Merging ganesh_dev to dev
- Added spice_tool option in fpga_flow - Some local customization
This commit is contained in:
commit
57ad71438b
|
@ -32,3 +32,7 @@ vpr7_x2p/vpr/vpr
|
|||
vpr7_x2p/printhandler/printhandlerdemo
|
||||
vpr7_x2p/libarchfpga/read_arch
|
||||
vpr7_x2p/pcre/pcredemo
|
||||
|
||||
# Some local temporary files
|
||||
.vscode
|
||||
*_local.bat
|
|
@ -0,0 +1,10 @@
|
|||
FROM ubuntu:16.04
|
||||
|
||||
RUN apt-get update -qq -y
|
||||
RUN apt-get -y install python3 python3-dev tcl tcl8.6-dev gawk libreadline-dev
|
||||
|
||||
RUN apt-get -y install autoconf automake bison build-essential cmake ctags curl doxygen flex fontconfig g++-4.9 gcc-4.9 gdb git gperf libffi-dev libcairo2-dev libevent-dev libfontconfig1-dev liblist-moreutils-perl libncurses5-dev libx11-dev libxft-dev libxml++2.6-dev perl texinfo time valgrind zip qt5-default
|
||||
|
||||
RUN git clone https://github.com/LNIS-Projects/OpenFPGA.git OpenFPGA
|
||||
RUN cd OpenFPGA && make
|
||||
|
|
@ -0,0 +1,553 @@
|
|||
<architecture>
|
||||
<models>
|
||||
<model name="io">
|
||||
<input_ports>
|
||||
<port name="outpad"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="inpad"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
|
||||
|
||||
</models>
|
||||
<!-- ODIN II specific config ends -->
|
||||
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout auto="1.0"/>
|
||||
<!-- <layout width="2" height="2"/> -->
|
||||
|
||||
<!--mrFPGA_settings-->
|
||||
<!-- below is the timing parameters for a single memristor device (or so called RRAM) -->
|
||||
<!--mrFPGA R="1e3" C="2.24e-17" Tdel="0"-->
|
||||
<!-- below is the timing parameters for the buffers to insert in channels -->
|
||||
<!--buffer R="193.5" Cin="3.66e-15" Cout="3.56e-15" Tdel="6.14e-12"/-->
|
||||
<!--cblock R_opin_cblock="193.5" T_opin_cblock="6.14e-12"/-->
|
||||
<!--/mrFPGA-->
|
||||
<!--/mrFPGA_settings-->
|
||||
|
||||
<spice_settings>
|
||||
<parameters>
|
||||
<options sim_temp="25" post="off" captab="off" fast="on"/>
|
||||
<monte_carlo mc_sim="off" num_mc_points="3" cmos_variation="off" rram_variation="on">
|
||||
<cmos abs_variation="0.1" num_sigma="1"/>
|
||||
<rram abs_variation="0.1" num_sigma="1"/>
|
||||
</monte_carlo>
|
||||
<measure sim_num_clock_cycle="auto" accuracy="1e-13" accuracy_type="abs">
|
||||
<slew>
|
||||
<rise upper_thres_pct="0.95" lower_thres_pct="0.05"/>
|
||||
<fall upper_thres_pct="0.05" lower_thres_pct="0.95"/>
|
||||
</slew>
|
||||
<delay>
|
||||
<rise input_thres_pct="0.5" output_thres_pct="0.5"/>
|
||||
<fall input_thres_pct="0.5" output_thres_pct="0.5"/>
|
||||
</delay>
|
||||
</measure>
|
||||
<stimulate>
|
||||
<clock op_freq="auto" sim_slack="0.2" prog_freq="2.5e6">
|
||||
<rise slew_time="20e-12" slew_type="abs"/>
|
||||
<fall slew_time="20e-12" slew_type="abs"/>
|
||||
</clock>
|
||||
<input>
|
||||
<rise slew_time="25e-12" slew_type="abs"/>
|
||||
<fall slew_time="25e-12" slew_type="abs"/>
|
||||
</input>
|
||||
</stimulate>
|
||||
</parameters>
|
||||
<tech_lib lib_type="industry" transistor_type="TT" lib_path="/research/ece/lnis/CAD_TOOLS/DKITS/wibond_R90_1P4M_v1.3/models/hspice/r90es_logic_v1d3.l" nominal_vdd="1.2" io_vdd="2.5"/>
|
||||
<transistors pn_ratio="2" model_ref="M">
|
||||
<nmos model_name="nch" chan_length="100e-9" min_width="120e-9"/>
|
||||
<pmos model_name="pch" chan_length="100e-9" min_width="120e-9"/>
|
||||
<io_nmos model_name="nch_25" chan_length="100e-9" min_width="120e-9"/>
|
||||
<io_pmos model_name="pch_25" chan_length="100e-9" min_width="120e-9"/>
|
||||
</transistors>
|
||||
<module_spice_models>
|
||||
<spice_model type="inv_buf" name="INVTX1" prefix="INVTX1" dump_explicit_port_map="true" is_default="0">
|
||||
<design_technology type="cmos" topology="inverter" size="3" tapered="off" power_gated="true"/>
|
||||
<port type="input" prefix="in" size="1" lib_name="I"/>
|
||||
<port type="input" prefix="EN" size="1" lib_name="EN" is_global="true" default_val="0" is_config_enable="true"/>
|
||||
<port type="input" prefix="ENB" size="1" lib_name="ENB" is_global="true" default_val="1" is_config_enable="true"/>
|
||||
<port type="output" prefix="out" size="1" lib_name="Z"/>
|
||||
</spice_model>
|
||||
<spice_model type="inv_buf" name="INVD4BWP" prefix="INVD4BWP" dump_explicit_port_map="true" is_default="0" verilog_netlist="VerilogNetlists/essential_gates.v">
|
||||
<design_technology type="cmos" topology="buffer" size="1" tapered="on" tap_buf_level="2" f_per_stage="4"/>
|
||||
<port type="input" prefix="in" lib_name="I" size="1"/>
|
||||
<port type="output" prefix="out" lib_name="ZN" size="1"/>
|
||||
</spice_model>
|
||||
<spice_model type="inv_buf" name="INVD1BWP" prefix="INVD1BWP" dump_explicit_port_map="true" is_default="0" verilog_netlist="VerilogNetlists/essential_gates.v">
|
||||
<design_technology type="cmos" topology="buffer" size="1" tapered="on" tap_buf_level="2" f_per_stage="4"/>
|
||||
<port type="input" prefix="in" lib_name="I" size="1"/>
|
||||
<port type="output" prefix="out" lib_name="ZN" size="1"/>
|
||||
</spice_model>
|
||||
<spice_model type="inv_buf" name="INVD2BWP" prefix="INVD2BWP" dump_explicit_port_map="true" is_default="0" verilog_netlist="VerilogNetlists/essential_gates.v">
|
||||
<design_technology type="cmos" topology="buffer" size="1" tapered="on" tap_buf_level="2" f_per_stage="4"/>
|
||||
<port type="input" prefix="in" lib_name="I" size="1"/>
|
||||
<port type="output" prefix="out" lib_name="ZN" size="1"/>
|
||||
</spice_model>
|
||||
<spice_model type="inv_buf" name="INVD3BWP" prefix="INVD3BWP" dump_explicit_port_map="true" is_default="0" verilog_netlist="VerilogNetlists/essential_gates.v">
|
||||
<design_technology type="cmos" topology="buffer" size="1" tapered="on" tap_buf_level="2" f_per_stage="4"/>
|
||||
<port type="input" prefix="in" lib_name="I" size="1"/>
|
||||
<port type="output" prefix="out" lib_name="ZN" size="1"/>
|
||||
</spice_model>
|
||||
<spice_model type="inv_buf" name="BUFFD2BWP" prefix="BUFFD2BWP" dump_explicit_port_map="true" is_default="0" verilog_netlist="VerilogNetlists/essential_gates.v">
|
||||
<design_technology type="cmos" topology="buffer" size="1" tapered="on" tap_buf_level="2" f_per_stage="4"/>
|
||||
<port type="input" prefix="in" lib_name="I" size="1"/>
|
||||
<port type="output" prefix="out" lib_name="Z" size="1"/>
|
||||
</spice_model>
|
||||
<spice_model type="inv_buf" name="BUFFD3BWP" prefix="BUFFD3BWP" dump_explicit_port_map="true" is_default="0" verilog_netlist="VerilogNetlists/essential_gates.v">
|
||||
<design_technology type="cmos" topology="buffer" size="1" tapered="on" tap_buf_level="2" f_per_stage="4"/>
|
||||
<port type="input" prefix="in" lib_name="I" size="1"/>
|
||||
<port type="output" prefix="out" lib_name="Z" size="1"/>
|
||||
</spice_model>
|
||||
<spice_model type="inv_buf" name="BUFFD1BWP" prefix="BUFFD1BWP" dump_explicit_port_map="true" is_default="0" verilog_netlist="VerilogNetlists/essential_gates.v">
|
||||
<design_technology type="cmos" topology="buffer" size="1" tapered="on" tap_buf_level="2" f_per_stage="4"/>
|
||||
<port type="input" prefix="in" lib_name="I" size="1"/>
|
||||
<port type="output" prefix="out" lib_name="Z" size="1"/>
|
||||
</spice_model>
|
||||
<spice_model type="inv_buf" name="buf4" prefix="buf4" is_default="0">
|
||||
<design_technology type="cmos" topology="buffer" size="3" tapered="on" tap_buf_level="2" f_per_stage="4"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
</spice_model>
|
||||
<spice_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="0">
|
||||
<design_technology type="cmos" topology="buffer" size="3" tapered="on" tap_buf_level="3" f_per_stage="4"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
</spice_model>
|
||||
<spice_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="1">
|
||||
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
|
||||
<input_buffer exist="off"/>
|
||||
<output_buffer exist="off"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="input" prefix="sel" size="1"/>
|
||||
<port type="input" prefix="selb" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
</spice_model>
|
||||
<spice_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="1">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="off"/>
|
||||
<output_buffer exist="off"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<wire_param model_type="pie" res_val="0" cap_val="0" level="1"/>
|
||||
<!-- model_type could be T, res_val and cap_val DON'T CARE -->
|
||||
</spice_model>
|
||||
<spice_model type="wire" name="direct_interc" prefix="direct_interc" is_default="1">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="off"/>
|
||||
<output_buffer exist="off"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<wire_param model_type="pie" res_val="0" cap_val="0" level="1"/>
|
||||
<!-- model_type could be T, res_val cap_val should be defined -->
|
||||
</spice_model>
|
||||
<spice_model type="mux" name="mux_1level" prefix="mux_1level" is_default="1" dump_structural_verilog="true">
|
||||
<!--design_technology type="cmos" structure="one-level"/-->
|
||||
<design_technology type="rram" ron="2e3" roff="30e6" wprog_set_nmos="1.5" wprog_reset_nmos="1.6" wprog_set_pmos="3" wprog_reset_pmos="3.2" structure="one-level" advanced_rram_design="true"/>
|
||||
<input_buffer exist="on" spice_model_name="INVTX1"/>
|
||||
<output_buffer exist="on" spice_model_name="INVD1BWP"/>
|
||||
<!--mux2to1 subckt_name="mux2to1"/-->
|
||||
<pass_gate_logic spice_model_name="TGATE"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="input" prefix="EN" size="1" is_global="true" default_val="0" is_config_enable="true"/>
|
||||
<port type="input" prefix="ENB" size="1" is_global="true" default_val="1" is_config_enable="true"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="1" spice_model_name="sram6T_rram"/>
|
||||
</spice_model>
|
||||
<spice_model type="mux" name="mux_1level_tapbuf4" prefix="mux_1level_tapbuf4" is_default="0" dump_structural_verilog="true">
|
||||
<!--design_technology type="cmos" structure="one-level"/-->
|
||||
<design_technology type="rram" ron="2e3" roff="30e6" wprog_set_nmos="1.5" wprog_reset_nmos="1.6" wprog_set_pmos="3" wprog_reset_pmos="3.2" structure="one-level" advanced_rram_design="true"/>
|
||||
<input_buffer exist="on" spice_model_name="INVTX1"/>
|
||||
<output_buffer exist="on" spice_model_name="tap_buf4"/>
|
||||
<!--mux2to1 subckt_name="mux2to1"/-->
|
||||
<pass_gate_logic spice_model_name="TGATE"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="input" prefix="EN" size="1" is_global="true" default_val="0" is_config_enable="true"/>
|
||||
<port type="input" prefix="ENB" size="1" is_global="true" default_val="1" is_config_enable="true"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="1" spice_model_name="sram6T_rram"/>
|
||||
</spice_model>
|
||||
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
|
||||
<spice_model type="ff" name="static_dff" prefix="dff" spice_netlist="/home/u1235811/Ganesh/OpenFPGA/vpr7_x2p/vpr/SpiceNetlists/ff.sp" verilog_netlist="VerilogNetlists/ff.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" spice_model_name="INVD1BWP"/>
|
||||
<output_buffer exist="on" spice_model_name="INVD1BWP"/>
|
||||
<pass_gate_logic spice_model_name="TGATE"/>
|
||||
<port type="input" prefix="D" size="1"/>
|
||||
<port type="input" prefix="Set" size="1" is_global="true" default_val="0" is_set="true"/>
|
||||
<port type="input" prefix="Reset" size="1" is_global="true" default_val="0" is_reset="true"/>
|
||||
<port type="output" prefix="Q" size="1"/>
|
||||
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
|
||||
</spice_model>
|
||||
<spice_model type="lut" name="lut6" prefix="lut6" dump_structural_verilog="true">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" spice_model_name="INVD1BWP"/>
|
||||
<output_buffer exist="on" spice_model_name="INVD1BWP"/>
|
||||
<lut_input_buffer exist="on" spice_model_name="BUFFD3BWP"/>
|
||||
<!-- <lut_intermediate_buffer exist="on" spice_model_name="BUFFD1BWP" location_map="-1-1-"/> -->
|
||||
<lut_input_inverter exist="on" spice_model_name="INVD3BWP"/>
|
||||
<pass_gate_logic spice_model_name="TGATE"/>
|
||||
<port type="input" prefix="in" size="6"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="64" spice_model_name="sram6T_rram" default_val="1"/>
|
||||
</spice_model>
|
||||
<spice_model type="sram" name="sram6T" prefix="sram" spice_netlist="/home/u1235811/Ganesh/OpenFPGA/vpr7_x2p/vpr/SpiceNetlists/sram.sp" verilog_netlist="VerilogNetlists/sram.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" spice_model_name="INVD1BWP"/>
|
||||
<output_buffer exist="on" spice_model_name="INVD1BWP"/>
|
||||
<pass_gate_logic spice_model_name="TGATE"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="2"/>
|
||||
</spice_model>
|
||||
<spice_model type="sram" name="sram6T_rram" prefix="nvsram" spice_netlist="/home/u1235811/Ganesh/OpenFPGA/vpr7_x2p/vpr/SpiceNetlists/sram.sp" verilog_netlist="VerilogNetlists/sram.v">
|
||||
<!--design_technology type="cmos"/-->
|
||||
<design_technology type="rram" ron="3e3" roff="1e6" wprog_set_nmos="1.5" wprog_reset_nmos="1.6" wprog_set_pmos="3" wprog_reset_pmos="3.2"/>
|
||||
<input_buffer exist="on" spice_model_name="INVD1BWP"/>
|
||||
<output_buffer exist="on" spice_model_name="INVD1BWP"/>
|
||||
<pass_gate_logic spice_model_name="TGATE"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="input" prefix="read" size="1" is_global="true" default_val="0" />
