(rst==1)PS<=0;
else PS<=NS;
end
always@(PS,opcode,src,dest,zero)
begin
L_R0=0;
L_R1=0;
L_R2=0;
L_R3=0;
L_PC=0;
Inc_PC=0;
Sel_Bus1=0;
L_IR=0;
L_ADD_R=0;
L_R_Y=0;
L_R_Z=0;
Sel_Bus2=0;
write=0;
err_flag=0;
case(PS)
S_idle: NS=S_fet1;
S_fet1: begin
NS=S_fet2;
Sel_Bus1=3'b100;//Sel_PC
Sel_Bus2=2'b01;//Sel_Bus1
L_ADD_R=1;
end
S_fet2: begin
NS=S_dec;
Sel_Bus2=2'b10;//Sel_Mem
L_IR=1;
Inc_PC=1;
end
S_dec: begin
case(opcode)
NOP:NS=S_fet1;
ADD,SUB,AND:begin
NS=S_ex1;
Sel_Bus2=2'b01;//Sel_Bus1
L_R_Y=1;
case(src)
0: Sel_Bus1=3'b000;//R0
1: Sel_Bus1=3'b001;//R1
2: Sel_Bus1=3'b010;//R2
3: Sel_Bus1=3'b011;//R3
default err_flag=1;
endcase
end//ADD,SUB,AND
NOT:begin
NS=S_fet1;
L_R_Z=1;
Sel_Bus2=2'b00;//Sel_ALU
case(src)
0: Sel_Bus1=3'b000;//R0
1: Sel_Bus1=3'b001;//R1
2: Sel_Bus1=3'b010;//R2
3: Sel_Bus1=3'b011;//R3
default err_flag=1;
endcase
case(dest)
0: L_R0=1;
1: L_R1=1;
2: L_R2=1;
3: L_R3=1;
default err_flag=1;
endcase
end//NOT
RD: begin
NS=S_rd1;
Sel_Bus1=3'b100;//Sel_PC
Sel_Bus2=3'b001;//Sel_Bus1
L_ADD_R=1;
end//RD
WR: begin
NS=S_wr1;
Sel_Bus1=3'b100;//Sel_PC
Sel_Bus2=3'b001;//Sel_Bus1
L_ADD_R=1;
end//WR
BR: begin
NS=S_br1;
Sel_Bus1=3'b100;//Sel_PC
Sel_Bus2=3'b001;//Sel_Bus1
L_ADD_R=1;
end//BR
BRZ:begin
if(zero==1)begin
NS=S_br1;
Sel_Bus1=3'b100;//Sel_PC
Sel_Bus2=3'b001;//Sel_Bus1
L_ADD_R=1;
end
else begin
NS=S_fet1;
Inc_PC=1;
end
end//BRZ
default NS=S_halt;
endcase//opcode
end
S_ex1: begin
NS=S_fet1;
L_R_Z=1;
Sel_Bus2=2'b00;//Sel_ALU
case(dest)
0: begin Sel_Bus1=3'b000;L_R0=1;end
1: begin Sel_Bus1=3'b001;L_R1=1;end
2: begin Sel_Bus1=3'b010;L_R2=1;end
3: begin Sel_Bus1=3'b011;L_R3=1;end
default err_flag=1;
endcase
end
S_rd1: begin
NS=S_rd2;
Inc_PC=1;
Sel_Bus2=2'b10;//Sel_Mem
L_ADD_R=1;
end
S_wr1: begin
NS=S_wr2;
Inc_PC=1;
Sel_Bus2=2'b10;//Sel_Mem
L_ADD_R=1;
end
S_rd2: begin
NS=S_fet1;
Sel_Bus2=2'b10;//Sel_Mem
case(dest)
0: L_R0=1;
1: L_R1=1;
2: L_R2=1;
3: L_R3=1;
default err_flag=1;
endcase
end
S_wr2: begin
NS=S_fet1;
write=1;
case(src)
0: Sel_Bus1=3'b000;//R0
1: Sel_Bus1=3'b001;//R1
2: Sel_Bus1=3'b010;//R2
3: Sel_Bus1=3'b011;//R3
default err_flag=1;
endcase
end
S_br1: begin
NS=S_br2;
Sel_Bus2=2'b10;//Sel_Mem
L_ADD_R=1;
end
S_br2: begin
NS=S_fet1;
Sel_Bus2=2'b10;//Sel_Mem
L_PC=1;
end
S_halt: NS=S_halt;
default NS=S_idle;
endcase
end
endmodule

View File

@ -0,0 +1,13 @@
module IR(IR_out,IR_in,load,clk,rst);
output reg [7:0]IR_out;
input [7:0]IR_in;
input load,clk,rst;
always@(posedge clk)
begin
if(rst==1)IR_out<=8'b0;
else if(load==1)IR_out<=IR_in;
end
endmodule

View File

@ -0,0 +1,61 @@
module Memory(Data_out,Address);
output [7:0]Data_out;
input [7:0]Address;
reg [7:0]mem[255:0];
assign Data_out=mem[Address];
always@(Address)
begin
case(Address)
//opcode_src_dest
//NOP
0: mem[Address]=8'b0000_00_00;
//rd 00 10 //Read MEM[130] to R2
1: mem[Address]=8'b0101_00_10; //Instruction
2: mem[Address]=130; //Address
//rd 00 11 //Read MEM[131] to R3
3: mem[Address]=8'b0101_00_11; //Instruction
4: mem[Address]=131; //Address
//rd 00 01 //Read MEM[128] to R1
5: mem[Address]=8'b0101_00_01; //Instruction
6: mem[Address]=128; //Address
//rd 00 00 //Read MEM[129] to R0
7: mem[Address]=8'b0101_00_00; //Instruction
8: mem[Address]=129; //Address
//Sub 00 01 //Sub R1-R0 to R1
9: mem[Address]=8'b0010_00_01; //Instruction
//BRZ 00 00
10: mem[Address]=8'b1000_00_00; //Instruction
11: mem[Address]=134; //Address
//Add 10 11 //Add R2+R3 to R3
12: mem[Address]=8'b00011011;
//BR
13: mem[Address]=8'b01110011; //Instruction
14: mem[Address]=140; //Address
128:mem[Address]=6;
129:mem[Address]=1;
130:mem[Address]=2;
131:mem[Address]=0;
134:mem[Address]=139; //Address
135:mem[Address]=0;
//HAL
139:mem[Address]=8'b1111_00_00; //Instruction
140:mem[Address]=9; //Address
default mem[Address]=8'bx;
endcase
end
endmodule

View File

@ -0,0 +1,20 @@
module Mux_31(Y,A0,A1,A2,sel);
output [7:0]Y;
input [7:0]A2,A1,A0;
input [1:0]sel;
reg [7:0]Y;
always@(*)
begin
case(sel)
0: Y=A0;
1: Y=A1;
2: Y=A2;
default:Y=8'bz;
endcase
end
endmodule

View File

@ -0,0 +1,22 @@
module Mux_51(Y,A0,A1,A2,A3,A4,sel);
output [7:0]Y;
input [7:0]A4,A3,A2,A1,A0;
input [2:0]sel;
reg [7:0]Y;
always@(*)
begin
case(sel)
0: Y=A0;
1: Y=A1;
2: Y=A2;
3: Y=A3;
4: Y=A4;
default:Y=8'bx;
endcase
end
endmodule

View File

@ -0,0 +1,17 @@
module PC(PC_out,PC_in,load,inc,clk,rst);
output [7:0]PC_out;
input [7:0]PC_in;
input load,inc,clk,rst;
reg [7:0]PC_out;
always@(posedge clk)
begin
if(rst==1)PC_out<=8'b0;
else if(load==1)PC_out<=PC_in;
else if(inc==1)PC_out<=PC_out+8'b00000001;
end
endmodule