|
||||
<port type="input" prefix="nequalize" size="1" is_global="true" default_val="1" />
|
||||
<port type="output" prefix="out" size="2"/>
|
||||
<port type="bl" prefix="bl" size="3" default_val="0" inv_spice_model_name="INVD1BWP"/>
|
||||
<port type="wl" prefix="wl" size="3" default_val="0" inv_spice_model_name="INVD1BWP"/>
|
||||
</spice_model>
|
||||
<spice_model type="sram" name="sram6T_blwl" prefix="sram_blwl" spice_netlist="/home/u1235811/Ganesh/OpenFPGA/vpr7_x2p/vpr/SpiceNetlists/sram.sp" verilog_netlist="VerilogNetlists/sram.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" spice_model_name="INVD1BWP"/>
|
||||
<output_buffer exist="on" spice_model_name="INVD1BWP"/>
|
||||
<pass_gate_logic spice_model_name="TGATE"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="input" prefix="read" size="1" is_global="true" default_val="0" />
|
||||
<port type="input" prefix="nequalize" size="1" is_global="true" default_val="0" />
|
||||
<port type="output" prefix="out" size="2"/>
|
||||
<port type="bl" prefix="bl" size="1"/>
|
||||
<port type="wl" prefix="wl" size="1"/>
|
||||
</spice_model>
|
||||
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
|
||||
<spice_model type="sff" name="sc_ff" prefix="scff" spice_netlist="/home/u1235811/Ganesh/OpenFPGA/vpr7_x2p/vpr/SpiceNetlists/ff.sp" verilog_netlist="VerilogNetlists/ff.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" spice_model_name="INVD1BWP"/>
|
||||
<output_buffer exist="on" spice_model_name="INVD1BWP"/>
|
||||
<pass_gate_logic spice_model_name="TGATE"/>
|
||||
<port type="input" prefix="D" size="1"/>
|
||||
<port type="input" prefix="Set" size="1"/>
|
||||
<port type="input" prefix="Reset" size="1"/>
|
||||
<port type="output" prefix="Q" size="1"/>
|
||||
<port type="output" prefix="Qb" size="1"/>
|
||||
<port type="clock" prefix="clk" size="1"/>
|
||||
</spice_model>
|
||||
<spice_model type="iopad" name="iopad" prefix="iopad" spice_netlist="/home/u1235811/Ganesh/OpenFPGA/vpr7_x2p/vpr/SpiceNetlists/io.sp" verilog_netlist="VerilogNetlists/io.v">
|
||||
<!--design_technology type="cmos"/-->
|
||||
<design_technology type="rram" ron="3e3" roff="1e6" wprog_set_nmos="1.5" wprog_reset_nmos="1.6" wprog_set_pmos="3" wprog_reset_pmos="3.2"/>
|
||||
<input_buffer exist="on" spice_model_name="INVD1BWP"/>
|
||||
<output_buffer exist="on" spice_model_name="INVD1BWP"/>
|
||||
<pass_gate_logic spice_model_name="TGATE"/>
|
||||
<port type="inout" prefix="pad" size="1"/>
|
||||
<port type="sram" prefix="en" size="1" mode_select="true" spice_model_name="sram6T_rram" default_val="1"/>
|
||||
<port type="input" prefix="outpad" size="1"/>
|
||||
<port type="input" prefix="zin" size="1" is_global="true" default_val="0" />
|
||||
<port type="output" prefix="inpad" size="1"/>
|
||||
</spice_model>
|
||||
</module_spice_models>
|
||||
</spice_settings>
|
||||
<device>
|
||||
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
|
||||
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
|
||||
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
|
||||
lined up with Stratix IV.
|
||||
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
|
||||
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
|
||||
by 2.5x when looking up in Jeff's tables.
|
||||
The delay values are lined up with Stratix IV, which has an architecture similar to this
|
||||
proposed FPGA, and which is also 40 nm
|
||||
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
|
||||
4x minimum drive strength buffer. -->
|
||||
|
||||
<sizing R_minW_nmos="8926" R_minW_pmos="16067" ipin_mux_trans_size="3"/>
|
||||
<timing C_ipin_cblock="596e-18" T_ipin_cblock="45.54e-12"/>
|
||||
|
||||
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
|
||||
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
|
||||
-->
|
||||
<area grid_logic_tile_area="0"/>
|
||||
<!--sram area="6" organization="standalone" spice_model_name="sram6T"-->
|
||||
<!--sram area="6" organization="scan-chain" spice_model_name="sc_dff"-->
|
||||
<sram area="6">
|
||||
<verilog organization="memory-bank" spice_model_name="sram6T_rram" />
|
||||
<spice organization="standalone" spice_model_name="sram6T" />
|
||||
</sram>
|
||||
<chan_width_distr>
|
||||
<io width="1.000000"/>
|
||||
<x distr="uniform" peak="1.000000"/>
|
||||
<y distr="uniform" peak="1.000000"/>
|
||||
</chan_width_distr>
|
||||
<switch_block type="wilton" fs="3"/>
|
||||
</device>
|
||||
|
||||
<cblocks>
|
||||
<switch type="mux" name="cb_mux" R="0" Cin="596e-18" Cout="0" Tdel="45.54e-12" mux_trans_size="1.5" buf_size="4" spice_model_name="mux_1level_tapbuf4" structure="one-level" num_level="1">
|
||||
</switch>
|
||||
</cblocks>
|
||||
<switchlist>
|
||||
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
|
||||
book area formula. This means the mux transistors are about 5x minimum drive strength.
|
||||
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
|
||||
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
|
||||
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
|
||||
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||
2.5x when looking up in Jeff's tables.
|
||||
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
|
||||
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
|
||||
<switch type="mux" name="sb_mux_L4" R="106" Cin="596e-18" Cout="0e-15" Tdel="35.8e-12" mux_trans_size="1.5" buf_size="27.645901" spice_model_name="mux_1level_tapbuf4" structure="one-level" num_level="1">
|
||||
</switch>
|
||||
<switch type="mux" name="sb_mux_L2" R="121" Cin="596e-18" Cout="0e-15" Tdel="35.8e-12" mux_trans_size="1.5" buf_size="27.645901" spice_model_name="mux_1level_tapbuf4" structure="one-level" num_level="1">
|
||||
</switch>
|
||||
<switch type="mux" name="sb_mux_L1" R="147" Cin="596e-18" Cout="0e-15" Tdel="35.8e-12" mux_trans_size="1.5" buf_size="27.645901" spice_model_name="mux_1level_tapbuf4" structure="one-level" num_level="1">
|
||||
</switch>
|
||||
</switchlist>
|
||||
<segmentlist>
|
||||
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
|
||||
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
|
||||
<segment freq="0.4" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15" spice_model_name="chan_segment">
|
||||
<mux name="sb_mux_L4"/>
|
||||
<sb type="pattern">1 1 1 1 1</sb>
|
||||
<cb type="pattern">1 1 1 1</cb>
|
||||
</segment>
|
||||
<segment freq="0.3" length="2" type="unidir" Rmetal="101" Cmetal="22.5e-15" spice_model_name="chan_segment">
|
||||
<mux name="sb_mux_L4"/>
|
||||
<sb type="pattern">1 1 1</sb>
|
||||
<cb type="pattern">1 1</cb>
|
||||
</segment>
|
||||
<segment freq="0.3" length="1" type="unidir" Rmetal="101" Cmetal="22.5e-15" spice_model_name="chan_segment">
|
||||
<mux name="sb_mux_L4"/>
|
||||
<sb type="pattern">1 1</sb>
|
||||
<cb type="pattern">1</cb>
|
||||
</segment>
|
||||
</segmentlist>
|
||||
<!-- <directlist>
|
||||
</directlist> -->
|
||||
<!--switch_segment_patterns>
|
||||
<pattern type="unbuf_sb" seg_length="1" seg_type="unidir" pattern_length="2">
|
||||
<unbuf_mux name="1"/>
|
||||
<sb type ="pattern">0 1</sb>
|
||||
</pattern>
|
||||
</switch_segment_patterns-->
|
||||
|
||||
<complexblocklist>
|
||||
|
||||
<!-- Define I/O pads begin -->
|
||||
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
|
||||
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
|
||||
<pb_type name="io" capacity="8" area="0" idle_mode_name="inpad" physical_mode_name="io_phy">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
|
||||
<!-- physical design description -->
|
||||
<mode name="io_phy" disabled_in_packing="true">
|
||||
<pb_type name="iopad" blif_model=".subckt io" num_pb="1" spice_model_name="iopad" mode_bits="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="inpad" input="iopad.inpad" output="io.inpad">
|
||||
<delay_constant max="0e-11" in_port="iopad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
<direct name="outpad" input="io.outpad" output="iopad.outpad">
|
||||
<delay_constant max="0e-11" in_port="io.outpad" out_port="iopad.outpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
|
||||
<!-- IOs can operate as either inputs or outputs.§
|
||||
Delays below come from Ian Kuon. They are small, so they should be interpreted as
|
||||
the delays to and from registers in the I/O (and generally I/Os are registered
|
||||
today and that is when you timing analyze them.
|
||||
-->
|
||||
<mode name="inpad">
|
||||
<pb_type name="inpad" blif_model=".input" num_pb="1" physical_pb_type_name="iopad" mode_bits="1">
|
||||
<output name="inpad" num_pins="1" physical_mode_pin="inpad"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="inpad" input="inpad.inpad" output="io.inpad">
|
||||
<delay_constant max="0e-11" in_port="inpad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="outpad">
|
||||
<pb_type name="outpad" blif_model=".output" num_pb="1" physical_pb_type_name="iopad" mode_bits="0">
|
||||
<input name="outpad" num_pins="1" physical_mode_pin="outpad"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="outpad.outpad">
|
||||
<delay_constant max="0e-11" in_port="io.outpad" out_port="outpad.outpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<fc default_in_type="frac" default_in_val="0.15" default_out_type="frac" default_out_val="0.10"/>
|
||||
|
||||
<!-- IOs go on the periphery of the FPGA, for consistency,
|
||||
make it physically equivalent on all sides so that only one definition of I/Os is needed.
|
||||
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
|
||||
-->
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">io.outpad io.inpad</loc>
|
||||
<loc side="top">io.outpad io.inpad</loc>
|
||||
<loc side="right">io.outpad io.inpad</loc>
|
||||
<loc side="bottom">io.outpad io.inpad</loc>
|
||||
</pinlocations>
|
||||
|
||||
<!-- Place I/Os on the sides of the FPGA -->
|
||||
<gridlocations>
|
||||
<loc type="perimeter" priority="10"/>
|
||||
</gridlocations>
|
||||
|
||||
<power method="ignore"/>
|
||||
</pb_type>
|
||||
<!-- Define I/O pads ends -->
|
||||
|
||||
<!-- Define general purpose logic block (CLB) begin -->
|
||||
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
|
||||
area is 60 L^2 yields a tile area of 84375 MWTAs.
|
||||
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
|
||||
This means that only 37% of our area is in the general routing, and 63% is inside the logic
|
||||
block. Note that the crossbar / local interconnect is considered part of the logic block
|
||||
area in this analysis. That is a lower proportion of of routing area than most academics
|
||||
assume, but note that the total routing area really includes the crossbar, which would push
|
||||
routing area up significantly, we estimate into the ~70% range.
|
||||
-->
|
||||
<pb_type name="clb" area="53894" opin_to_cb="false">
|
||||
<pin_equivalence_auto_detect input_ports ="off" output_ports="off"/>
|
||||
<input name="I" num_pins="40" equivalent="true"/>
|
||||
<output name="O" num_pins="10" equivalent="false"/>
|
||||
<!--input name="I" num_pins="40" equivalent="true"/-->
|
||||
<!--output name="O" num_pins="20" equivalent="false"/-->
|
||||
<clock name="clk" num_pins="1"/>
|
||||
|
||||
<!-- Describe fracturable logic element.
|
||||
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
|
||||
The outputs of the fracturable logic element can be optionally registered
|
||||
For spice modeling: in each primitive pb_type, user should define a spice_model_name that linkes to the
|
||||
defined spice models
|
||||
-->
|
||||
<pb_type name="fle" num_pb="10" idle_mode_name="n1_lut6" physical_mode_name="n1_lut6">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- 6-LUT mode definition begin -->
|
||||
<mode name="n1_lut6">
|
||||
<!-- Define 6-LUT mode -->
|
||||
<pb_type name="ble6" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Define LUT -->
|
||||
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut" spice_model_name="lut6">
|
||||
<input name="in" num_pins="6" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
|
||||
127e-12
|
||||
127e-12
|
||||
127e-12
|
||||
127e-12
|
||||
127e-12
|
||||
127e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
|
||||
<!-- Define flip-flop -->
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop" spice_model_name="static_dff">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="29e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="16e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
|
||||
<direct name="direct2" input="lut6.out" output="ff.D">
|
||||
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
|
||||
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out" spice_model_name="mux_1level">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="42.24e-12" in_port="lut6.out" out_port="ble6.out" />
|
||||
<delay_constant max="42.24e-12" in_port="ff.Q" out_port="ble6.out" />
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in" output="ble6.in"/>
|
||||
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
|
||||
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- 6-LUT mode definition end -->
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
|
||||
The delays below come from Stratix IV. the delay through a connection block
|
||||
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
|
||||
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
|
||||
delay within the crossbar is 95 ps.