View File

@ -0,0 +1,23 @@
module RISC_core_mem_top(Reg_R0_out,Reg_R1_out,Reg_R2_out,Reg_R3_out,bus_1_out,clk,rst);
output [7:0]bus_1_out;
input clk,rst;
output [7:0]Reg_R0_out;
output [7:0]Reg_R1_out;
output [7:0]Reg_R2_out;
output [7:0]Reg_R3_out;
wire [7:0]bus_1_out,MEMAddress;
wire clk,rst;
wire [7:0]MEMdataout;
wire [7:0]Reg_R0_out;
wire [7:0]Reg_R1_out;
wire [7:0]Reg_R2_out;
wire [7:0]Reg_R3_out;
RISC_core_top core(Reg_R0_out,Reg_R1_out,Reg_R2_out,Reg_R3_out,bus_1_out,clk,rst,MEMdataout,MEMAddress);
Memory MEM(MEMdataout,MEMAddress);
endmodule

View File

@ -0,0 +1,48 @@
module RISC_core_top(Reg_R0_out,Reg_R1_out,Reg_R2_out,Reg_R3_out,bus_1_out,clk,rst,MEMdataout,MEMAddress);
output [7:0]bus_1_out,MEMAddress;
input clk,rst;
input [7:0]MEMdataout;
output [7:0]Reg_R0_out;
output [7:0]Reg_R1_out;
output [7:0]Reg_R2_out;
output [7:0]Reg_R3_out;
wire [7:0]BUS_2,BUS_1,MEMAddress;
wire [7:0]alu_out;
wire [7:0]MEMdataout;
wire [7:0]Reg_Y_out,Reg_R0_out,Reg_R1_out,Reg_R2_out,Reg_R3_out,PC_out;
wire [7:0]IR_out;
wire zero_flag_out;
wire [2:0]Sel_Bus1;
wire [1:0]Sel_Bus2;
wire L_R0,L_R1,L_R2,L_R3,L_PC,Inc_PC,L_IR,L_ADD_R,L_R_Y,L_R_Z,MEMwrite,zero;
assign bus_1_out=BUS_1;
assign bus_2_out=BUS_2;
Controller CON(L_R0,L_R1,L_R2,L_R3,L_PC,Inc_PC,Sel_Bus1,L_IR,L_ADD_R,L_R_Y,L_R_Z,Sel_Bus2,MEMwrite,zero,IR_out,clk,rst);
//module PC(PC_out,PC_in,load,inc,clk,rst);
PC Program_Counter(PC_out,BUS_2,L_PC,Inc_PC,clk,rst);
//module ALU(zero_flag_out,alu_out,Reg_Y_in,Bus_1_in,IR_code);
ALU Arithmetic_Logic_Unit(zero_flag_out,alu_out,Reg_Y_out,BUS_1,IR_out);
//module Memory(Data_out,Data_in,MEMAddress,clk,MEMwrite);
//Memory MEM(MEMdataout,BUS_1,MEMAddress,clk,MEMwrite);
//module Mux_31(Y,A0,A1,A2,sel);
Mux_31 Mux31(BUS_2,alu_out,BUS_1,MEMdataout,Sel_Bus2);
//module Reg_1bit(Q,D,load,clk,rst);
Reg_1bit Reg_Z(zero,zero_flag_out,L_R_Z,clk,rst);
//module Reg_8bit(Q,D,load,clk,rst);
Reg_8bit Reg_Y(Reg_Y_out,BUS_2,L_R_Y,clk,rst);
Reg_8bit Add_R(MEMAddress,BUS_2,L_ADD_R,clk,rst);
//R0~R3
Reg_8bit Reg_R0(Reg_R0_out,BUS_2,L_R0,clk,rst);
Reg_8bit Reg_R1(Reg_R1_out,BUS_2,L_R1,clk,rst);
Reg_8bit Reg_R2(Reg_R2_out,BUS_2,L_R2,clk,rst);
Reg_8bit Reg_R3(Reg_R3_out,BUS_2,L_R3,clk,rst);
//module Mux_51(Y,A0,A1,A2,A3,A4,sel);
Mux_51 Mux51(BUS_1,Reg_R0_out,Reg_R1_out,Reg_R2_out,Reg_R3_out,PC_out,Sel_Bus1);
//module IR(IR_out,IR_in,load,clk,rst);
IR Instruction_Register(IR_out,BUS_2,L_IR,clk,rst);
endmodule

View File

@ -0,0 +1,53 @@
`timescale 1ns/1ns
module RISC_testbench;
wire [7:0]bus_1_out;
reg clk,rst;
wire [7:0]Reg_R0_out;
wire [7:0]Reg_R1_out;
wire [7:0]Reg_R2_out;
wire [7:0]Reg_R3_out;
/* wire [7:0]MEMAddress;
wire [7:0]MEMdataout;
wire MEMwrite; */
/* assign MEMAddress = top.MEMAddress;
assign MEMdataout = top.MEMdataout;
assign MEMwrite = top.MEMwrite; */
RISC_core_mem_top top(Reg_R0_out,Reg_R1_out,Reg_R2_out,Reg_R3_out,bus_1_out,clk,rst);
always#20 clk=~clk;
initial
begin
clk=0;rst=1;
#30 rst=0;
#6000 $stop;
end
/* //----------
integer fp;
initial
begin
fp = $fopen("RISC_xa.vec");
$fdisplay(fp, "radix 1 1 44 44 44 44 44 1 44 44");
$fdisplay(fp, "vname clk rst Reg_R0_out[[7:0]] Reg_R1_out[[7:0]] Reg_R2_out[[7:0]] Reg_R3_out[[7:0]] bus_1_out[[7:0]] MEMwrite MEMAddress MEMdataout");
$fdisplay(fp, " io i i oo oo oo oo oo o oo ii");
$fdisplay(fp, "slope 0.3");
$fdisplay(fp, " vih 3.3");
$fdisplay(fp, " vil 0");
$fdisplay(fp, "tunit ns");
end
always@(clk)
begin
$fdisplay(fp, "%t %b %b %h %h %h %h %h %b %h %h", $time, clk, rst, Reg_R0_out, Reg_R1_out, Reg_R2_out, Reg_R3_out, bus_1_out, MEMwrite, MEMAddress, MEMdataout);
end
//---------- */
endmodule

View File

@ -0,0 +1,16 @@
module Reg_1bit(Q,D,load,clk,rst);
output Q;
input D;
input load,clk,rst;
reg Q;
always@(posedge clk)
begin
if(rst==1)Q<=0;
else if(load==1)Q<=D;
end
endmodule

View File

@ -0,0 +1,16 @@
module Reg_8bit(Q,D,load,clk,rst);
output [7:0]Q;
input [7:0]D;
input load,clk,rst;
reg [7:0]Q;
always@(posedge clk)
begin
if(rst==1)Q<=8'b0;
else if(load==1)Q<=D;
end
endmodule

View File

@ -0,0 +1,19 @@
module ACC(
output [7:0] acc_out1,
output [7:0] acc_out2,
input [7:0] acc_in,
input la_,
input clk,
input clr_
);
reg [7:0] q;
always @(posedge clk)
if (~clr_) q <= 8'b0;
else if(~la_) q <= acc_in;
assign acc_out1 = q;
assign acc_out2 = q;
endmodule

View File

@ -0,0 +1,13 @@
module ADDSUB(
output [7:0] ADDSUB_out,
input [7:0] ADDSUB_in1,
input [7:0] ADDSUB_in2,
input su
);
wire [7:0] d;
assign d = su ? ADDSUB_in1 - ADDSUB_in2 : ADDSUB_in1 + ADDSUB_in2;
assign ADDSUB_out = d;
endmodule

View File

@ -0,0 +1,13 @@
module BRegister(
output reg [7:0] BRegister_out,
input [7:0] BRegister_in,
input lb_,
input clk,
input clr_
);
always @(posedge clk)
if(~clr_) BRegister_out <= 8'b0;
else if(~lb_) BRegister_out <= BRegister_in;
endmodule

View File

@ -0,0 +1,119 @@
module Controller(
output reg [11:0] control_signals,
input [3:0] opcode,
input clk,
input clr_
);
reg [3:0] ps, ns;
always @(posedge clk)
begin
if(~clr_) ps <= 4'd0;
else ps <= ns;
end
always @(*)
begin
case(ps)
0:
begin
control_signals = 12'h3e3;
ns = 4'd1;
end
1: //T1
begin
control_signals = 12'h5e3;
ns = 4'd2;
end
2: //T2
begin
// control_signals = 12'hbe3;
control_signals = 12'h863;
ns = 4'd3;
end
3: //T3
begin
// control_signals = 12'h263;
control_signals = 12'h3e3;
if(opcode == 4'd0) //LDA
ns = 4'd4;
else if(opcode == 4'd1) //ADD
ns = 4'd6;
else if(opcode == 4'd2) //SUB
ns = 4'd9;
else if(opcode == 4'd14) //OUT
ns = 4'd12;
else if(opcode == 4'd15) //HLT
ns = 4'd13;
end
4: //LDA
begin
control_signals = 12'h1a3;
ns = 4'd5;
end
5: //LDA
begin
control_signals = 12'h2c3;
ns = 4'd1;
end
6: //ADD
begin
control_signals = 12'h1a3;
ns = 4'd7;
end
7: //ADD
begin
control_signals = 12'h2e1;
ns = 4'd8;
end
8: //ADD
begin
control_signals = 12'h3c7;
ns = 4'd1;
end
9: //SUB
begin
control_signals = 12'h1a3;
ns = 4'd10;
end
10: //SUB
begin
control_signals = 12'h2e1;
ns = 4'd11;
end
11: //SUB
begin
control_signals = 12'h3cf;
ns = 4'd1;
end
12: //OUT
begin
control_signals = 12'h3f2;
ns = 4'd1;
end
13: //HLT
ns = 4'd13;
default:
begin
ns = 4'd0;
control_signals = 12'h3e3;
end
endcase
end
endmodule

View File

@ -0,0 +1,21 @@
module IR(
output [7:4] opcode,
output [3:0] oprand,
input wire [7:0] IR_in,
input li_,
input clk,
input clr_
);
reg [7:0] q;
always @(posedge clk)
begin
if(~clr_) q <=8'b0;
else if(~li_) q <= IR_in;
end
assign opcode = q[7:4];
assign oprand = q[3:0];
endmodule

View File

@ -0,0 +1,13 @@
module MAR(
output reg [3:0] mar_out,
input wire [3:0] mar_in,
input lm_,
input clk,
input clr_
);
always @(posedge clk)
if(~clr_) mar_out <= 4'b0;
else if(~lm_) mar_out <= mar_in;
endmodule

View File

@ -0,0 +1,13 @@
module OutputRegister(
output reg [7:0] OutputRegister_out,
input [7:0] OutputRegister_in,
input lo_,
input clk,
input clr_
);
always @(posedge clk)
if(~clr_) OutputRegister_out <= 8'b0;
else if(~lo_) OutputRegister_out <= OutputRegister_in;
endmodule

View File

@ -0,0 +1,15 @@
module PC(
output reg [3:0] pc_out,
input cp,
input clk,
input clr_
);
always @(posedge clk)
begin
if(~clr_) pc_out <= 0;
else if (cp) pc_out <= pc_out + 1;
end
endmodule

View File

@ -0,0 +1,26 @@
module ROM(
output reg [7:0] rom_out,
input [3:0] rom_in
);
always @(*)
begin
rom_out = 8'bx;
case(rom_in)
4'b0000: rom_out = 8'b0000_1001; //LDA
4'b0001: rom_out = 8'b0001_1010; //ADD
4'b0010: rom_out = 8'b0001_1011; //ADD
4'b0011: rom_out = 8'b0010_1100; //SUB
4'b0100: rom_out = 8'b1110_xxxx; //OUT
4'b0101: rom_out = 8'b1111_xxxx; //HLT
4'b0110: rom_out = 8'bxxxx_xxxx;
4'b0111: rom_out = 8'bxxxx_xxxx;
4'b1000: rom_out = 8'bxxxx_xxxx;
4'b1001: rom_out = 8'b0001_0000;
4'b1010: rom_out = 8'b0001_0100;
4'b1011: rom_out = 8'b0001_1000;
4'b1100: rom_out = 8'b0010_0000;
endcase
end
endmodule

View File

@ -0,0 +1,100 @@
module SAPone(
output wire [7:0] SAP_out,
output wire [11:0] con,
output reg [7:0] bus,
input clk,
input clr_
);
wire cp, ep, lm_, ce_, li_, ei_, la_, ea, su, eu, lb_, lo_;
wire [7:0] acc_out2, BRegister_out, OutputRegister_out;
wire [3:0] IR_out, mar_out;
wire [4:0] bus_sel;
wire [3:0] pc_out, oprand;
wire [7:0] rom_out, acc_out1, ADDSUB_out;
assign {cp, ep, lm_, ce_, li_, ei_, la_, ea, su, eu, lb_, lo_} = con;
assign bus_sel = {ep, ce_, ei_, ea, eu};
always@(*)
begin
case(bus_sel)
5'b11100: bus[3:0] = pc_out;
5'b00100: bus[7:0] = rom_out;
5'b01000: bus[3:0] = oprand;
5'b01110: bus[7:0] = acc_out1;
5'b01101: bus[7:0] = ADDSUB_out;
default: bus[7:0] = 8'bx;
endcase
end
PC pc1(
.pc_out(pc_out),
.cp(cp),
.clk(clk),
.clr_(clr_)
);
MAR mar1(
.mar_out(mar_out),
.mar_in(bus[3:0]),
.lm_(lm_),
.clk(clk),
.clr_(clr_)
);
ROM roml(
.rom_out(rom_out),
.rom_in(mar_out)
);
IR ir1(
.opcode(IR_out),
.oprand(oprand),
.IR_in(bus[7:0]),
.li_(li_),
.clk(clk),
.clr_(clr_)
);
Controller cont1(
.control_signals(con),
.opcode(IR_out),
.clk(clk),
.clr_(clr_)
);
ACC acc1(
.acc_out1(acc_out1),
.acc_out2(acc_out2),
.acc_in(bus[7:0]),
.la_(la_),
.clk(clk),
.clr_(clr_)
);
ADDSUB addsub1(
.ADDSUB_out(ADDSUB_out),
.ADDSUB_in1(acc_out2),
.ADDSUB_in2(BRegister_out),
.su(su)
);
BRegister bregister1(
.BRegister_out(BRegister_out),
.BRegister_in(bus[7:0]),
.lb_(lb_),
.clk(clk),
.clr_(clr_)
);
OutputRegister outputregister1(
.OutputRegister_out(SAP_out),
.OutputRegister_in(bus[7:0]),
.lo_(lo_),
.clk(clk),
.clr_(clr_)
);
endmodule

View File

@ -0,0 +1,34 @@
module testSAPone;
wire [7:0] SAP_out;
wire [11:0] con;
wire [7:0] bus;
// wire clk_out, clr_out;
reg clk, clr_;
always #5 clk = ~clk;
SAPone sapone1(
.SAP_out(SAP_out),
.con(con),
.bus(bus),
// .clk_out(clk_out),
// .clr_out(clr_out),
.clk(clk),
.clr_(clr_)
);
// PC pc1(bus[3:0], clk, clr_, cp, ep);
// MAR mar1(mar, clk, lm_, bus[3:0]);
initial
begin
clk = 0; clr_ = 0;
#10 clr_ = 1;
#990 $stop;
end
endmodule

View File

@ -0,0 +1,16 @@
module counter(clk_counter, q_counter, rst_counter);
input clk_counter;
input rst_counter;
output [7:0] q_counter;
reg [7:0] q_counter;
always @ (posedge clk_counter)
begin
if(rst_counter)
q_counter <= 8'b00000000;
else
q_counter <= q_counter + 1;
end
endmodule