|
||||
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
|
||||
Since all our outputs LUT outputs go to a BLE output, and have a delay of
|
||||
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
|
||||
to get the part that should be marked on the crossbar. -->
|
||||
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in" spice_model_name="mux_1level">
|
||||
<delay_constant max="21.4e-12" in_port="clb.I" out_port="fle[9:0].in" />
|
||||
<delay_constant max="21.4e-12" in_port="fle[9:0].out" out_port="fle[9:0].in" />
|
||||
</complete>
|
||||
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
|
||||
</complete>
|
||||
|
||||
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
|
||||
naive specification).
|
||||
-->
|
||||
<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>
|
||||
<!--direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/-->
|
||||
<!--complete name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/-->
|
||||
</interconnect>
|
||||
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<fc default_in_type="frac" default_in_val="0.15" default_out_type="frac" default_out_val="0.10"/>
|
||||
|
||||
<!--pinlocations pattern="spread"/-->
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="top">clb.clk </loc>
|
||||
<loc side="right">clb.I[19:0] clb.O[4:0] </loc>
|
||||
<loc side="bottom">clb.I[39:20] clb.O[9:5] </loc>
|
||||
</pinlocations>
|
||||
|
||||
<!-- Place this general purpose logic block in any unspecified column -->
|
||||
<gridlocations>
|
||||
<loc type="fill" priority="1"/>
|
||||
</gridlocations>
|
||||
</pb_type>
|
||||
|
||||
</complexblocklist>
|
||||
<power>
|
||||
<local_interconnect C_wire="0"/>
|
||||
<mux_transistor_size mux_transistor_size="3"/>
|
||||
<FF_size FF_size="4"/>
|
||||
<LUT_transistor_size LUT_transistor_size="4"/>
|
||||
</power>
|
||||
<clocks>
|
||||
<clock buffer_size="auto" C_wire="0"/>
|
||||
</clocks>
|
||||
</architecture>
|
|
@ -0,0 +1,2 @@
|
|||
# Circuit Names, fixed routing channel width,
|
||||
PID/*.v, 120
|
|
@ -0,0 +1 @@
|
|||
lattice_ultra_example_source/
|
|
@ -0,0 +1,8 @@
|
|||
# Ignore everything
|
||||
*
|
||||
# But descend into directories
|
||||
!*/
|
||||
!.gitignore
|
||||
# Recursively allow files under subtree
|
||||
!/UG73-iCE40_Ultra_Barcode_Emulation/hardware/source/top_module/**
|
||||
!/PID_Controller/**
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,259 @@
|
|||
/*Carry look-ahead adder
|
||||
Author: Zhu Xu
|
||||
Email: m99a1@yahoo.cn
|
||||
*/
|
||||
|
||||
module operator_A(
|
||||
input A,
|
||||
input B,
|
||||
output P,
|
||||
output G
|
||||
);
|
||||
|
||||
assign P=A^B;
|
||||
assign G=A&B;
|
||||
|
||||
endmodule
|
||||
|
||||
module operator_B(
|
||||
input P,G,P1,G1,
|
||||
output Po,Go
|
||||
);
|
||||
|
||||
assign Po=P&P1;
|
||||
assign Go=G|(P&G1);
|
||||
|
||||
endmodule
|
||||
|
||||
module operator_C(
|
||||
input P,G,G1,
|
||||
output Go
|
||||
);
|
||||
|
||||
assign Go=G|(P&G1);
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
/* 32-bit prefix-2 Han-Carlson adder
|
||||
stage 0: Number of Generation=32, NP=32, NOA=32, NOB=0, NOC=0.
|
||||
stage 1: NG=16, NP=15, NOA=0, NOB=15, NOC=1.
|
||||
stage 2: NG=16, NP=14, NOA=0, NOB=14, NOC=1.
|
||||
stage 3: NG=16, NP=12, NOA=0, NOB=12, NOC=2.
|
||||
stage 4: NG=16, NP=8, NOA=0, NOB=8, NOC=4.
|
||||
stage 5: NG=16, NP=0, NOA=0, NOB=0, NOC=8.
|
||||
stage 6; NG=32, NP=0, NOA=0, NOB=0, NOC=15.
|
||||
*/
|
||||
module adder_32bit(
|
||||
input [31:0]i_a,i_b,
|
||||
input i_c,
|
||||
output [31:0]o_s,
|
||||
output o_c
|
||||
);
|
||||
|
||||
//stage 0
|
||||
wire [31:0]P0,G0;
|
||||
operator_A operator_A_0(i_a[0],i_b[0],P0[0],G0[0]);
|
||||
operator_A operator_A_1(i_a[1],i_b[1],P0[1],G0[1]);
|
||||
operator_A operator_A_2(i_a[2],i_b[2],P0[2],G0[2]);
|
||||
operator_A operator_A_3(i_a[3],i_b[3],P0[3],G0[3]);
|
||||
operator_A operator_A_4(i_a[4],i_b[4],P0[4],G0[4]);
|
||||
operator_A operator_A_5(i_a[5],i_b[5],P0[5],G0[5]);
|
||||
operator_A operator_A_6(i_a[6],i_b[6],P0[6],G0[6]);
|
||||
operator_A operator_A_7(i_a[7],i_b[7],P0[7],G0[7]);
|
||||
operator_A operator_A_8(i_a[8],i_b[8],P0[8],G0[8]);
|
||||
operator_A operator_A_9(i_a[9],i_b[9],P0[9],G0[9]);
|
||||
operator_A operator_A_10(i_a[10],i_b[10],P0[10],G0[10]);
|
||||
operator_A operator_A_11(i_a[11],i_b[11],P0[11],G0[11]);
|
||||
operator_A operator_A_12(i_a[12],i_b[12],P0[12],G0[12]);
|
||||
operator_A operator_A_13(i_a[13],i_b[13],P0[13],G0[13]);
|
||||
operator_A operator_A_14(i_a[14],i_b[14],P0[14],G0[14]);
|
||||
operator_A operator_A_15(i_a[15],i_b[15],P0[15],G0[15]);
|
||||
operator_A operator_A_16(i_a[16],i_b[16],P0[16],G0[16]);
|
||||
operator_A operator_A_17(i_a[17],i_b[17],P0[17],G0[17]);
|
||||
operator_A operator_A_18(i_a[18],i_b[18],P0[18],G0[18]);
|
||||
operator_A operator_A_19(i_a[19],i_b[19],P0[19],G0[19]);
|
||||
operator_A operator_A_20(i_a[20],i_b[20],P0[20],G0[20]);
|
||||
operator_A operator_A_21(i_a[21],i_b[21],P0[21],G0[21]);
|
||||
operator_A operator_A_22(i_a[22],i_b[22],P0[22],G0[22]);
|
||||
operator_A operator_A_23(i_a[23],i_b[23],P0[23],G0[23]);
|
||||
operator_A operator_A_24(i_a[24],i_b[24],P0[24],G0[24]);
|
||||
operator_A operator_A_25(i_a[25],i_b[25],P0[25],G0[25]);
|
||||
operator_A operator_A_26(i_a[26],i_b[26],P0[26],G0[26]);
|
||||
operator_A operator_A_27(i_a[27],i_b[27],P0[27],G0[27]);
|
||||
operator_A operator_A_28(i_a[28],i_b[28],P0[28],G0[28]);
|
||||
operator_A operator_A_29(i_a[29],i_b[29],P0[29],G0[29]);
|
||||
operator_A operator_A_30(i_a[30],i_b[30],P0[30],G0[30]);
|
||||
operator_A operator_A_31(i_a[31],i_b[31],P0[31],G0[31]);
|
||||
|
||||
//stage 1
|
||||
wire [15:0]G1;
|
||||
wire [15:1]P1;
|
||||
operator_C operator_C_stage_1_0(P0[0],G0[0],i_c,G1[0]);
|
||||
operator_B operator_B_stage_1_1(P0[2],G0[2],P0[1],G0[1],P1[1],G1[1]);
|
||||
operator_B operator_B_stage_1_2(P0[4],G0[4],P0[3],G0[3],P1[2],G1[2]);
|
||||
operator_B operator_B_stage_1_3(P0[6],G0[6],P0[5],G0[5],P1[3],G1[3]);
|
||||
operator_B operator_B_stage_1_4(P0[8],G0[8],P0[7],G0[7],P1[4],G1[4]);
|
||||
operator_B operator_B_stage_1_5(P0[10],G0[10],P0[9],G0[9],P1[5],G1[5]);
|
||||
operator_B operator_B_stage_1_6(P0[12],G0[12],P0[11],G0[11],P1[6],G1[6]);
|
||||
operator_B operator_B_stage_1_7(P0[14],G0[14],P0[13],G0[13],P1[7],G1[7]);
|
||||
operator_B operator_B_stage_1_8(P0[16],G0[16],P0[15],G0[15],P1[8],G1[8]);
|
||||
operator_B operator_B_stage_1_9(P0[18],G0[18],P0[17],G0[17],P1[9],G1[9]);
|
||||
operator_B operator_B_stage_1_10(P0[20],G0[20],P0[19],G0[19],P1[10],G1[10]);
|
||||
operator_B operator_B_stage_1_11(P0[22],G0[22],P0[21],G0[21],P1[11],G1[11]);
|
||||
operator_B operator_B_stage_1_12(P0[24],G0[24],P0[23],G0[23],P1[12],G1[12]);
|
||||
operator_B operator_B_stage_1_13(P0[26],G0[26],P0[25],G0[25],P1[13],G1[13]);
|
||||
operator_B operator_B_stage_1_14(P0[28],G0[28],P0[27],G0[27],P1[14],G1[14]);
|
||||
operator_B operator_B_stage_1_15(P0[30],G0[30],P0[29],G0[29],P1[15],G1[15]);
|
||||
|
||||
|
||||
|
||||
//stage 2
|
||||
wire [15:0]G2;
|
||||
wire [15:2]P2;
|
||||
assign G2[0]=G1[0];
|
||||
operator_C operator_C_stage_2_1(P1[1],G1[1],G1[0],G2[1]);
|
||||
operator_B operator_B_stage_2_2(P1[2], G1[2],P1[1],G1[1],P2[2],G2[2]);
|
||||
operator_B operator_B_stage_2_3(P1[3], G1[3],P1[2],G1[2],P2[3],G2[3]);
|
||||
operator_B operator_B_stage_2_4(P1[4], G1[4],P1[3],G1[3],P2[4],G2[4]);
|
||||
operator_B operator_B_stage_2_5(P1[5], G1[5],P1[4],G1[4],P2[5],G2[5]);
|
||||
operator_B operator_B_stage_2_6(P1[6], G1[6],P1[5],G1[5],P2[6],G2[6]);
|
||||
operator_B operator_B_stage_2_7(P1[7], G1[7],P1[6],G1[6],P2[7],G2[7]);
|
||||
operator_B operator_B_stage_2_8(P1[8], G1[8],P1[7],G1[7],P2[8],G2[8]);
|
||||
operator_B operator_B_stage_2_9(P1[9], G1[9],P1[8],G1[8],P2[9],G2[9]);
|
||||
operator_B operator_B_stage_2_10(P1[10], G1[10],P1[9],G1[9],P2[10],G2[10]);
|
||||
operator_B operator_B_stage_2_11(P1[11], G1[11],P1[10],G1[10],P2[11],G2[11]);
|
||||
operator_B operator_B_stage_2_12(P1[12], G1[12],P1[11],G1[11],P2[12],G2[12]);
|
||||
operator_B operator_B_stage_2_13(P1[13], G1[13],P1[12],G1[12],P2[13],G2[13]);
|
||||
operator_B operator_B_stage_2_14(P1[14], G1[14],P1[13],G1[13],P2[14],G2[14]);
|
||||
operator_B operator_B_stage_2_15(P1[15], G1[15],P1[14],G1[14],P2[15],G2[15]);
|
||||
|
||||
//stage 3
|
||||
wire [15:0]G3;
|
||||
wire [15:4]P3;
|
||||
assign G3[0]=G2[0];
|
||||
assign G3[1]=G2[1];
|
||||
operator_C operator_C_stage_3_2(P2[2],G2[2],G2[0],G3[2]);
|
||||
operator_C operator_C_stage_3_3(P2[3],G2[3],G2[1],G3[3]);
|
||||
operator_B operator_B_stage_3_4(P2[4], G2[4],P2[2],G2[2],P3[4],G3[4]);
|
||||
operator_B operator_B_stage_3_5(P2[5], G2[5],P2[3],G2[3],P3[5],G3[5]);
|
||||
operator_B operator_B_stage_3_6(P2[6], G2[6],P2[4],G2[4],P3[6],G3[6]);
|
||||
operator_B operator_B_stage_3_7(P2[7], G2[7],P2[5],G2[5],P3[7],G3[7]);
|
||||
operator_B operator_B_stage_3_8(P2[8], G2[8],P2[6],G2[6],P3[8],G3[8]);
|
||||
operator_B operator_B_stage_3_9(P2[9], G2[9],P2[7],G2[7],P3[9],G3[9]);
|
||||
operator_B operator_B_stage_3_10(P2[10], G2[10],P2[8],G2[8],P3[10],G3[10]);
|
||||
operator_B operator_B_stage_3_11(P2[11], G2[11],P2[9],G2[9],P3[11],G3[11]);
|
||||
operator_B operator_B_stage_3_12(P2[12], G2[12],P2[10],G2[10],P3[12],G3[12]);
|
||||
operator_B operator_B_stage_3_13(P2[13], G2[13],P2[11],G2[11],P3[13],G3[13]);
|
||||
operator_B operator_B_stage_3_14(P2[14], G2[14],P2[12],G2[12],P3[14],G3[14]);
|
||||
operator_B operator_B_stage_3_15(P2[15], G2[15],P2[13],G2[13],P3[15],G3[15]);
|
||||
|
||||
//stage 4
|
||||
wire [15:0]G4;
|
||||
wire [15:8]P4;
|
||||
assign G4[0]=G3[0];
|
||||
assign G4[1]=G3[1];
|
||||
assign G4[2]=G3[2];
|
||||
assign G4[3]=G3[3];
|
||||
operator_C operator_C_stage_4_4(P3[4],G3[4],G3[0],G4[4]);
|
||||
operator_C operator_C_stage_4_5(P3[5],G3[5],G3[1],G4[5]);
|
||||
operator_C operator_C_stage_4_6(P3[6],G3[6],G3[2],G4[6]);
|
||||
operator_C operator_C_stage_4_7(P3[7],G3[7],G3[3],G4[7]);
|
||||
operator_B operator_B_stage_4_8(P3[8], G3[8],P3[4],G3[4],P4[8],G4[8]);
|
||||
operator_B operator_B_stage_4_9(P3[9], G3[9],P3[5],G3[5],P4[9],G4[9]);
|
||||
operator_B operator_B_stage_4_10(P3[10], G3[10],P3[6],G3[6],P4[10],G4[10]);
|
||||
operator_B operator_B_stage_4_11(P3[11], G3[11],P3[7],G3[7],P4[11],G4[11]);
|
||||
operator_B operator_B_stage_4_12(P3[12], G3[12],P3[8],G3[8],P4[12],G4[12]);
|
||||
operator_B operator_B_stage_4_13(P3[13], G3[13],P3[9],G3[9],P4[13],G4[13]);
|
||||
operator_B operator_B_stage_4_14(P3[14], G3[14],P3[10],G3[10],P4[14],G4[14]);
|
||||
operator_B operator_B_stage_4_15(P3[15], G3[15],P3[11],G3[11],P4[15],G4[15]);
|
||||
|
||||
//stage 5
|
||||
wire [15:0]G5;
|
||||
assign G5[0]=G4[0];
|
||||
assign G5[1]=G4[1];
|
||||
assign G5[2]=G4[2];
|
||||
assign G5[3]=G4[3];
|
||||
assign G5[4]=G4[4];
|
||||
assign G5[5]=G4[5];
|
||||
assign G5[6]=G4[6];
|
||||
assign G5[7]=G4[7];
|
||||
operator_C operator_C_stage_5_8(P4[8],G4[8],G4[0],G5[8]);
|
||||
operator_C operator_C_stage_5_9(P4[9],G4[9],G4[1],G5[9]);
|
||||
operator_C operator_C_stage_5_10(P4[10],G4[10],G4[2],G5[10]);
|
||||
operator_C operator_C_stage_5_11(P4[11],G4[11],G4[3],G5[11]);
|
||||
operator_C operator_C_stage_5_12(P4[12],G4[12],G4[4],G5[12]);
|
||||
operator_C operator_C_stage_5_13(P4[13],G4[13],G4[5],G5[13]);
|
||||
operator_C operator_C_stage_5_14(P4[14],G4[14],G4[6],G5[14]);
|
||||
operator_C operator_C_stage_5_15(P4[15],G4[15],G4[7],G5[15]);
|
||||
|
||||
//stage 6
|
||||
wire [31:0]G6;
|
||||
assign G6[0]=G5[0];
|
||||
assign G6[2]=G5[1];
|
||||
assign G6[4]=G5[2];
|
||||
assign G6[6]=G5[3];
|
||||
assign G6[8]=G5[4];
|
||||
assign G6[10]=G5[5];
|
||||
assign G6[12]=G5[6];
|
||||
assign G6[14]=G5[7];
|
||||
assign G6[16]=G5[8];
|
||||
assign G6[18]=G5[9];
|
||||
assign G6[20]=G5[10];
|
||||
assign G6[22]=G5[11];
|
||||
assign G6[24]=G5[12];
|
||||
assign G6[26]=G5[13];
|
||||
assign G6[28]=G5[14];
|
||||
assign G6[30]=G5[15];
|
||||
operator_C operator_C_stage_6_0(P0[1],G0[1],G5[0],G6[1]);
|
||||
operator_C operator_C_stage_6_1(P0[3],G0[3],G5[1],G6[3]);
|
||||
operator_C operator_C_stage_6_2(P0[5],G0[5],G5[2],G6[5]);
|
||||
operator_C operator_C_stage_6_3(P0[7],G0[7],G5[3],G6[7]);
|
||||
operator_C operator_C_stage_6_4(P0[9],G0[9],G5[4],G6[9]);
|
||||
operator_C operator_C_stage_6_5(P0[11],G0[11],G5[5],G6[11]);
|
||||
operator_C operator_C_stage_6_6(P0[13],G0[13],G5[6],G6[13]);
|
||||
operator_C operator_C_stage_6_7(P0[15],G0[15],G5[7],G6[15]);
|
||||
operator_C operator_C_stage_6_8(P0[17],G0[17],G5[8],G6[17]);
|
||||
operator_C operator_C_stage_6_9(P0[19],G0[19],G5[9],G6[19]);
|
||||
operator_C operator_C_stage_6_10(P0[21],G0[21],G5[10],G6[21]);
|
||||
operator_C operator_C_stage_6_11(P0[23],G0[23],G5[11],G6[23]);
|
||||
operator_C operator_C_stage_6_12(P0[25],G0[25],G5[12],G6[25]);
|
||||
operator_C operator_C_stage_6_13(P0[27],G0[27],G5[13],G6[27]);
|
||||
operator_C operator_C_stage_6_14(P0[29],G0[29],G5[14],G6[29]);
|
||||
operator_C operator_C_stage_6_15(P0[31],G0[31],G5[15],G6[31]);
|
||||
|
||||
assign o_s[0]=P0[0]^i_c;
|
||||
assign o_s[1]=P0[1]^G6[0];
|
||||
assign o_s[2]=P0[2]^G6[1];
|
||||
assign o_s[3]=P0[3]^G6[2];
|
||||
assign o_s[4]=P0[4]^G6[3];
|
||||
assign o_s[5]=P0[5]^G6[4];
|
||||
assign o_s[6]=P0[6]^G6[5];
|
||||
assign o_s[7]=P0[7]^G6[6];
|
||||
assign o_s[8]=P0[8]^G6[7];
|
||||
assign o_s[9]=P0[9]^G6[8];
|
||||
assign o_s[10]=P0[10]^G6[9];
|
||||
assign o_s[11]=P0[11]^G6[10];
|
||||
assign o_s[12]=P0[12]^G6[11];
|
||||
assign o_s[13]=P0[13]^G6[12];
|
||||
assign o_s[14]=P0[14]^G6[13];
|
||||
assign o_s[15]=P0[15]^G6[14];
|
||||
assign o_s[16]=P0[16]^G6[15];
|
||||
assign o_s[17]=P0[17]^G6[16];
|
||||
assign o_s[18]=P0[18]^G6[17];
|
||||
assign o_s[19]=P0[19]^G6[18];
|
||||
assign o_s[20]=P0[20]^G6[19];
|
||||
assign o_s[21]=P0[21]^G6[20];
|
||||
assign o_s[22]=P0[22]^G6[21];
|
||||
assign o_s[23]=P0[23]^G6[22];
|
||||
assign o_s[24]=P0[24]^G6[23];
|
||||
assign o_s[25]=P0[25]^G6[24];
|
||||
assign o_s[26]=P0[26]^G6[25];
|
||||
assign o_s[27]=P0[27]^G6[26];
|
||||
assign o_s[28]=P0[28]^G6[27];
|
||||
assign o_s[29]=P0[29]^G6[28];
|
||||
assign o_s[30]=P0[30]^G6[29];
|
||||
assign o_s[31]=P0[31]^G6[30];
|
||||
assign o_c=G6[31];
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,434 @@
|
|||
/* PID controller
|
||||
|
||||
sigma=Ki*e(n)+sigma
|
||||
u(n)=(Kp+Kd)*e(n)+sigma+Kd*(-e(n-1))
|
||||
|
||||
Data width of Wishbone slave port can be can be toggled between 64-bit, 32-bit and 16-bit.
|
||||
Address width of Wishbone slave port can be can be modified by changing parameter adr_wb_nb.
|
||||
|
||||
Wishbone compliant
|
||||
Work as Wishbone slave, support Classic standard SINGLE/BLOCK READ/WRITE Cycle
|
||||
|
||||
registers or wires
|
||||
[15:0]kp,ki,kd,sp,pv; can be both read and written
|
||||
[15:0]kpd; read only
|
||||
[15:0]err[0:1]; read only
|
||||
[15:0]mr,md; not accessable
|
||||
[31:0]p,b; not accessable
|
||||
[31:0]un,sigma; read only
|
||||
RS write 0 to RS will reset err[0], OF, un and sigma
|
||||
|
||||
|
||||
|
||||
[4:0]of; overflow register, read only through Wishbone interface, address: 0x40
|
||||
of[0]==1 : kpd overflow
|
||||
of[1]==1 : err[0] overflow
|
||||
of[2]==1 : err[1] overflow
|
||||
of[3]==1 : un overflow
|
||||
of[4]==1 : sigma overflow
|
||||
[0:15]rl; read lock, when asserted corelated reagister can not be read through Wishbone interface
|
||||
[0:7]wl; write lock, when asserted corelated reagister can not be written through Wishbone interface
|
||||
|
||||
|
||||
|
||||
*/
|
||||
|
||||
`include "PID_defines.v"
|
||||
|
||||
module PID #(
|
||||
`ifdef wb_16bit
|
||||
parameter wb_nb=16,
|
||||
`endif
|
||||
`ifdef wb_32bit
|
||||
parameter wb_nb=32,
|
||||
`endif
|
||||
`ifdef wb_64bit
|
||||
parameter wb_nb=64,
|
||||
`endif
|
||||
adr_wb_nb=16,
|
||||
kp_adr = 0,
|
||||
ki_adr = 1,
|
||||
kd_adr = 2,
|
||||
sp_adr = 3,
|
||||
pv_adr = 4,
|
||||
kpd_adr = 5,
|
||||
err_0_adr = 6,
|
||||
err_1_adr = 7,
|
||||
un_adr = 8,
|
||||
sigma_adr = 9,
|
||||
of_adr = 10,
|
||||
RS_adr = 11
|
||||
)(
|
||||
input i_clk,
|
||||
input i_rst, //reset when high
|
||||
//Wishbone Slave port
|
||||
input i_wb_cyc,
|
||||
input i_wb_stb,
|
||||
input i_wb_we,
|
||||
input [adr_wb_nb-1:0]i_wb_adr,
|
||||
input [wb_nb-1:0]i_wb_data,
|
||||
output o_wb_ack,
|
||||
output [wb_nb-1:0]o_wb_data,
|
||||
|
||||
//u(n) output
|
||||
output [31:0]o_un,
|
||||
output o_valid
|
||||
);
|
||||
|
||||
|
||||
|
||||
reg [15:0]kp,ki,kd,sp,pv;
|
||||
reg wla,wlb; // write locks
|
||||
wire wlRS;
|
||||
assign wlRS=wla|wlb;
|
||||
wire [0:7]wl={{3{wla}},{2{wlb}},3'h0};
|
||||
|
||||
reg wack; //write acknowledged
|
||||
|
||||
wire [2:0]adr; // address for write
|
||||
`ifdef wb_16bit
|
||||
assign adr=i_wb_adr[3:1];
|
||||
`endif
|
||||
`ifdef wb_32bit
|
||||
assign adr=i_wb_adr[4:2];
|
||||
`endif
|
||||
`ifdef wb_64bit
|
||||
assign adr=i_wb_adr[5:3];
|
||||
`endif
|
||||
|
||||
wire [3:0]adr_1; // address for read
|
||||
`ifdef wb_32bit
|
||||
assign adr_1=i_wb_adr[5:2];
|
||||
`endif
|
||||
`ifdef wb_16bit
|
||||
assign adr_1=i_wb_adr[4:1];
|
||||
`endif
|
||||
`ifdef wb_64bit
|
||||
assign adr_1=i_wb_adr[6:3];
|
||||
`endif
|
||||
|
||||
|
||||
wire we; // write enable
|
||||
assign we=i_wb_cyc&i_wb_we&i_wb_stb;
|
||||
wire re; //read enable
|
||||
assign re=i_wb_cyc&(~i_wb_we)&i_wb_stb;
|
||||
|
||||
reg state_0; //state machine No.1's state register
|
||||
|
||||
wire adr_check_1; // A '1' means address is within the range of adr_1
|
||||
`ifdef wb_32bit
|
||||
assign adr_check_1=i_wb_adr[adr_wb_nb-1:6]==0;
|
||||
`endif
|
||||
`ifdef wb_16bit
|
||||
assign adr_check_1=i_wb_adr[adr_wb_nb-1:5]==0;
|
||||
`endif
|
||||
`ifdef wb_64bit
|
||||
assign adr_check_1=i_wb_adr[adr_wb_nb-1:7]==0;
|
||||
`endif
|
||||
|
||||
wire adr_check; // A '1' means address is within the range of adr
|
||||
`ifdef wb_16bit
|
||||
assign adr_check=i_wb_adr[4]==0&&adr_check_1;
|
||||
`endif
|
||||
`ifdef wb_32bit
|
||||
assign adr_check=i_wb_adr[5]==0&&adr_check_1;
|
||||
`endif
|
||||
`ifdef wb_64bit
|
||||
assign adr_check=i_wb_adr[6]==0&&adr_check_1;
|
||||
`endif
|
||||
|
||||
//state machine No.1
|
||||
reg RS;
|
||||
always@(posedge i_clk or posedge i_rst)
|
||||
if(i_rst)begin
|
||||
state_0<=0;
|
||||
wack<=0;
|
||||
kp<=0;
|
||||
ki<=0;
|
||||
kd<=0;