View File

@ -1,84 +0,0 @@
/* Generated by Yosys 0.9 (git sha1 f110c953, gcc 8.4.0-1ubuntu1~18.04 -fPIC -Os) */
module counter(clk_counter, rst_counter, \q_counter[0] , \q_counter[1] , \q_counter[2] , \q_counter[3] , \q_counter[4] , \q_counter[5] , \q_counter[6] , \q_counter[7] );
wire _00_;
wire _01_;
input clk_counter;
wire n22;
wire n26;
wire n30;
wire n34;
wire n38;
wire n42;
wire n46;
wire n50;
output \q_counter[0] ;
reg \q_counter[0] ;
output \q_counter[1] ;
reg \q_counter[1] ;
output \q_counter[2] ;
reg \q_counter[2] ;
output \q_counter[3] ;
reg \q_counter[3] ;
output \q_counter[4] ;
reg \q_counter[4] ;
output \q_counter[5] ;
reg \q_counter[5] ;
output \q_counter[6] ;
reg \q_counter[6] ;
output \q_counter[7] ;
reg \q_counter[7] ;
input rst_counter;
always @(posedge clk_counter)
begin
if(rst_counter) \q_counter[0] <= 1'b0;
else \q_counter[0] <= n22;
end
always @(posedge clk_counter)
begin
if(rst_counter) \q_counter[1] <= 1'b0;
else \q_counter[1] <= n26;
end
always @(posedge clk_counter)
begin
if(rst_counter) \q_counter[2] <= 1'b0;
else \q_counter[2] <= n30;
end
always @(posedge clk_counter)
begin
if(rst_counter) \q_counter[3] <= 1'b0;
else \q_counter[3] <= n34;
end
always @(posedge clk_counter)
begin
if(rst_counter) \q_counter[4] <= 1'b0;
else \q_counter[4] <= n38;
end
always @(posedge clk_counter)
begin
if(rst_counter) \q_counter[5] <= 1'b0;
else \q_counter[5] <= n42;
end
always @(posedge clk_counter)
begin
if(rst_counter) \q_counter[6] <= 1'b0;
else \q_counter[6] <= n46;
end
always @(posedge clk_counter)
begin
if(rst_counter) \q_counter[7] <= 1'b0;
else \q_counter[7] <= n50;
end
assign n26 = 8'h14 >> { \q_counter[0] , \q_counter[1] , rst_counter };
assign n30 = 16'h0708 >> { \q_counter[2] , rst_counter, \q_counter[0] , \q_counter[1] };
assign n34 = 32'd8323200 >> { \q_counter[3] , rst_counter, \q_counter[0] , \q_counter[1] , \q_counter[2] };
assign n38 = 64'h00007fff00008000 >> { \q_counter[4] , rst_counter, \q_counter[0] , \q_counter[1] , \q_counter[2] , \q_counter[3] };
assign n42 = 8'h14 >> { _00_, \q_counter[5] , rst_counter };
assign _00_ = 32'd2147483648 >> { \q_counter[0] , \q_counter[1] , \q_counter[2] , \q_counter[3] , \q_counter[4] };
assign n46 = 8'h14 >> { _01_, \q_counter[6] , rst_counter };
assign _01_ = 64'h8000000000000000 >> { \q_counter[0] , \q_counter[1] , \q_counter[2] , \q_counter[3] , \q_counter[4] , \q_counter[5] };
assign n50 = 16'h0708 >> { \q_counter[7] , rst_counter, _01_, \q_counter[6] };
assign n22 = 4'h1 >> { \q_counter[0] , rst_counter };
endmodule

View File

@ -1,69 +0,0 @@
# Generated by Yosys 0.9 (git sha1 UNKNOWN, clang 7.0.0 -fPIC -Os)
.model counter
.inputs clk_counter rst_counter
.outputs q_counter[0] q_counter[1] q_counter[2] q_counter[3] q_counter[4] q_counter[5] q_counter[6] q_counter[7]
.names $false
.names $true
1
.names $undef
.names q_counter[7] rst_counter q_counter[6] $abc$3686$new_n20_ $0\q_counter[7][0:0]
0011 1
1000 1
1001 1
1010 1
.names q_counter[4] q_counter[5] q_counter[3] q_counter[2] q_counter[1] q_counter[0] $abc$3686$new_n20_
111111 1
.names q_counter[6] $abc$3686$new_n20_ rst_counter $0\q_counter[6][0:0]
010 1
100 1
.names q_counter[5] $abc$3686$new_n23_ rst_counter $0\q_counter[5][0:0]
010 1
100 1
.names q_counter[4] q_counter[3] q_counter[2] q_counter[1] q_counter[0] $abc$3686$new_n23_
11111 1
.names q_counter[2] rst_counter q_counter[1] q_counter[0] $0\q_counter[2][0:0]
0011 1
1000 1
1001 1
1010 1
.names q_counter[4] rst_counter q_counter[3] q_counter[2] q_counter[1] q_counter[0] $0\q_counter[4][0:0]
001111 1
100000 1
100001 1
100010 1
100011 1
100100 1
100101 1
100110 1
100111 1
101000 1
101001 1
101010 1
101011 1
101100 1
101101 1
101110 1
.names q_counter[3] rst_counter q_counter[2] q_counter[1] q_counter[0] $0\q_counter[3][0:0]
00111 1
10000 1
10001 1
10010 1
10011 1
10100 1
10101 1
10110 1
.names q_counter[1] q_counter[0] rst_counter $0\q_counter[1][0:0]
010 1
100 1
.names q_counter[0] rst_counter $0\q_counter[0][0:0]
00 1
.latch $0\q_counter[7][0:0] q_counter[7] re clk_counter 2
.latch $0\q_counter[6][0:0] q_counter[6] re clk_counter 2
.latch $0\q_counter[5][0:0] q_counter[5] re clk_counter 2
.latch $0\q_counter[4][0:0] q_counter[4] re clk_counter 2
.latch $0\q_counter[3][0:0] q_counter[3] re clk_counter 2
.latch $0\q_counter[2][0:0] q_counter[2] re clk_counter 2
.latch $0\q_counter[1][0:0] q_counter[1] re clk_counter 2
.latch $0\q_counter[0][0:0] q_counter[0] re clk_counter 2
.end

View File

@ -1,20 +0,0 @@
clk_counter 0.500000 2.000000
rst_counter 0.492200 0.201800
q_counter[0] 0.281800 0.563400
q_counter[1] 0.248200 0.273600
q_counter[2] 0.183200 0.125600
q_counter[3] 0.097400 0.044800
q_counter[4] 0.022600 0.007200
q_counter[5] 0.002200 0.000800
q_counter[6] 0.000000 0.000000
q_counter[7] 0.000000 0.000000
$0\q_counter[7][0:0] 0 0
$0\q_counter[6][0:0] 0 0
$0\q_counter[5][0:0] 0 0
$0\q_counter[4][0:0] 0 0
$0\q_counter[3][0:0] 0 0
$0\q_counter[2][0:0] 0 0
$0\q_counter[1][0:0] 0 0
$0\q_counter[0][0:0] 0 0
$abc$3686$new_n23_ 0 0
$abc$3686$new_n20_ 0 0

View File

@ -0,0 +1,24 @@
module counter_tb;
reg clk_counter, rst_counter;
wire [7:0] q_counter;
counter_original C_1(
clk_counter,
q_counter,
rst_counter);
initial begin
#0 rst_counter = 1'b1; clk_counter = 1'b0;
#100 rst_counter = 1'b0;
end
always begin
#10 clk_counter = ~clk_counter;
end
initial begin
#5000 $stop;
end
endmodule