|
||||
sp<=0;
|
||||
pv<=0;
|
||||
RS<=0;
|
||||
end
|
||||
else begin
|
||||
if(wack&&(!i_wb_stb)) wack<=0;
|
||||
if(RS)RS<=0;
|
||||
case(state_0)
|
||||
0: begin
|
||||
if(we&&(!wack)) state_0<=1;
|
||||
end
|
||||
1: begin
|
||||
if(adr_check)begin
|
||||
if(!wl[adr])begin
|
||||
wack<=1;
|
||||
state_0<=0;
|
||||
case(adr)
|
||||
0: begin
|
||||
kp<=i_wb_data[15:0];
|
||||
end
|
||||
1: begin
|
||||
ki<=i_wb_data[15:0];
|
||||
end
|
||||
2: begin
|
||||
kd<=i_wb_data[15:0];
|
||||
end
|
||||
3: begin
|
||||
sp<=i_wb_data[15:0];
|
||||
end
|
||||
4: begin
|
||||
pv<=i_wb_data[15:0];
|
||||
end
|
||||
endcase
|
||||
|
||||
end
|
||||
end
|
||||
else if((adr_1==RS_adr)&&(!wlRS)&&(i_wb_data==0))begin
|
||||
wack<=1;
|
||||
state_0<=0;
|
||||
RS<=1;
|
||||
end
|
||||
else begin
|
||||
wack<=1;
|
||||
state_0<=0;
|
||||
end
|
||||
end
|
||||
endcase
|
||||
end
|
||||
|
||||
|
||||
//state machine No.2
|
||||
reg [9:0]state_1;
|
||||
|
||||
wire update_kpd;
|
||||
assign update_kpd=wack&&(~adr[2])&&(~adr[0])&&adr_check; //adr==0||adr==2
|
||||
|
||||
wire update_esu; //update e(n), sigma and u(n)
|
||||
assign update_esu=wack&&(adr==4)&&adr_check;
|
||||
|
||||
reg rla; // read locks
|
||||
reg rlb;
|
||||
|
||||
|
||||
reg [4:0]of;
|
||||
reg [15:0]kpd;
|
||||
reg [15:0]err[0:1];
|
||||
|
||||
wire [15:0]mr,md;
|
||||
|
||||
reg [31:0]p;
|
||||
reg [31:0]a,sigma,un;
|
||||
|
||||
reg cout;
|
||||
wire cin;
|
||||
wire [31:0]sum;
|
||||
wire [31:0]product;
|
||||
|
||||
reg start; //start signal for multiplier
|
||||
|
||||
reg [1:0]mr_index;
|
||||
reg [1:0]md_index;
|
||||
assign mr= mr_index==1?kpd:
|
||||
mr_index==2?kd:ki;
|
||||
assign md= md_index==2?err[1]:
|
||||
md_index==1?err[0]:sum[15:0];
|
||||
|
||||
|
||||
wire of_addition[0:1];
|
||||
assign of_addition[0]=(p[15]&&a[15]&&(!sum[15]))||((!p[15])&&(!a[15])&&sum[15]);
|
||||
assign of_addition[1]=(p[31]&&a[31]&&(!sum[31]))||((!p[31])&&(!a[31])&&sum[31]);
|
||||
|
||||
always@(posedge i_clk or posedge i_rst)
|
||||
if(i_rst)begin
|
||||
state_1<=12'b000000000001;
|
||||
wla<=0;
|
||||
wlb<=0;
|
||||
rla<=0;
|
||||
rlb<=0;
|
||||
of<=0;
|
||||
kpd<=0;
|
||||
err[0]<=0;
|
||||
err[1]<=0;
|
||||
p<=0;
|
||||
a<=0;
|
||||
sigma<=0;
|
||||
un<=0;
|
||||
start<=0;
|
||||
mr_index<=0;
|
||||
md_index<=0;
|
||||
cout<=0;
|
||||
end
|
||||
else begin
|
||||
case(state_1)
|
||||
10'b0000000001: begin
|
||||
if(update_kpd)begin
|
||||
state_1<=10'b0000000010;
|
||||
wla<=1;
|
||||
rla<=1;
|
||||
end
|
||||
else if(update_esu)begin
|
||||
state_1<=10'b0000001000;
|
||||
wla<=1;
|
||||
wlb<=1;
|
||||
rlb<=1;
|
||||
end
|
||||
else if(RS)begin //start a new sequance of U(n)
|
||||
un<=0;
|
||||
sigma<=0;
|
||||
of<=0;
|
||||
err[0]<=0;
|
||||
end
|
||||
end
|
||||
10'b0000000010: begin
|
||||
p<={{16{kp[15]}},kp};
|
||||
a<={{16{kd[15]}},kd};
|
||||
state_1<=10'b0000000100;
|
||||
end
|
||||
10'b0000000100: begin
|
||||
kpd<=sum[15:0];
|
||||
wla<=0;
|
||||
rla<=0;
|
||||
of[0]<=of_addition[0];
|
||||
state_1<=10'b0000000001;
|
||||
end
|
||||
10'b0000001000: begin
|
||||
p<={{16{sp[15]}},sp};
|
||||
a<={{16{~pv[15]}},~pv};
|
||||
cout<=1;
|
||||
start<=1; // start calculate err0 * ki
|
||||
state_1<=10'b0000010000;
|
||||
end
|
||||
10'b0000010000: begin
|
||||
err[0]<=sum[15:0];
|
||||
of[1]<=of_addition[0];
|
||||
of[2]<=of[1];
|
||||
p<={{16{~err[0][15]}},~err[0]};
|
||||
a<={31'b0,1'b1};
|
||||
cout<=0;
|
||||
mr_index<=1; // start calculate err0 * kpd
|
||||
md_index<=1;
|
||||
state_1<=10'b0000100000;
|
||||
end
|
||||
10'b0000100000: begin
|
||||
err[1]<=sum[15:0];
|
||||
mr_index<=2; // start calculate err1 * kd
|
||||
md_index<=2;
|
||||
state_1<=10'b0001000000;
|
||||
end
|
||||
10'b0001000000: begin
|
||||
mr_index<=0;
|
||||
md_index<=0;
|
||||
start<=0;
|
||||
p<=product; // start calculate err0*ki + sigma_last
|
||||
a<=sigma;
|
||||
state_1<=10'b0010000000;
|
||||
end
|
||||
10'b0010000000: begin
|
||||
a<=sum; // start calculate err0*kpd + sigma_recent
|
||||
sigma<=sum;
|
||||
of[3]<=of[4]|of_addition[1];
|
||||
of[4]<=of[4]|of_addition[1];
|
||||
p<=product;
|
||||
state_1<=10'b0100000000;
|
||||
end
|
||||
10'b0100000000: begin
|
||||
a<=sum; // start calculate err0*kpd + sigma_recent+err1*kd
|
||||
of[3]<=of[3]|of_addition[1];
|
||||
p<=product;
|
||||
state_1<=10'b1000000000;
|
||||
end
|
||||
10'b1000000000: begin
|
||||
un<=sum;
|
||||
of[3]<=of[3]|of_addition[1];
|
||||
state_1<=10'b0000000001;
|
||||
wla<=0;
|
||||
wlb<=0;
|
||||
rlb<=0;
|
||||
end
|
||||
endcase
|
||||
end
|
||||
|
||||
|
||||
wire ready;
|
||||
multiplier_16x16bit_pipelined multiplier_16x16bit_pipelined(
|
||||
i_clk,
|
||||
~i_rst,
|
||||
start,
|
||||
md,
|
||||
mr,
|
||||
product,
|
||||
ready
|
||||
);
|
||||
|
||||
adder_32bit adder_32bit_0(
|
||||
a,
|
||||
p,
|
||||
cout,
|
||||
sum,
|
||||
cin
|
||||
);
|
||||
|
||||
|
||||
wire [wb_nb-1:0]rdata[0:15]; //wishbone read data array
|
||||
`ifdef wb_16bit
|
||||
assign rdata[0]=kp;
|
||||
assign rdata[1]=ki;
|
||||
assign rdata[2]=kd;
|
||||
assign rdata[3]=sp;
|
||||
assign rdata[4]=pv;
|
||||
assign rdata[5]=kpd;
|
||||
assign rdata[6]=err[0];
|
||||
assign rdata[7]=err[1];
|
||||
assign rdata[8]=un[15:0];
|
||||
assign rdata[9]=sigma[15:0];
|
||||
assign rdata[10]={11'b0,of};
|
||||
`endif
|
||||
|
||||
`ifdef wb_32bit
|
||||
assign rdata[0]={{16{kp[15]}},kp};
|
||||
assign rdata[1]={{16{ki[15]}},ki};
|
||||
assign rdata[2]={{16{kd[15]}},kd};
|
||||
assign rdata[3]={{16{sp[15]}},sp};
|
||||
assign rdata[4]={{16{pv[15]}},pv};
|
||||
assign rdata[5]={{16{kpd[15]}},kpd};
|
||||
assign rdata[6]={{16{err[0][15]}},err[0]};
|
||||
assign rdata[7]={{16{err[1][15]}},err[1]};
|
||||
assign rdata[8]=un;
|
||||
assign rdata[9]=sigma;
|
||||
assign rdata[10]={27'b0,of};
|
||||
`endif
|
||||
|
||||
`ifdef wb_64bit
|
||||
assign rdata[0]={{48{kp[15]}},kp};
|
||||
assign rdata[1]={{48{ki[15]}},ki};
|
||||
assign rdata[2]={{48{kd[15]}},kd};
|
||||
assign rdata[3]={{48{sp[15]}},sp};
|
||||
assign rdata[4]={{48{pv[15]}},pv};
|
||||
assign rdata[5]={{48{kpd[15]}},kpd};
|
||||
assign rdata[6]={{48{err[0][15]}},err[0]};
|
||||
assign rdata[7]={{48{err[1][15]}},err[1]};
|
||||
assign rdata[8]={{32{un[31]}},un};
|
||||
assign rdata[9]={{32{sigma[31]}},sigma};
|
||||
assign rdata[10]={59'b0,of};
|
||||
`endif
|
||||
|
||||
assign rdata[11]=0;
|
||||
assign rdata[12]=0;
|
||||
assign rdata[13]=0;
|
||||
assign rdata[14]=0;
|
||||
assign rdata[15]=0;
|
||||
|
||||
|
||||
wire [0:15]rl;
|
||||
assign rl={5'b0,rla,{4{rlb}},rla|rlb,5'b0};
|
||||
|
||||
wire rack; // wishbone read acknowledged
|
||||
assign rack=(re&adr_check_1&(~rl[adr_1]))|(re&(~adr_check_1));
|
||||
|
||||
assign o_wb_ack=(wack|rack)&i_wb_stb;
|
||||
|
||||
assign o_wb_data=adr_check_1?rdata[adr_1]:0;
|
||||
assign o_un=un;
|
||||
assign o_valid=~rlb;
|
||||
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,8 @@
|
|||
//`define wb_16bit
|
||||
`define wb_32bit
|
||||
//`define wb_64bit
|
||||
|
||||
|
||||
//`define PID_test
|
||||
|
||||
//`define PID_direct_test
|
|
@ -0,0 +1,37 @@
|
|||
/*Booth Encoder
|
||||
Author: Zhu Xu
|
||||
Email: m99a1@yahoo.cn
|
||||
*/
|
||||
module booth_radix4(
|
||||
input [2:0]codes,
|
||||
output zero,
|
||||
output double,
|
||||
output negation
|
||||
);
|
||||
|
||||
wire A;
|
||||
assign A=codes[2];
|
||||
wire B;
|
||||
assign B=codes[1];
|
||||
wire C;
|
||||
assign C=codes[0];
|
||||
wire nB,nC,nA;
|
||||
assign nB=~B;
|
||||
assign nC=~C;
|
||||
assign nA=~A;
|
||||
|
||||
wire BC;
|
||||
assign BC=B&C;
|
||||
wire nBnC;
|
||||
assign nBnC=nB&nC;
|
||||
wire nBanC;
|
||||
assign nBanC=nB|nC;
|
||||
|
||||
assign double=(nBnC&A)|(BC&nA);
|
||||
assign negation=A&nBanC;
|
||||
assign zero=(A&BC)|(nA&nBnC);
|
||||
|
||||
|
||||
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,207 @@
|
|||
//==================================================================
|
||||
// >>>>>>>>>>>>>>>>>>>>>>> COPYRIGHT NOTICE <<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
// ------------------------------------------------------------------
|
||||
// Copyright (c) 2014 by Lattice Semiconductor Corporation
|
||||
// ALL RIGHTS RESERVED
|
||||
// ------------------------------------------------------------------
|
||||
//
|
||||
// Permission:
|
||||
//
|
||||
// Lattice SG Pte. Ltd. grants permission to use this code for use
|
||||
// in synthesis for any Lattice programmable logic product. Other
|
||||
// use of this code, including the selling or duplication of any
|
||||
// portion is strictly prohibited.
|
||||
|
||||
//
|
||||
// Disclaimer:
|
||||
//
|
||||
// This VHDL or Verilog source code is intended as a design reference
|
||||
// which illustrates how these types of functions can be implemented.
|
||||
// It is the user's responsibility to verify their design for
|
||||
// consistency and functionality through the use of formal
|
||||
// verification methods. Lattice provides no warranty
|
||||
// regarding the use or functionality of this code.
|
||||
//
|
||||
// --------------------------------------------------------------------
|
||||
//
|
||||
// Lattice SG Pte. Ltd.