View File

@ -242,7 +242,7 @@
<!-- physical pb_type binding in complex block CLB --> <!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified --> <!-- physical mode will be the default mode if not specified -->
<pb_type name="clb.fle" physical_mode_name="physical"/> <pb_type name="clb.fle" physical_mode_name="physical"/>
<pb_type name="clb.fle[physical].frac_logic.frac_lut6" circuit_model_name="frac_lut6" mode_bits="11"/> <pb_type name="clb.fle[physical].frac_logic.frac_lut6" circuit_model_name="frac_lut6" mode_bits="00"/>
<pb_type name="clb.fle[physical].ff_phy" circuit_model_name="scan_chain_ff"/> <pb_type name="clb.fle[physical].ff_phy" circuit_model_name="scan_chain_ff"/>
<pb_type name="clb.fle[physical].frac_logic.adder_phy" circuit_model_name="adder"/> <pb_type name="clb.fle[physical].frac_logic.adder_phy" circuit_model_name="adder"/>
<!-- Binding operating pb_type to physical pb_type --> <!-- Binding operating pb_type to physical pb_type -->
@ -277,7 +277,7 @@
<pb_type name="clb_spypad.fle" physical_mode_name="physical"/> <pb_type name="clb_spypad.fle" physical_mode_name="physical"/>
<!-- Binding regular FLEs --> <!-- Binding regular FLEs -->
<pb_type name="clb_spypad.fle[physical].frac_logic.frac_lut6" circuit_model_name="frac_lut6" mode_bits="11"/> <pb_type name="clb_spypad.fle[physical].frac_logic.frac_lut6" circuit_model_name="frac_lut6" mode_bits="00"/>
<pb_type name="clb_spypad.fle[physical].ff_phy" circuit_model_name="scan_chain_ff"/> <pb_type name="clb_spypad.fle[physical].ff_phy" circuit_model_name="scan_chain_ff"/>
<pb_type name="clb_spypad.fle[physical].frac_logic.adder_phy" circuit_model_name="adder"/> <pb_type name="clb_spypad.fle[physical].frac_logic.adder_phy" circuit_model_name="adder"/>
<!-- Binding operating pb_type to physical pb_type --> <!-- Binding operating pb_type to physical pb_type -->
@ -310,7 +310,7 @@
<!-- physical mode will be the default mode if not specified --> <!-- physical mode will be the default mode if not specified -->
<pb_type name="clb_spypad.fle_spypad" physical_mode_name="physical"/> <pb_type name="clb_spypad.fle_spypad" physical_mode_name="physical"/>
<pb_type name="clb_spypad.fle_spypad[physical].frac_logic.frac_lut6" circuit_model_name="frac_lut6_spypad" mode_bits="11"/> <pb_type name="clb_spypad.fle_spypad[physical].frac_logic.frac_lut6" circuit_model_name="frac_lut6_spypad" mode_bits="00"/>
<pb_type name="clb_spypad.fle_spypad[physical].ff_phy" circuit_model_name="scan_chain_ff"/> <pb_type name="clb_spypad.fle_spypad[physical].ff_phy" circuit_model_name="scan_chain_ff"/>
<pb_type name="clb_spypad.fle_spypad[physical].frac_logic.adder_phy" circuit_model_name="adder"/> <pb_type name="clb_spypad.fle_spypad[physical].frac_logic.adder_phy" circuit_model_name="adder"/>
<!-- Binding operating pb_type to physical pb_type --> <!-- Binding operating pb_type to physical pb_type -->

View File

@ -0,0 +1,231 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N8_40nm.xml
- General purpose logic block
- K = 6, N = 8, I = 32
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="gate" name="OR2" prefix="OR2" is_default="true">
<design_technology type="cmos" topology="OR"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_2level" prefix="mux_2level" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_2level_tapbuf" prefix="mux_2level_tapbuf" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="one_level" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="frac_lut6" prefix="frac_lut6" dump_structural_verilog="true">
<design_technology type="cmos" fracturable_lut="true"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<lut_intermediate_buffer exist="true" circuit_model_name="buf4" location_map="-1-1-"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="6" tri_state_map="-----1" circuit_model_name="OR2"/>
<port type="output" prefix="lut5_out" size="2" lut_frac_level="5" lut_output_mask="0,1"/>
<port type="output" prefix="lut6_out" size="1" lut_output_mask="0"/>
<port type="sram" prefix="sram" size="64"/>
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="sc_dff_compact"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_2level_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle" physical_mode_name="physical"/>
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut6" circuit_model_name="frac_lut6" mode_bits="0"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="static_dff"/>
<!-- Binding operating pb_type to physical pb_type -->
<pb_type name="clb.fle[n2_lut5].lut5inter.ble5.lut5" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="1" physical_pb_type_index_factor="0.5">
<!-- Binding the lut5 to the first 5 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:4]"/>
<port name="out" physical_mode_port="lut5_out[0:0]" physical_mode_pin_rotate_offset="1"/>
</pb_type>
<pb_type name="clb.fle[n2_lut5].lut5inter.ble5.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
<pb_type name="clb.fle[n1_lut6].ble6.lut6" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="0">
<!-- Binding the lut6 to the first 6 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:5]"/>
<port name="out" physical_mode_port="lut6_out"/>
</pb_type>
<pb_type name="clb.fle[n1_lut6].ble6.ff" physical_pb_type_name="clb.fle[physical].fabric.ff" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -0,0 +1,231 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N10_40nm.xml
- General purpose logic block
- K = 6, N = 8, I = 40
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="gate" name="OR2" prefix="OR2" is_default="true">
<design_technology type="cmos" topology="OR"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_2level" prefix="mux_2level" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1" local_encoder="true"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_2level_tapbuf" prefix="mux_2level_tapbuf" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1" local_encoder="true"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" is_default="true" dump_structural_verilog="true" local_encoder="true">
<design_technology type="cmos" structure="one_level" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="frac_lut6" prefix="frac_lut6" dump_structural_verilog="true">
<design_technology type="cmos" fracturable_lut="true"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<lut_intermediate_buffer exist="true" circuit_model_name="buf4" location_map="-1-1-"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="6" tri_state_map="-----1" circuit_model_name="OR2"/>
<port type="output" prefix="lut5_out" size="2" lut_frac_level="5" lut_output_mask="0,1"/>
<port type="output" prefix="lut6_out" size="1" lut_output_mask="0"/>
<port type="sram" prefix="sram" size="64"/>
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="sc_dff_compact"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_2level_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
</pb_type>
<pb_type name="clb.fle" physical_mode_name="physical"/>
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut6" circuit_model_name="frac_lut6" mode_bits="0"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="static_dff"/>
<!-- Binding operating pb_type to physical pb_type -->
<pb_type name="clb.fle[n2_lut5].lut5inter.ble5.lut5" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="1" physical_pb_type_index_factor="0.5">
<!-- Binding the lut5 to the first 5 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:4]"/>
<port name="out" physical_mode_port="lut5_out[0:0]" physical_mode_pin_rotate_offset="1"/>
</pb_type>
<pb_type name="clb.fle[n2_lut5].lut5inter.ble5.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
<pb_type name="clb.fle[n1_lut6].ble6.lut6" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="0">
<!-- Binding the lut6 to the first 6 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:5]"/>
<port name="out" physical_mode_port="lut6_out"/>
</pb_type>
<pb_type name="clb.fle[n1_lut6].ble6.ff" physical_pb_type_name="clb.fle[physical].fabric.ff" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -0,0 +1,223 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N10_40nm.xml
- General purpose logic block
- K = 6, N = 8, I = 40
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="gate" name="OR2" prefix="OR2" is_default="true">
<design_technology type="cmos" topology="OR"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
</circuit_model>
<!-- Define a circuit model for the standard cell MUX2
OpenFPGA requires the following truth table for the MUX2
When the select signal sel is enabled, the first input, i.e., in0
will be propagated to the output, i.e., out
If your standard cell provider does not offer the exact truth table,
you can simply swap the inputs as shown in the example below
-->
<circuit_model type="gate" name="MUX2" prefix="MUX2" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/mux2.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/mux2.v">
<design_technology type="cmos" topology="MUX2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in0" lib_name="B" size="1"/>
<port type="input" prefix="in1" lib_name="A" size="1"/>
<port type="input" prefix="sel" lib_name="S0" size="1"/>
<port type="output" prefix="out" lib_name="Y" size="1"/>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_tree" prefix="mux_tree" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="MUX2"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_tree_tapbuf" prefix="mux_tree_tapbuf" dump_structural_verilog="true">
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="MUX2"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="frac_lut6" prefix="frac_lut6" dump_structural_verilog="true">
<design_technology type="cmos" fracturable_lut="true"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<lut_intermediate_buffer exist="true" circuit_model_name="buf4" location_map="-1-1-"/>
<pass_gate_logic circuit_model_name="MUX2"/>
<port type="input" prefix="in" size="6" tri_state_map="-----1" circuit_model_name="OR2"/>
<port type="output" prefix="lut5_out" size="2" lut_frac_level="5" lut_output_mask="0,1"/>
<port type="output" prefix="lut6_out" size="1" lut_output_mask="0"/>
<port type="sram" prefix="sram" size="64"/>
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="sc_dff_compact"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_tree_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_tree_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_tree"/>
</pb_type>
<pb_type name="clb.fle" physical_mode_name="physical"/>
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut6" circuit_model_name="frac_lut6" mode_bits="0"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="static_dff"/>
<!-- Binding operating pb_type to physical pb_type -->
<pb_type name="clb.fle[n2_lut5].lut5inter.ble5.lut5" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="1" physical_pb_type_index_factor="0.5">
<!-- Binding the lut5 to the first 5 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:4]"/>
<port name="out" physical_mode_port="lut5_out[0:0]" physical_mode_pin_rotate_offset="1"/>
</pb_type>
<pb_type name="clb.fle[n2_lut5].lut5inter.ble5.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
<pb_type name="clb.fle[n1_lut6].ble6.lut6" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="0">
<!-- Binding the lut6 to the first 6 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:5]"/>
<port name="out" physical_mode_port="lut6_out"/>
</pb_type>
<pb_type name="clb.fle[n1_lut6].ble6.ff" physical_pb_type_name="clb.fle[physical].fabric.ff" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -0,0 +1,222 @@
<!-- Architecture annotation for OpenFPGA framework
This annotation supports the k6_N10_40nm.xml
- General purpose logic block
- K = 6, N = 8, I = 40
- Single mode
- Routing architecture
- L = 4, fc_in = 0.15, fc_out = 0.1
-->
<openfpga_architecture>
<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
</device_model>
</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
</variation_library>
</technology_library>
<circuit_library>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
<device_technology device_model_name="logic"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="gate" name="OR2" prefix="OR2" is_default="true">
<design_technology type="cmos" topology="OR"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="a b" out_port="out">
10e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="MUX2" prefix="MUX2" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<device_technology device_model_name="logic"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_tree" prefix="mux_tree" is_default="true" dump_structural_verilog="true">
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="MUX2"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_tree_tapbuf" prefix="mux_tree_tapbuf" dump_structural_verilog="true">
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="MUX2"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="frac_lut6" prefix="frac_lut6" dump_structural_verilog="true">
<design_technology type="cmos" fracturable_lut="true"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<lut_intermediate_buffer exist="true" circuit_model_name="buf4" location_map="-1-1-"/>
<pass_gate_logic circuit_model_name="MUX2"/>
<port type="input" prefix="in" size="6" tri_state_map="-----1" circuit_model_name="OR2"/>
<port type="output" prefix="lut5_out" size="2" lut_frac_level="5" lut_output_mask="0,1"/>
<port type="output" prefix="lut6_out" size="1" lut_output_mask="0"/>
<port type="sram" prefix="sram" size="64"/>
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="ccff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>
</circuit_model>
</circuit_library>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="sc_dff_compact"/>
</configuration_protocol>
<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_tree_tapbuf"/>
</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_tree_tapbuf"/>
</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>
</routing_segment>
<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
<!-- End physical pb_type binding in complex block IO -->
<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_tree"/>
</pb_type>
<pb_type name="clb.fle" physical_mode_name="physical"/>
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut6" circuit_model_name="frac_lut6" mode_bits="0"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="static_dff"/>
<!-- Binding operating pb_type to physical pb_type -->
<pb_type name="clb.fle[n2_lut5].lut5inter.ble5.lut5" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="1" physical_pb_type_index_factor="0.5">
<!-- Binding the lut5 to the first 5 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:4]"/>
<port name="out" physical_mode_port="lut5_out[0:0]" physical_mode_pin_rotate_offset="1"/>
</pb_type>
<pb_type name="clb.fle[n2_lut5].lut5inter.ble5.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
<pb_type name="clb.fle[n1_lut6].ble6.lut6" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="0">
<!-- Binding the lut6 to the first 6 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:5]"/>
<port name="out" physical_mode_port="lut6_out"/>
</pb_type>
<pb_type name="clb.fle[n1_lut6].ble6.ff" physical_pb_type_name="clb.fle[physical].fabric.ff" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0"/>
<!-- End physical pb_type binding in complex block IO -->
</pb_type_annotations>
</openfpga_architecture>