|
||||
// 101 Thomson Road, United Square #07-02
|
||||
// Singapore 307591
|
||||
//
|
||||
//
|
||||
// TEL: 1-800-Lattice (USA and Canada)
|
||||
// +65-6631-2000 (Singapore)
|
||||
// +1-503-268-8001 (other locations)
|
||||
//
|
||||
// web: http://www.latticesemi.com/
|
||||
// email: techsupport@latticesemi.com
|
||||
//
|
||||
// --------------------------------------------------------------------
|
||||
//
|
||||
|
||||
|
||||
module delay_gen_ihd_ipd_isd(
|
||||
input clk,
|
||||
input rst,
|
||||
input start_stop,
|
||||
input [15:0] isd_val,
|
||||
input [15:0] ipd_val,
|
||||
input config_reg_done,
|
||||
input symbol_shift_done,
|
||||
input packet_shift_done,
|
||||
input hop_shift_done,
|
||||
output reg isd_delay_en,
|
||||
output reg ipd_delay_en
|
||||
);
|
||||
|
||||
reg [15:0] isd_val_temp;
|
||||
reg [15:0] ipd_val_temp;
|
||||
reg [15:0] isd_count;
|
||||
reg [15:0] ipd_count;
|
||||
wire [20:0] max_count;
|
||||
wire [20:0] max_count_pkt /* synthesis syn_multstyle = logic */;
|
||||
reg clk_count,clk_count_pkt;
|
||||
reg count_done,count_done_pkt;
|
||||
|
||||
parameter const_fact=20;
|
||||
assign max_count=isd_val_temp * const_fact;
|
||||
assign max_count_pkt=ipd_val_temp * const_fact;
|
||||
|
||||
//wire count_enable,count_enable_pkt;
|
||||
reg count_enable,count_enable_pkt;
|
||||
//wire config_done;
|
||||
//assign config_done= !rst_n ? 0 : config_reg_done ? 1 : config_done; //orignal
|
||||
//assign count_enable= rst ? 0 : count_done ? 0 : symbol_shift_done ? 1 : count_enable; //orignal
|
||||
//assign count_enable_pkt= rst ? 0 : count_done_pkt ? 0 : (packet_shift_done || hop_shift_done) ? 1 : count_enable_pkt;
|
||||
|
||||
//assign isd_delay_en=symbol_shift_done ? 1 : (isd_count==max_count-1) :
|
||||
|
||||
///////**********modified 11/feb/2014*************** /////////
|
||||
always @(posedge clk or posedge rst) begin
|
||||
if(rst || !start_stop) begin
|
||||
count_enable=0;
|
||||
end
|
||||
else begin
|
||||
if(count_done)
|
||||
count_enable=0;
|
||||
else if(symbol_shift_done)
|
||||
count_enable=1;
|
||||
else
|
||||
count_enable=count_enable;
|
||||
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge clk or posedge rst) begin
|
||||
if(rst || !start_stop) begin
|
||||
count_enable_pkt=0;
|
||||
end
|
||||
else begin
|
||||
if(count_done_pkt)
|
||||
count_enable_pkt=0;
|
||||
else if(packet_shift_done || hop_shift_done)
|
||||
count_enable_pkt=1;
|
||||
else
|
||||
count_enable_pkt=count_enable_pkt;
|
||||
end
|
||||
end
|
||||
|
||||
/////////////////******************************//////////
|
||||
|
||||
|
||||
|
||||
|
||||
///////////////////////symbol////////////////////////////////////
|
||||
always @(posedge clk or posedge rst) begin
|
||||
if(rst || !start_stop) begin
|
||||
isd_count<=0;
|
||||
count_done<=0;
|
||||
isd_delay_en<=0;
|
||||
end
|
||||
else begin
|
||||
count_done<=0;
|
||||
if(count_enable) begin
|
||||
if(isd_count==max_count) begin
|
||||
isd_count<=0;
|
||||
count_done<=1;
|
||||
isd_delay_en<=0;
|
||||
end
|
||||
else begin
|
||||
isd_delay_en<=1;
|
||||
isd_count<=isd_count+1;
|
||||
end
|
||||
end
|
||||
else begin
|
||||
isd_delay_en<=0;
|
||||
isd_count<=0;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge clk or posedge rst) begin
|
||||
if(rst || !start_stop) begin
|
||||
isd_val_temp<=0;
|
||||
clk_count<=0;
|
||||
end
|
||||
else begin
|
||||
if(!config_reg_done) begin
|
||||
isd_val_temp<=isd_val;
|
||||
clk_count<=0;
|
||||
end
|
||||
else if(config_reg_done) begin
|
||||
clk_count<=clk_count+1;
|
||||
isd_val_temp<=isd_val;
|
||||
end
|
||||
else begin
|
||||
isd_val_temp<=isd_val_temp;
|
||||
end
|
||||
end
|
||||
end
|
||||
///////////////packet//////////////////////
|
||||
always @(posedge clk or posedge rst) begin
|
||||
if(rst || !start_stop) begin
|
||||
ipd_count<=0;
|
||||
count_done_pkt<=0;
|
||||
ipd_delay_en<=0;
|
||||
end
|
||||
else begin
|
||||
count_done_pkt<=0;
|
||||
if(count_enable_pkt) begin
|
||||
if(ipd_count==max_count_pkt) begin
|
||||
ipd_count<=0;
|
||||
count_done_pkt<=1;
|
||||
ipd_delay_en<=0;
|
||||
end
|
||||
else begin
|
||||
ipd_delay_en<=1;
|
||||
ipd_count<=ipd_count+1;
|
||||
end
|
||||
end
|
||||
else begin
|
||||
ipd_delay_en<=0;
|
||||
ipd_count<=0;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge clk or posedge rst) begin
|
||||
if(rst || !start_stop) begin
|
||||
ipd_val_temp<=0;
|
||||
clk_count_pkt<=0;
|
||||
end
|
||||
else begin
|
||||
if(!config_reg_done) begin
|
||||
ipd_val_temp<=ipd_val;
|
||||
clk_count_pkt<=0;
|
||||
end
|
||||
else if(config_reg_done) begin
|
||||
clk_count_pkt<=clk_count_pkt+1;
|
||||
ipd_val_temp<=ipd_val;
|
||||
end
|
||||
else begin // if(!config_reg_done) begin
|
||||
ipd_val_temp<=ipd_val_temp;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,369 @@
|
|||
//==================================================================
|
||||
// >>>>>>>>>>>>>>>>>>>>>>> COPYRIGHT NOTICE <<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
// ------------------------------------------------------------------
|
||||
// Copyright (c) 2014 by Lattice Semiconductor Corporation
|
||||
// ALL RIGHTS RESERVED
|
||||
// ------------------------------------------------------------------
|
||||
//
|
||||
// Permission:
|
||||
//
|
||||
// Lattice SG Pte. Ltd. grants permission to use this code for use
|
||||
// in synthesis for any Lattice programmable logic product. Other
|
||||
// use of this code, including the selling or duplication of any
|
||||
// portion is strictly prohibited.
|
||||
|
||||
//
|
||||
// Disclaimer:
|
||||
//
|
||||
// This VHDL or Verilog source code is intended as a design reference
|
||||
// which illustrates how these types of functions can be implemented.
|
||||
// It is the user's responsibility to verify their design for
|
||||
// consistency and functionality through the use of formal
|
||||
// verification methods. Lattice provides no warranty
|
||||
// regarding the use or functionality of this code.
|
||||
//
|
||||
// --------------------------------------------------------------------
|
||||
//
|
||||
// Lattice SG Pte. Ltd.
|
||||
// 101 Thomson Road, United Square #07-02
|
||||
// Singapore 307591
|
||||
//
|
||||
//
|
||||
// TEL: 1-800-Lattice (USA and Canada)
|
||||
// +65-6631-2000 (Singapore)
|
||||
// +1-503-268-8001 (other locations)
|
||||
//
|
||||
// web: http://www.latticesemi.com/
|
||||
// email: techsupport@latticesemi.com
|
||||
//
|
||||
// --------------------------------------------------------------------
|
||||
//
|
||||
|
||||
|
||||
|
||||
/***********************************************************************
|
||||
* *
|
||||
* EFB REGISTER SET *
|
||||
* *
|
||||
***********************************************************************/
|
||||
|
||||
|
||||
`define MICO_EFB_I2C_CR 8'h08
|
||||
`define MICO_EFB_I2C_CMDR 8'h09
|
||||
`define MICO_EFB_I2C_BLOR 8'h0a
|
||||
`define MICO_EFB_I2C_BHIR 8'h0b
|
||||
`define MICO_EFB_I2C_TXDR 8'h0d
|
||||
`define MICO_EFB_I2C_SR 8'h0c
|
||||
`define MICO_EFB_I2C_GCDR 8'h0f
|
||||
`define MICO_EFB_I2C_RXDR 8'h0e
|
||||
`define MICO_EFB_I2C_IRQSR 8'h06
|
||||
`define MICO_EFB_I2C_IRQENR 8'h09
|
||||
|
||||
/***********************************************************************
|
||||
* *
|
||||
* EFB I2C CONTROLLER PHYSICAL DEVICE SPECIFIC INFORMATION *
|
||||
* *
|
||||
***********************************************************************/
|
||||
|
||||
|
||||
|
||||
// Control Register Bit Masks
|
||||
`define MICO_EFB_I2C_CR_I2CEN 8'h80
|
||||
`define MICO_EFB_I2C_CR_GCEN 8'h40
|
||||
`define MICO_EFB_I2C_CR_WKUPEN 8'h20
|
||||
// Status Register Bit Masks
|
||||
`define MICO_EFB_I2C_SR_TIP 8'h80
|
||||
`define MICO_EFB_I2C_SR_BUSY 8'h40
|
||||
`define MICO_EFB_I2C_SR_RARC 8'h20
|
||||
`define MICO_EFB_I2C_SR_SRW 8'h10
|
||||
`define MICO_EFB_I2C_SR_ARBL 8'h08
|
||||
`define MICO_EFB_I2C_SR_TRRDY 8'h04
|
||||
`define MICO_EFB_I2C_SR_TROE 8'h02
|
||||
`define MICO_EFB_I2C_SR_HGC 8'h01
|
||||
// Command Register Bit Masks
|
||||
`define MICO_EFB_I2C_CMDR_STA 8'h80
|
||||
`define MICO_EFB_I2C_CMDR_STO 8'h40
|
||||
`define MICO_EFB_I2C_CMDR_RD 8'h20
|
||||
`define MICO_EFB_I2C_CMDR_WR 8'h10
|
||||
`define MICO_EFB_I2C_CMDR_NACK 8'h08
|
||||
`define MICO_EFB_I2C_CMDR_CKSDIS 8'h04
|
||||
|
||||
|
||||
/***********************************************************************
|
||||
* *
|
||||
* CODE SPECIFIC *
|
||||
* *
|
||||
***********************************************************************/
|
||||
|
||||
`define ALL_ZERO 8'h00
|
||||
`define READ 1'b0
|
||||
`define READ 1'b0
|
||||
`define HIGH 1'b1
|
||||
`define WRITE 1'b1
|
||||
`define LOW 1'b0
|
||||
`define READ_STATUS 1'b0
|
||||
`define READ_DATA 1'b0
|
||||
|
||||
/***********************************************************************
|
||||
* *
|
||||
* State Machine Variables *
|
||||
* *
|
||||
***********************************************************************/
|
||||
|
||||
`define state0 8'd00
|
||||
`define state1 8'd01
|
||||
`define state2 8'd02
|
||||
`define state3 8'd03
|
||||
`define state4 8'd04
|
||||
`define state5 8'd05
|
||||
`define state6 8'd06
|
||||
`define state7 8'd07
|
||||
`define state8 8'd08
|
||||
`define state9 8'd09
|
||||
`define state10 8'd10
|
||||
`define state11 8'd11
|
||||
`define state12 8'd12
|
||||
`define state13 8'd13
|
||||
`define state14 8'd14
|
||||
`define state15 8'd15
|
||||
`define state16 8'd16
|
||||
`define state17 8'd17
|
||||
`define state18 8'd18
|
||||
`define state19 8'd19
|
||||
`define state20 8'd20
|
||||
`define state21 8'd21
|
||||
`define state22 8'd22
|
||||
`define state23 8'd23
|
||||
`define state24 8'd24
|
||||
`define state25 8'd25
|
||||
`define state26 8'd26
|
||||
`define state27 8'd27
|
||||
`define state28 8'd28
|
||||
`define state29 8'd29
|
||||
`define state30 8'd30
|
||||
`define state31 8'd31
|
||||
`define state32 8'd32
|
||||
`define state33 8'd33
|
||||
`define state34 8'd34
|
||||
`define state35 8'd35
|
||||
`define state36 8'd36
|
||||
`define state37 8'd37
|
||||
`define state38 8'd38
|
||||
`define state39 8'd39
|
||||
`define state40 8'd40
|
||||
`define state41 8'd41
|
||||
`define state42 8'd42
|
||||
`define state43 8'd43
|
||||
`define state44 8'd44
|
||||
`define state45 8'd45
|
||||
`define state46 8'd46
|
||||
`define state47 8'd47
|
||||
`define state48 8'd48
|
||||
`define state49 8'd49
|
||||
`define state50 8'd50
|
||||
`define state51 8'd51
|
||||
`define state52 8'd52
|
||||
`define state53 8'd53
|
||||
`define state54 8'd54
|
||||
`define state55 8'd55
|
||||
`define state56 8'd56
|
||||
`define state57 8'd57
|
||||
`define state58 8'd58