View File

@ -419,6 +419,17 @@ def prepare_run_directory(run_dir):
with open(args.openfpga_arch_file, 'w', encoding='utf-8') as archfile: with open(args.openfpga_arch_file, 'w', encoding='utf-8') as archfile:
archfile.write(tmpl.substitute(script_env_vars["PATH"])) archfile.write(tmpl.substitute(script_env_vars["PATH"]))
# Sanitize provided openshell template, if provided
if (args.openfpga_shell_template):
if not os.path.isfile(args.openfpga_shell_template or ""):
logger.error("Openfpga shell file - %s" %
args.openfpga_shell_template)
clean_up_and_exit("Provided openfpga_shell_template" +
f" {args.openfpga_shell_template} file not found")
else:
shutil.copy(args.openfpga_shell_template,
args.top_module+"_template.openfpga")
# Create benchmark dir in run_dir and copy flattern architecture file # Create benchmark dir in run_dir and copy flattern architecture file
os.mkdir("benchmark") os.mkdir("benchmark")
try: try:
@ -600,17 +611,6 @@ def collect_files_for_vpr():
clean_up_and_exit("Provided base_verilog file not found") clean_up_and_exit("Provided base_verilog file not found")
shutil.copy(args.base_verilog, args.top_module+"_output_verilog.v") shutil.copy(args.base_verilog, args.top_module+"_output_verilog.v")
# Sanitize provided openshell template, if provided
if (args.openfpga_shell_template):
if not os.path.isfile(args.openfpga_shell_template or ""):
logger.error("Openfpga shell file - %s" %
args.openfpga_shell_template)
clean_up_and_exit("Provided openfpga_shell_template" +
f" {args.openfpga_shell_template} file not found")
else:
shutil.copy(args.openfpga_shell_template,
args.top_module+"_template.openfpga")
def run_vpr(): def run_vpr():
ExecTime["VPRStart"] = time.time() ExecTime["VPRStart"] = time.time()

View File

@ -14,7 +14,7 @@ power_analysis = true
spice_output=false spice_output=false
verilog_output=true verilog_output=true
timeout_each_job = 20*60 timeout_each_job = 20*60
fpga_flow=vpr_blif fpga_flow=yosys_vpr
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_cc_openfpga.xml openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_cc_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
external_fabric_key_file= external_fabric_key_file=
@ -23,14 +23,11 @@ external_fabric_key_file=
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml
[BENCHMARKS] [BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
[SYNTHESIS_PARAM] [SYNTHESIS_PARAM]
bench0_top = and2 bench0_top = and2
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.act
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
bench0_chan_width = 300 bench0_chan_width = 300
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH] [SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
end_flow_with_test= end_flow_with_test=
#vpr_fpga_verilog_formal_verification_top_netlist=

View File

@ -14,7 +14,7 @@ power_analysis = true
spice_output=false spice_output=false
verilog_output=true verilog_output=true
timeout_each_job = 20*60 timeout_each_job = 20*60
fpga_flow=vpr_blif fpga_flow=yosys_vpr
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_frame_openfpga.xml openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_frame_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
external_fabric_key_file= external_fabric_key_file=
@ -23,14 +23,11 @@ external_fabric_key_file=
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml
[BENCHMARKS] [BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
[SYNTHESIS_PARAM] [SYNTHESIS_PARAM]
bench0_top = and2 bench0_top = and2
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.act
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
bench0_chan_width = 300 bench0_chan_width = 300
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH] [SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
end_flow_with_test= end_flow_with_test=
#vpr_fpga_verilog_formal_verification_top_netlist=

View File

@ -14,7 +14,7 @@ power_analysis = true
spice_output=false spice_output=false
verilog_output=true verilog_output=true
timeout_each_job = 20*60 timeout_each_job = 20*60
fpga_flow=vpr_blif fpga_flow=yosys_vpr
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_cc_openfpga.xml openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_cc_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
external_fabric_key_file= external_fabric_key_file=
@ -23,14 +23,11 @@ external_fabric_key_file=
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml
[BENCHMARKS] [BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
[SYNTHESIS_PARAM] [SYNTHESIS_PARAM]
bench0_top = and2 bench0_top = and2
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.act
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
bench0_chan_width = 300 bench0_chan_width = 300
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH] [SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
end_flow_with_test= end_flow_with_test=
#vpr_fpga_verilog_formal_verification_top_netlist=

View File

@ -14,7 +14,7 @@ power_analysis = true
spice_output=false spice_output=false
verilog_output=true verilog_output=true
timeout_each_job = 20*60 timeout_each_job = 20*60
fpga_flow=vpr_blif fpga_flow=yosys_vpr
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_frame_openfpga.xml openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_frame_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
external_fabric_key_file= external_fabric_key_file=
@ -23,14 +23,11 @@ external_fabric_key_file=
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml
[BENCHMARKS] [BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
[SYNTHESIS_PARAM] [SYNTHESIS_PARAM]
bench0_top = and2 bench0_top = and2
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.act
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
bench0_chan_width = 300 bench0_chan_width = 300
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH] [SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
end_flow_with_test= end_flow_with_test=
#vpr_fpga_verilog_formal_verification_top_netlist=

View File

@ -14,7 +14,7 @@ power_analysis = true
spice_output=false spice_output=false
verilog_output=true verilog_output=true
timeout_each_job = 20*60 timeout_each_job = 20*60
fpga_flow=vpr_blif fpga_flow=yosys_vpr
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_bank_openfpga.xml openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_bank_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
external_fabric_key_file= external_fabric_key_file=
@ -23,14 +23,11 @@ external_fabric_key_file=
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml
[BENCHMARKS] [BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
[SYNTHESIS_PARAM] [SYNTHESIS_PARAM]
bench0_top = and2 bench0_top = and2
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.act
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
bench0_chan_width = 300 bench0_chan_width = 300
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH] [SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
end_flow_with_test= end_flow_with_test=
#vpr_fpga_verilog_formal_verification_top_netlist=

View File

@ -14,7 +14,7 @@ power_analysis = true
spice_output=false spice_output=false
verilog_output=true verilog_output=true
timeout_each_job = 20*60 timeout_each_job = 20*60
fpga_flow=vpr_blif fpga_flow=yosys_vpr
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_standalone_openfpga.xml openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_standalone_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
external_fabric_key_file= external_fabric_key_file=
@ -23,14 +23,11 @@ external_fabric_key_file=
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml
[BENCHMARKS] [BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
[SYNTHESIS_PARAM] [SYNTHESIS_PARAM]
bench0_top = and2 bench0_top = and2
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.act
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
bench0_chan_width = 300 bench0_chan_width = 300
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH] [SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
end_flow_with_test= end_flow_with_test=
#vpr_fpga_verilog_formal_verification_top_netlist=

View File

@ -14,7 +14,7 @@ power_analysis = true
spice_output=false spice_output=false
verilog_output=true verilog_output=true
timeout_each_job = 20*60 timeout_each_job = 20*60
fpga_flow=vpr_blif fpga_flow=yosys_vpr
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_bank_openfpga.xml openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_bank_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
external_fabric_key_file= external_fabric_key_file=
@ -23,14 +23,11 @@ external_fabric_key_file=
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml
[BENCHMARKS] [BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
[SYNTHESIS_PARAM] [SYNTHESIS_PARAM]
bench0_top = and2 bench0_top = and2
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.act
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
bench0_chan_width = 300 bench0_chan_width = 300
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH] [SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
end_flow_with_test= end_flow_with_test=
#vpr_fpga_verilog_formal_verification_top_netlist=

View File

@ -14,7 +14,7 @@ power_analysis = true
spice_output=false spice_output=false
verilog_output=true verilog_output=true
timeout_each_job = 20*60 timeout_each_job = 20*60
fpga_flow=vpr_blif fpga_flow=yosys_vpr
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_40nm_openfpga.xml openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_40nm_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
external_fabric_key_file= external_fabric_key_file=
@ -23,11 +23,9 @@ external_fabric_key_file=
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k6_frac_N10_tileable_40nm.xml arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k6_frac_N10_tileable_40nm.xml
[BENCHMARKS] [BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
[SYNTHESIS_PARAM] [SYNTHESIS_PARAM]
bench0_top = and2 bench0_top = and2
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.act
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH] [SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]

View File

@ -14,7 +14,7 @@ power_analysis = true
spice_output=false spice_output=false
verilog_output=true verilog_output=true
timeout_each_job = 20*60 timeout_each_job = 20*60
fpga_flow=vpr_blif fpga_flow=yosys_vpr
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_40nm_openfpga.xml openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_40nm_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
external_fabric_key_file= external_fabric_key_file=
@ -23,12 +23,10 @@ external_fabric_key_file=
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k6_frac_N10_tileable_40nm.xml arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k6_frac_N10_tileable_40nm.xml
[BENCHMARKS] [BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counter/counter_post_yosys.blif bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counter/counter.v
[SYNTHESIS_PARAM] [SYNTHESIS_PARAM]
bench0_top = counter bench0_top = counter
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counter/counter_pre_vpr.act
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/counter/counter_output_verilog.v
bench0_chan_width = 300 bench0_chan_width = 300
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH] [SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]

View File

@ -15,12 +15,12 @@ spice_output=false
verilog_output=true verilog_output=true
timeout_each_job = 20*60 timeout_each_job = 20*60
fpga_flow=vpr_blif fpga_flow=vpr_blif
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_40nm_openfpga.xml openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N8_40nm_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
external_fabric_key_file= external_fabric_key_file=
[ARCHITECTURES] [ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k6_frac_N10_tileable_40nm.xml arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k6_frac_N8_tileable_40nm.xml
[BENCHMARKS] [BENCHMARKS]
# #

View File

@ -15,12 +15,12 @@ spice_output=false
verilog_output=true verilog_output=true
timeout_each_job = 20*60 timeout_each_job = 20*60
fpga_flow=vpr_blif fpga_flow=vpr_blif
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_local_encoder_40nm_openfpga.xml openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N8_local_encoder_40nm_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
external_fabric_key_file= external_fabric_key_file=
[ARCHITECTURES] [ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k6_frac_N10_tileable_40nm.xml arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k6_frac_N8_tileable_40nm.xml
[BENCHMARKS] [BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif

View File

@ -15,12 +15,12 @@ spice_output=false
verilog_output=true verilog_output=true
timeout_each_job = 20*60 timeout_each_job = 20*60
fpga_flow=vpr_blif fpga_flow=vpr_blif
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_stdcell_mux_40nm_openfpga.xml openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N8_stdcell_mux_40nm_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
external_fabric_key_file= external_fabric_key_file=
[ARCHITECTURES] [ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k6_frac_N10_tileable_40nm.xml arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k6_frac_N8_tileable_40nm.xml
[BENCHMARKS] [BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif

View File

@ -15,12 +15,12 @@ spice_output=false
verilog_output=true verilog_output=true
timeout_each_job = 20*60 timeout_each_job = 20*60
fpga_flow=vpr_blif fpga_flow=vpr_blif
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_tree_mux_40nm_openfpga.xml openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N8_tree_mux_40nm_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
external_fabric_key_file= external_fabric_key_file=
[ARCHITECTURES] [ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k6_frac_N10_tileable_40nm.xml arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k6_frac_N8_tileable_40nm.xml
[BENCHMARKS] [BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif

View File

@ -14,7 +14,7 @@ power_analysis = true
spice_output=false spice_output=false
verilog_output=true verilog_output=true
timeout_each_job = 20*60 timeout_each_job = 20*60
fpga_flow=vpr_blif fpga_flow=yosys_vpr
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_cc_openfpga.xml openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_cc_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
external_fabric_key_file= external_fabric_key_file=
@ -23,12 +23,10 @@ external_fabric_key_file=
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml
[BENCHMARKS] [BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
[SYNTHESIS_PARAM] [SYNTHESIS_PARAM]
bench0_top = and2 bench0_top = and2
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.act
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
bench0_chan_width = 300 bench0_chan_width = 300
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH] [SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]

View File

@ -14,7 +14,7 @@ power_analysis = true
spice_output=false spice_output=false
verilog_output=true verilog_output=true
timeout_each_job = 20*60 timeout_each_job = 20*60
fpga_flow=vpr_blif fpga_flow=yosys_vpr
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_frame_openfpga.xml openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_frame_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
external_fabric_key_file= external_fabric_key_file=
@ -23,12 +23,10 @@ external_fabric_key_file=
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml
[BENCHMARKS] [BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
[SYNTHESIS_PARAM] [SYNTHESIS_PARAM]
bench0_top = and2 bench0_top = and2
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.act
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
bench0_chan_width = 300 bench0_chan_width = 300
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH] [SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]