|
||||
`define state59 8'd59
|
||||
`define state60 8'd60
|
||||
`define state61 8'd61
|
||||
`define state62 8'd62
|
||||
`define state63 8'd63
|
||||
`define state64 8'd64
|
||||
`define state65 8'd65
|
||||
`define state66 8'd66
|
||||
`define state67 8'd67
|
||||
`define state68 8'd68
|
||||
`define state69 8'd69
|
||||
`define state70 8'd70
|
||||
`define state71 8'd71
|
||||
`define state72 8'd72
|
||||
`define state73 8'd73
|
||||
`define state74 8'd74
|
||||
`define state75 8'd75
|
||||
`define state76 8'd76
|
||||
`define state77 8'd77
|
||||
`define state78 8'd78
|
||||
`define state79 8'd79
|
||||
`define state80 8'd80
|
||||
`define state81 8'd81
|
||||
`define state82 8'd82
|
||||
`define state83 8'd83
|
||||
`define state84 8'd84
|
||||
`define state85 8'd85
|
||||
`define state86 8'd86
|
||||
`define state87 8'd87
|
||||
`define state88 8'd88
|
||||
`define state89 8'd89
|
||||
`define state90 8'd90
|
||||
`define state91 8'd91
|
||||
`define state92 8'd92
|
||||
`define state93 8'd93
|
||||
`define state94 8'd94
|
||||
`define state95 8'd95
|
||||
`define state96 8'd96
|
||||
`define state97 8'd97
|
||||
`define state98 8'd98
|
||||
`define state99 8'd99
|
||||
`define state100 8'd100
|
||||
`define state101 8'd101
|
||||
`define state102 8'd102
|
||||
`define state103 8'd103
|
||||
`define state104 8'd104
|
||||
`define state105 8'd105
|
||||
`define state106 8'd106
|
||||
`define state107 8'd107
|
||||
`define state108 8'd108
|
||||
`define state109 8'd109
|
||||
`define state110 8'd110
|
||||
`define state111 8'd111
|
||||
`define state112 8'd112
|
||||
`define state113 8'd113
|
||||
`define state114 8'd114
|
||||
`define state115 8'd115
|
||||
`define state116 8'd116
|
||||
`define state117 8'd117
|
||||
`define state118 8'd118
|
||||
`define state119 8'd119
|
||||
`define state120 8'd120
|
||||
`define state121 8'd121
|
||||
`define state122 8'd122
|
||||
`define state123 8'd123
|
||||
`define state124 8'd124
|
||||
`define state125 8'd125
|
||||
`define state126 8'd126
|
||||
`define state127 8'd127
|
||||
`define state128 8'd128
|
||||
`define state129 8'd129
|
||||
`define state130 8'd130
|
||||
`define state131 8'd131
|
||||
`define state132 8'd132
|
||||
`define state133 8'd133
|
||||
`define state134 8'd134
|
||||
`define state135 8'd135
|
||||
`define state136 8'd136
|
||||
`define state137 8'd137
|
||||
`define state138 8'd138
|
||||
`define state139 8'd139
|
||||
`define state140 8'd140
|
||||
`define state141 8'd141
|
||||
`define state142 8'd142
|
||||
`define state143 8'd143
|
||||
`define state144 8'd144
|
||||
`define state145 8'd145
|
||||
`define state146 8'd146
|
||||
`define state147 8'd147
|
||||
`define state148 8'd148
|
||||
`define state149 8'd149
|
||||
`define state150 8'd150
|
||||
`define state151 8'd151
|
||||
`define state152 8'd152
|
||||
`define state153 8'd153
|
||||
`define state154 8'd154
|
||||
`define state155 8'd155
|
||||
`define state156 8'd156
|
||||
`define state157 8'd157
|
||||
`define state158 8'd158
|
||||
`define state159 8'd159
|
||||
`define state160 8'd160
|
||||
`define state161 8'd161
|
||||
`define state162 8'd162
|
||||
`define state163 8'd163
|
||||
`define state164 8'd164
|
||||
`define state165 8'd165
|
||||
`define state166 8'd166
|
||||
`define state167 8'd167
|
||||
`define state168 8'd168
|
||||
`define state169 8'd169
|
||||
`define state170 8'd170
|
||||
`define state171 8'd171
|
||||
`define state172 8'd172
|
||||
`define state173 8'd173
|
||||
`define state174 8'd174
|
||||
`define state175 8'd175
|
||||
`define state176 8'd176
|
||||
`define state177 8'd177
|
||||
`define state178 8'd178
|
||||
`define state179 8'd179
|
||||
`define state180 8'd180
|
||||
`define state181 8'd181
|
||||
`define state182 8'd182
|
||||
`define state183 8'd183
|
||||
`define state184 8'd184
|
||||
`define state185 8'd185
|
||||
`define state186 8'd186
|
||||
`define state187 8'd187
|
||||
`define state188 8'd188
|
||||
`define state189 8'd189
|
||||
`define state190 8'd190
|
||||
`define state191 8'd191
|
||||
`define state192 8'd192
|
||||
`define state193 8'd193
|
||||
`define state194 8'd194
|
||||
`define state195 8'd195
|
||||
`define state196 8'd196
|
||||
`define state197 8'd197
|
||||
`define state198 8'd198
|
||||
`define state199 8'd199
|
||||
`define state200 8'd200
|
||||
`define state201 8'd201
|
||||
`define state202 8'd202
|
||||
`define state203 8'd203
|
||||
`define state204 8'd204
|
||||
`define state205 8'd205
|
||||
`define state206 8'd206
|
||||
`define state207 8'd207
|
||||
`define state208 8'd208
|
||||
`define state209 8'd209
|
||||
`define state210 8'd210
|
||||
`define state211 8'd211
|
||||
`define state212 8'd212
|
||||
`define state213 8'd213
|
||||
`define state214 8'd214
|
||||
`define state215 8'd215
|
||||
`define state216 8'd216
|
||||
`define state217 8'd217
|
||||
`define state218 8'd218
|
||||
`define state219 8'd219
|
||||
`define state220 8'd220
|
||||
`define state221 8'd221
|
||||
`define state222 8'd222
|
||||
`define state223 8'd223
|
||||
`define state224 8'd224
|
||||
`define state225 8'd225
|
||||
`define state226 8'd226
|
||||
`define state227 8'd227
|
||||
`define state228 8'd228
|
||||
`define state229 8'd229
|
||||
`define state230 8'd230
|
||||
`define state231 8'd231
|
||||
`define state232 8'd232
|
||||
`define state233 8'd233
|
||||
`define state234 8'd234
|
||||
`define state235 8'd235
|
||||
`define state236 8'd236
|
||||
`define state237 8'd237
|
||||
`define state238 8'd238
|
||||
`define state239 8'd239
|
||||
`define state240 8'd240
|
||||
`define state241 8'd241
|
||||
`define state242 8'd242
|
||||
`define state243 8'd243
|
||||
`define state244 8'd244
|
||||
`define state245 8'd245
|
||||
`define state246 8'd246
|
||||
`define state247 8'd247
|
||||
`define state248 8'd248
|
||||
`define state249 8'd249
|
||||
`define state250 8'd250
|
||||
`define state251 8'd251
|
||||
`define state252 8'd252
|
||||
`define state253 8'd253
|
||||
`define state254 8'd254
|
||||
`define state255 8'd255
|
||||
|
|
@ -0,0 +1,649 @@
|
|||
//==================================================================
|
||||
// >>>>>>>>>>>>>>>>>>>>>>> COPYRIGHT NOTICE <<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
// ------------------------------------------------------------------
|
||||
// Copyright (c) 2014 by Lattice Semiconductor Corporation
|
||||
// ALL RIGHTS RESERVED
|
||||
// ------------------------------------------------------------------
|
||||
//
|
||||
// Permission:
|
||||
//
|
||||
// Lattice SG Pte. Ltd. grants permission to use this code for use
|
||||
// in synthesis for any Lattice programmable logic product. Other
|
||||
// use of this code, including the selling or duplication of any
|
||||
// portion is strictly prohibited.
|
||||
|
||||
//
|
||||
// Disclaimer:
|
||||
//
|
||||
// This VHDL or Verilog source code is intended as a design reference
|
||||
// which illustrates how these types of functions can be implemented.
|
||||
// It is the user's responsibility to verify their design for
|
||||
// consistency and functionality through the use of formal
|
||||
// verification methods. Lattice provides no warranty
|
||||
// regarding the use or functionality of this code.
|
||||
//
|
||||
// --------------------------------------------------------------------
|
||||
//
|
||||
// Lattice SG Pte. Ltd.
|
||||
// 101 Thomson Road, United Square #07-02
|
||||
// Singapore 307591
|
||||
//
|
||||
//
|
||||
// TEL: 1-800-Lattice (USA and Canada)
|
||||
// +65-6631-2000 (Singapore)
|
||||
// +1-503-268-8001 (other locations)
|
||||
//
|
||||
// web: http://www.latticesemi.com/
|
||||
// email: techsupport@latticesemi.com
|
||||
//
|
||||
// --------------------------------------------------------------------
|
||||
//
|
||||
|
||||
`include "i2c_defines.v"
|
||||
`include "i2c_new_reg.v"
|
||||
`timescale 1 ns / 1 ns
|
||||
|
||||
|
||||
module serialInterface (/*AUTOARG*/
|
||||
// Outputs
|
||||
dataOut, regAddr, sdaOut, writeEn, readEn, i2c_start,
|
||||
// Inputs
|
||||
clk, dataIn, rst, scl, sdaIn
|
||||
);
|
||||
input clk;
|
||||
input [7:0] dataIn;
|
||||
input rst;
|
||||
input scl;
|
||||
input sdaIn;
|
||||
output [7:0] dataOut;
|
||||
output [7:0] regAddr;
|
||||
output sdaOut;
|
||||
output writeEn;
|
||||
output readEn;
|
||||
output i2c_start;
|
||||
|
||||
// I2C_SLAVE_INIT_ADDR: Upper Bits <9:2> can be changed. Lower bits <1:0> are fixed.
|
||||
// For I2C Hard IP located in Upper Left <1:0> must be set to "01".
|
||||
// For I2C Hard IP located in Upper Right <1:0> must be set to "10".
|
||||
parameter I2C_SLAVE_INIT_ADDR = "0b1111100001"; //Upper Left
|
||||
//parameter I2C_SLAVE_INIT_ADDR = "0b1111100010"; //Upper Right
|
||||
|
||||
// BUS_ADDR74: Fixed value. SBADRI [7:4] bits also should match with this value to
|
||||
// activate the IP.
|
||||
// For I2C Hard IP located in Upper Left [7:4] must be set to "0001".
|
||||
// For I2C Hard IP located in Upper Right [7:4] must be set to "0011".
|
||||
parameter BUS_ADDR74_STRING = "0b0001"; //Upper Left
|
||||
//parameter BUS_ADDR74_STRING = "0b0011"; //Upper Right
|
||||
|
||||
// These are for the "OR" function with "wb_adr_i". Note that bits [7:4] are copies
|
||||
// of BUS_ADDR74_STRING.
|
||||
parameter BUS_ADDR74 = 8'b0001_0000; //Upper Left
|
||||
//parameter BUS_ADDR74 = 8'b0011_0000; //Upper Right
|
||||
|
||||
reg [7:0] regAddr;
|
||||
reg writeEn;
|
||||
wire [7:0] dataOut;
|
||||
reg i2c_start;
|
||||
|
||||
/*
|
||||
* System bus interface signals
|
||||
*/
|
||||
reg [7:0] wb_dat_i;
|
||||
reg wb_stb_i;
|
||||
reg [7:0] wb_adr_i;
|
||||
reg wb_we_i;
|
||||
wire [7:0] wb_dat_o;
|
||||
wire wb_ack_o;
|
||||
/*
|
||||
* Data Read and Write Register
|
||||
*/
|
||||
reg [7:0] temp0;
|
||||
reg [7:0] temp1;
|
||||
reg [7:0] temp2;
|
||||
reg [7:0] temp3;
|
||||
reg [7:0] n_temp0;
|
||||
reg [7:0] n_temp1;
|
||||
reg [7:0] n_temp2;
|
||||
reg [7:0] n_temp3;
|
||||
reg readEn;
|
||||
|
||||
|
||||
/*
|
||||
* i2c Module Instanitiation
|
||||
*/
|
||||
|
||||
|
||||
i2c UUT1 (
|
||||
.wb_clk_i (clk),
|
||||
.wb_dat_i (wb_dat_i),
|
||||
.wb_stb_i (wb_stb_i),
|
||||
.wb_adr_i (wb_adr_i | BUS_ADDR74),
|
||||
.wb_we_i (wb_we_i),
|
||||
.wb_dat_o (wb_dat_o),
|
||||
.wb_ack_o (wb_ack_o),
|
||||
.i2c_irqo ( ),
|
||||
.i2c_scl (scl),
|
||||
.i2c_sda (sdaOut),
|
||||
.i2c_sda_in (sdaIn),
|
||||
.rst_i(rst)
|
||||
);
|
||||
|
||||
defparam UUT1.I2C_SLAVE_INIT_ADDR = I2C_SLAVE_INIT_ADDR;
|
||||
defparam UUT1.BUS_ADDR74_STRING = BUS_ADDR74_STRING;
|
||||
|
||||
/*
|
||||
* Signal & wire Declartion
|
||||
*/
|
||||
reg efb_flag;
|
||||
reg n_efb_flag;
|
||||
reg [7:0] n_wb_dat_i;