View File

@ -14,7 +14,7 @@ power_analysis = true
spice_output=false spice_output=false
verilog_output=true verilog_output=true
timeout_each_job = 20*60 timeout_each_job = 20*60
fpga_flow=vpr_blif fpga_flow=yosys_vpr
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_standalone_openfpga.xml openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_standalone_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
external_fabric_key_file= external_fabric_key_file=
@ -23,12 +23,10 @@ external_fabric_key_file=
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml
[BENCHMARKS] [BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
[SYNTHESIS_PARAM] [SYNTHESIS_PARAM]
bench0_top = and2 bench0_top = and2
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.act
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
bench0_chan_width = 300 bench0_chan_width = 300
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH] [SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]

View File

@ -14,7 +14,7 @@ power_analysis = true
spice_output=false spice_output=false
verilog_output=true verilog_output=true
timeout_each_job = 20*60 timeout_each_job = 20*60
fpga_flow=vpr_blif fpga_flow=yosys_vpr
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_bank_openfpga.xml openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_bank_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
external_fabric_key_file= external_fabric_key_file=
@ -23,12 +23,10 @@ external_fabric_key_file=
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_N4_tileable_40nm.xml
[BENCHMARKS] [BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
[SYNTHESIS_PARAM] [SYNTHESIS_PARAM]
bench0_top = and2 bench0_top = and2
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.act
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
bench0_chan_width = 300 bench0_chan_width = 300
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH] [SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]

View File

@ -8,7 +8,7 @@
[GENERAL] [GENERAL]
run_engine=openfpga_shell run_engine=openfpga_shell
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/example_script.openfpga openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/fast_configuration_example_script.openfpga
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
power_analysis = true power_analysis = true
spice_output=false spice_output=false

View File

@ -0,0 +1,441 @@
<!--
Flagship Heterogeneous Architecture (No Carry Chains) for VTR 7.0.
- 40 nm technology
- General purpose logic block:
K = 6, N = 8, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with all 5 inputs shared)
with optionally registered outputs
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
Details on Modelling:
Based on flagship k6_frac_N10_mem32K_40nm.xml architecture.
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch)
that describe them.
-->
<models>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io">
<input_ports>
<port name="outpad"/>
</input_ports>
<output_ports>
<port name="inpad"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="frac_lut6">
<input_ports>
<port name="in"/>
</input_ports>
<output_ports>
<port name="lut5_out"/>
<port name="lut6_out"/>
</output_ports>
</model>
</models>
<tiles>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<tile name="io" capacity="8" area="0">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">io.outpad io.inpad</loc>
<loc side="top">io.outpad io.inpad</loc>
<loc side="right">io.outpad io.inpad</loc>
<loc side="bottom">io.outpad io.inpad</loc>
</pinlocations>
</tile>
<tile name="clb" area="53894">
<equivalent_sites>
<site pb_type="clb"/>
</equivalent_sites>
<input name="I" num_pins="32" equivalent="full"/>
<output name="O" num_pins="16" equivalent="none"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="spread"/>
</tile>
</tiles>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout tileable="true">
<!--auto_layout aspect_ratio="1.0"-->
<fixed_layout name="2x2" width="4" height="4">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
<!-- /auto_layout -->
</layout>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/>
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3" sub_type="subset" sub_fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist>
<segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="0"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<complexblocklist>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<!-- A mode denotes the physical implementation of an I/O
This mode will be not packable but is mainly used for fabric verilog generation
-->
<mode name="physical" disabled_in_pack="true">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- IOs go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of I/Os is needed.
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
-->
<!-- Place I/Os on the sides of the FPGA -->
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
area is 60 L^2 yields a tile area of 84375 MWTAs.
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
This means that only 37% of our area is in the general routing, and 63% is inside the logic
block. Note that the crossbar / local interconnect is considered part of the logic block
area in this analysis. That is a lower proportion of of routing area than most academics
assume, but note that the total routing area really includes the crossbar, which would push
routing area up significantly, we estimate into the ~70% range.
-->
<pb_type name="clb">
<input name="I" num_pins="32" equivalent="full"/>
<output name="O" num_pins="16" equivalent="none"/>
<clock name="clk" num_pins="1"/>
<!-- Describe fracturable logic element.
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
The outputs of the fracturable logic element can be optionally registered
-->
<pb_type name="fle" num_pb="8">
<input name="in" num_pins="6"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<!-- Physical mode definition begin (physical implementation of the fle) -->
<mode name="physical" disabled_in_pack="true">
<pb_type name="fabric" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<pb_type name="frac_logic" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="2"/>
<!-- Define LUT -->
<pb_type name="frac_lut6" blif_model=".subckt frac_lut6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="lut5_out" num_pins="2"/>
<output name="lut6_out" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="direct1" input="frac_logic.in" output="frac_lut6.in"/>
<direct name="direct2" input="frac_lut6.lut5_out[1]" output="frac_logic.out[1]"/>
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
<mux name="mux1" input="frac_lut6.lut6_out frac_lut6.lut5_out[0]" output="frac_logic.out[0]"/>
</interconnect>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
<direct name="direct2" input="frac_logic.out[1:0]" output="ff[1:0].D"/>
<complete name="direct3" input="fabric.clk" output="ff[1:0].clk"/>
<mux name="mux1" input="ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
</mux>
<mux name="mux2" input="ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="fabric.in"/>
<direct name="direct2" input="fabric.out" output="fle.out"/>
<direct name="direct3" input="fle.clk" output="fabric.clk"/>
</interconnect>
</mode>
<!-- Physical mode definition end (physical implementation of the fle) -->
<!-- Dual 5-LUT mode definition begin -->
<mode name="n2_lut5">
<pb_type name="lut5inter" num_pb="1">
<input name="in" num_pins="5"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<pb_type name="ble5" num_pb="2">
<input name="in" num_pins="5"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define the LUT -->
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="5" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
-->
<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
235e-12
235e-12
235e-12
235e-12
235e-12
</delay_matrix>
</pb_type>
<!-- Define the flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble5.in[4:0]" output="lut5[0:0].in[4:0]"/>
<direct name="direct2" input="lut5[0:0].out" output="ff[0:0].D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
<pack_pattern name="ble5" in_port="lut5[0:0].out" out_port="ff[0:0].D"/>
</direct>
<direct name="direct3" input="ble5.clk" output="ff[0:0].clk"/>
<mux name="mux1" input="ff[0:0].Q lut5.out[0:0]" output="ble5.out[0:0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut5.out[0:0]" out_port="ble5.out[0:0]"/>
<delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="ble5.out[0:0]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="lut5inter.in" output="ble5[0:0].in"/>
<direct name="direct2" input="lut5inter.in" output="ble5[1:1].in"/>
<direct name="direct3" input="ble5[1:0].out" output="lut5inter.out"/>
<complete name="complete1" input="lut5inter.clk" output="ble5[1:0].clk"/>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[4:0]" output="lut5inter.in"/>
<direct name="direct2" input="lut5inter.out" output="fle.out"/>
<direct name="direct3" input="fle.clk" output="lut5inter.clk"/>
</interconnect>
</mode>
<!-- Dual 5-LUT mode definition end -->
<!-- 6-LUT mode definition begin -->
<mode name="n1_lut6">
<!-- Define 6-LUT mode -->
<pb_type name="ble6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define LUT -->
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="6" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
261e-12
261e-12
261e-12
261e-12
261e-12
261e-12
</delay_matrix>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
<direct name="direct2" input="lut6.out" output="ff.D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="ble6.in"/>
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
</interconnect>
</mode>
<!-- 6-LUT mode definition end -->
</pb_type>
<interconnect>
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[7:0].out" output="fle[7:0].in">
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[7:0].in"/>
<delay_constant max="75e-12" in_port="fle[7:0].out" out_port="fle[7:0].in"/>
</complete>
<complete name="clks" input="clb.clk" output="fle[7:0].clk">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[7:0].out[0:0]" output="clb.O[7:0]"/>
<direct name="clbouts2" input="fle[7:0].out[1:1]" output="clb.O[15:8]"/>
</interconnect>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- Place this general purpose logic block in any unspecified column -->
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
</complexblocklist>
</architecture>