|
||||
reg n_wb_stb_i;
|
||||
reg [7:0] n_wb_adr_i;
|
||||
reg n_wb_we_i;
|
||||
reg [7:0] c_state;
|
||||
reg [7:0] n_state;
|
||||
reg n_count_en;
|
||||
reg count_en;
|
||||
wire invalid_command = 0;
|
||||
|
||||
/*
|
||||
* Output generation
|
||||
*/
|
||||
|
||||
assign dataOut = temp3;
|
||||
|
||||
always @(posedge clk or posedge rst)begin
|
||||
if (rst)begin
|
||||
writeEn <= 0;
|
||||
readEn <= 0;
|
||||
end else begin
|
||||
if(c_state == `state14)begin
|
||||
writeEn <= 1'b1;
|
||||
end else begin
|
||||
writeEn <= 1'b0;
|
||||
end
|
||||
|
||||
if(c_state == `state15)begin
|
||||
readEn <= 1'b1;
|
||||
end else if (c_state == `state13) begin //**
|
||||
if (n_temp2 & (`MICO_EFB_I2C_SR_SRW)) begin
|
||||
readEn <= 1'b1;
|
||||
end else begin
|
||||
readEn <= 1'b0;
|
||||
end
|
||||
end else begin
|
||||
readEn <= 1'b0;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge clk or posedge rst)begin
|
||||
if (rst)begin
|
||||
regAddr <= 0;
|
||||
end else begin
|
||||
if(c_state == `state2)begin
|
||||
regAddr <= 8'd0;
|
||||
end else if(c_state == `state9)begin
|
||||
regAddr <= temp1;
|
||||
//end else if(writeEn || readEn)begin
|
||||
// regAddr <= regAddr + 1;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
//slave start detect
|
||||
always @(posedge clk or posedge rst) begin
|
||||
if (rst) begin
|
||||
i2c_start <= 0;
|
||||
end else begin
|
||||
if (c_state == `state12) begin
|
||||
i2c_start <= 0;
|
||||
end else if (c_state == `state9) begin
|
||||
i2c_start <= 1;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
/*
|
||||
* Main state machine
|
||||
*/
|
||||
always @ (posedge clk or posedge rst) begin
|
||||
if(rst) begin
|
||||
wb_dat_i <= 8'h00;
|
||||
wb_stb_i <= 1'b0 ;
|
||||
wb_adr_i <= 8'h00;
|
||||
wb_we_i <= 1'b0;
|
||||
end else begin
|
||||
wb_dat_i <= #1 n_wb_dat_i;
|
||||
wb_stb_i <= #1 n_wb_stb_i;
|
||||
wb_adr_i <= #1 n_wb_adr_i;
|
||||
wb_we_i <= #1 n_wb_we_i ;
|
||||
end
|
||||
end
|
||||
|
||||
always @ (posedge clk or posedge rst) begin
|
||||
if(rst) begin
|
||||
c_state <= 10'h000;
|
||||
efb_flag <= 1'b0 ;
|
||||
count_en <= 1'b0;
|
||||
end else begin
|
||||
c_state <= n_state ;
|
||||
efb_flag <= n_efb_flag;
|
||||
count_en <= n_count_en;
|
||||
end
|
||||
end
|
||||
|
||||
always @ (posedge clk or posedge rst) begin
|
||||
if(rst) begin
|
||||
temp0 <= 8'h00 ;
|
||||
temp1 <= 8'h00 ;
|
||||
temp2 <= 8'h00 ;
|
||||
temp3 <= 8'h00 ;
|
||||
end else begin
|
||||
temp0 <= n_temp0 ;
|
||||
temp1 <= n_temp1 ;
|
||||
temp2 <= n_temp2 ;
|
||||
temp3 <= n_temp3 ;
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge clk or posedge rst) begin
|
||||
if (rst) begin
|
||||
n_temp2 <= 0;
|
||||
end else begin
|
||||
n_temp2 <= wb_dat_o; //**
|
||||
end
|
||||
end
|
||||
|
||||
/*
|
||||
* FSM combinational block
|
||||
*/
|
||||
always @ ( * ) begin
|
||||
n_efb_flag = 1'b0 ;
|
||||
n_state = c_state ;
|
||||
n_wb_dat_i = 8'h00;
|
||||
n_wb_stb_i = 1'b0 ;
|
||||
n_wb_adr_i = 8'h00;
|
||||
n_wb_we_i = 1'b0;
|
||||
n_count_en = 1'b0;
|
||||
n_temp0 = temp0;
|
||||
n_temp1 = temp1;
|
||||
n_temp3 = temp3;
|
||||
|
||||
case(c_state)
|
||||
`state0: begin
|
||||
n_wb_dat_i = 8'h00;
|
||||
n_wb_stb_i = 1'b0 ;
|
||||
n_wb_adr_i = 8'h00;
|
||||
n_wb_we_i = 1'b0;
|
||||
n_wb_stb_i = 1'b0 ;
|
||||
n_state = `state1 ;
|
||||
end
|
||||
|
||||
`state1: begin // Enable I2C Interface
|
||||
if (wb_ack_o && efb_flag) begin
|
||||
n_wb_dat_i = `ALL_ZERO ;
|
||||
n_wb_adr_i = `ALL_ZERO ;
|
||||
n_wb_we_i = `LOW ;
|
||||
n_wb_stb_i = `LOW ;
|
||||
n_efb_flag = `LOW ;
|
||||
n_count_en = `LOW ;
|
||||
n_state = `state2;
|
||||
end else begin
|
||||
n_efb_flag = `HIGH ;
|
||||
n_wb_we_i = `WRITE;
|
||||
n_wb_adr_i = `MICO_EFB_I2C_CR;
|
||||
n_wb_dat_i = 8'h80;
|
||||
n_wb_stb_i = `HIGH ;
|
||||
n_state = c_state;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
`state2: begin // Clock Disable
|
||||
if (wb_ack_o && efb_flag) begin
|
||||
n_wb_dat_i = `ALL_ZERO ;
|
||||
n_wb_adr_i = `ALL_ZERO ;
|
||||
n_wb_we_i = `LOW ;
|
||||
n_wb_stb_i = `LOW ;
|
||||
n_efb_flag = `LOW ;
|
||||
n_count_en = `LOW ;
|
||||
n_state = `state3;
|
||||
end else begin
|
||||
n_efb_flag = `HIGH ;
|
||||
n_wb_we_i = `WRITE;
|
||||
n_wb_adr_i = `MICO_EFB_I2C_CMDR;
|
||||
n_wb_dat_i = 8'h04;
|
||||
n_wb_stb_i = `HIGH ;
|
||||
n_state = c_state;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
`state3: begin // Wait for not BUSY
|
||||
if (wb_ack_o && efb_flag) begin
|
||||
n_wb_dat_i = `ALL_ZERO ;
|
||||
n_wb_adr_i = `ALL_ZERO ;
|
||||
n_wb_we_i = `LOW ;
|
||||
n_wb_stb_i = `LOW ;
|
||||
n_efb_flag = `LOW ;
|
||||
n_count_en = `LOW ;
|
||||
if(wb_dat_o & (`MICO_EFB_I2C_SR_BUSY))begin
|
||||
n_state = `state4;
|
||||
end else begin
|
||||
n_state = c_state;
|
||||
end
|
||||
end else begin
|
||||
n_efb_flag = `HIGH ;
|
||||
n_wb_we_i = `READ_STATUS;
|
||||
n_wb_adr_i = `MICO_EFB_I2C_SR;
|
||||
n_wb_dat_i = 0 ;
|
||||
n_wb_stb_i = `HIGH ;
|
||||
n_state = c_state;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
`state4: begin // Discard data 1
|
||||
if (wb_ack_o && efb_flag) begin
|
||||
n_wb_dat_i = `ALL_ZERO ;
|
||||
n_wb_adr_i = `ALL_ZERO ;
|
||||
n_wb_we_i = `LOW ;
|
||||
n_wb_stb_i = `LOW ;
|
||||
n_efb_flag = `LOW ;
|
||||
n_count_en = `LOW ;
|
||||
n_temp0 = wb_dat_o;
|
||||
n_state = `state5;
|
||||
end else begin
|
||||
n_efb_flag = `HIGH ;
|
||||
n_wb_we_i = `READ_DATA;
|
||||
n_wb_adr_i = `MICO_EFB_I2C_RXDR;
|
||||
n_wb_dat_i = 0 ;
|
||||
n_wb_stb_i = `HIGH ;
|
||||
n_state = c_state;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
`state5: begin // Discard data 2
|
||||
if (wb_ack_o && efb_flag) begin
|
||||
n_wb_dat_i = `ALL_ZERO ;
|
||||
n_wb_adr_i = `ALL_ZERO ;
|
||||
n_wb_we_i = `LOW ;
|
||||
n_wb_stb_i = `LOW ;
|
||||
n_efb_flag = `LOW ;
|
||||
n_count_en = `LOW ;
|
||||
n_temp0 = wb_dat_o;
|
||||
n_state = `state6;
|
||||
end else begin
|
||||
n_efb_flag = `HIGH ;
|
||||
n_wb_we_i = `READ_DATA;
|
||||
n_wb_adr_i = `MICO_EFB_I2C_RXDR;
|
||||
n_wb_dat_i = 0 ;
|
||||
n_wb_stb_i = `HIGH ;
|
||||
n_state = c_state;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
`state6: begin // Clock Enable
|
||||
if (wb_ack_o && efb_flag) begin
|
||||
n_wb_dat_i = `ALL_ZERO ;
|
||||
n_wb_adr_i = `ALL_ZERO ;
|
||||
n_wb_we_i = `LOW ;
|
||||
n_wb_stb_i = `LOW ;
|
||||
n_efb_flag = `LOW ;
|
||||
n_count_en = `LOW ;
|
||||
n_state = `state7;
|
||||
end else begin
|
||||
n_efb_flag = `HIGH;
|
||||
n_wb_we_i = `WRITE;
|
||||
n_wb_adr_i = `MICO_EFB_I2C_CMDR;
|
||||
n_wb_dat_i = 8'h00;
|
||||
n_wb_stb_i = `HIGH ;
|
||||
n_state = c_state;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
`state7: begin // wait for data to come
|
||||
if (wb_ack_o && efb_flag) begin
|
||||
n_wb_dat_i = `ALL_ZERO ;
|
||||
n_wb_adr_i = `ALL_ZERO ;
|
||||
n_wb_we_i = `LOW ;
|
||||
n_wb_stb_i = `LOW ;
|
||||
n_efb_flag = `LOW ;
|
||||
n_count_en = `LOW ;
|
||||
n_temp1 = 8'h00;
|
||||
if((wb_dat_o & (`MICO_EFB_I2C_SR_TRRDY)))begin
|
||||
n_state = `state8; // Slave acknowledged
|
||||
end else if (~wb_dat_o[6])begin
|
||||
n_state = `state2; // Disable clock
|
||||
end else begin
|
||||
n_state = c_state;
|
||||
end
|
||||
end else begin
|
||||
n_efb_flag = `HIGH ;
|
||||
n_wb_we_i = `READ_STATUS;
|
||||
n_wb_adr_i = `MICO_EFB_I2C_SR;
|
||||
n_wb_dat_i = 0 ;
|
||||
n_wb_stb_i = `HIGH ;
|
||||
n_state = c_state;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
`state8: begin // Store i2C Command Information
|
||||
if (wb_ack_o && efb_flag) begin
|
||||
n_wb_dat_i = `ALL_ZERO ;
|
||||
n_wb_adr_i = `ALL_ZERO ;
|
||||
n_wb_we_i = `LOW ;
|
||||
n_wb_stb_i = `LOW ;
|
||||
n_efb_flag = `LOW ;
|
||||
n_count_en = `LOW ;
|
||||
n_temp1 = wb_dat_o;
|
||||
n_state = `state9;
|
||||
end else begin
|
||||
n_efb_flag = `HIGH ;
|
||||
n_wb_we_i = `READ_DATA;
|
||||
n_wb_adr_i = `MICO_EFB_I2C_RXDR;
|
||||
n_wb_dat_i = 0 ;
|
||||
n_wb_stb_i = `HIGH ;
|
||||
n_state = c_state;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
`state9: begin // Send ACK or NACK Based upon Command Receive & Wait for Stop `state 17
|
||||
if (wb_ack_o && efb_flag) begin
|
||||
n_wb_dat_i = `ALL_ZERO ;
|
||||
n_wb_adr_i = `ALL_ZERO ;
|
||||
n_wb_we_i = `LOW ;
|
||||
n_wb_stb_i = `LOW ;
|
||||
n_efb_flag = `LOW ;
|
||||
n_count_en = `LOW ;
|
||||
if(invalid_command)begin // This is tied to '0' at present
|
||||
n_state = `state17;
|
||||
end else begin
|
||||
n_state = `state12;
|
||||
end
|
||||
end else begin
|
||||
n_efb_flag = `HIGH ;
|
||||
n_wb_we_i = `WRITE;
|
||||
n_wb_adr_i = `MICO_EFB_I2C_CMDR;
|
||||
n_wb_dat_i = {4'h0,invalid_command,3'b000};
|
||||
n_wb_stb_i = `HIGH ;
|
||||
n_state = c_state;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
`state12: begin // Wait for TRRDY Bit
|
||||
if (wb_ack_o && efb_flag) begin
|
||||
n_wb_dat_i = `ALL_ZERO ;
|
||||
n_wb_adr_i = `ALL_ZERO ;
|
||||
n_wb_we_i = `LOW ;
|
||||
n_wb_stb_i = `LOW ;
|
||||
n_efb_flag = `LOW ;
|
||||
n_count_en = `LOW ;
|
||||
if(wb_dat_o & (`MICO_EFB_I2C_SR_TRRDY))begin
|
||||
n_state = `state13;
|
||||
end else if (~wb_dat_o[6])begin
|
||||
n_state = `state2;
|
||||
end else begin
|
||||
n_state = c_state;
|
||||
end
|
||||
end else begin
|
||||
n_efb_flag = `HIGH ;
|
||||
n_wb_we_i = `READ_STATUS;
|
||||
n_wb_adr_i = `MICO_EFB_I2C_SR;
|
||||
n_wb_dat_i = 0 ;
|
||||
n_wb_stb_i = `HIGH ;
|
||||
n_state = c_state;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
`state13: begin // Check for read or write operation
|
||||
if (wb_ack_o && efb_flag) begin
|
||||
n_wb_dat_i = `ALL_ZERO ;
|
||||
n_wb_adr_i = `ALL_ZERO ;
|
||||
n_wb_we_i = `LOW ;
|
||||
n_wb_stb_i = `LOW ;
|
||||
n_efb_flag = `LOW ;
|
||||
n_count_en = `LOW ;
|
||||
if(wb_dat_o & (`MICO_EFB_I2C_SR_SRW))begin
|
||||
n_state = `state15; //Read from slave
|
||||
end else begin
|
||||
n_state = `state14; //Write to slave
|
||||
end
|
||||
end else begin
|
||||
n_efb_flag = `HIGH ;
|
||||
n_wb_we_i = `READ_STATUS;
|
||||
n_wb_adr_i = `MICO_EFB_I2C_SR;
|
||||
n_wb_dat_i = 0 ;
|
||||
n_wb_stb_i = `HIGH ;
|
||||
n_state = c_state;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
`state14: begin // Write data
|
||||
if (wb_ack_o && efb_flag) begin
|
||||
n_wb_dat_i = `ALL_ZERO ;
|
||||
n_wb_adr_i = `ALL_ZERO ;
|
||||
n_wb_we_i = `LOW ;
|
||||
n_wb_stb_i = `LOW ;
|
||||
n_efb_flag = `LOW ;
|
||||
n_count_en = `LOW ;
|
||||
n_temp3 = wb_dat_o;
|
||||
n_state = `state19;
|
||||
end else begin
|
||||
n_efb_flag = `HIGH ;
|
||||
n_wb_we_i = `READ_DATA;
|
||||
n_wb_adr_i = `MICO_EFB_I2C_RXDR;
|
||||
n_wb_dat_i = 0 ;
|
||||
n_wb_stb_i = `HIGH ;
|
||||
n_state = c_state;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
`state15: begin // Send Data to Master
|
||||
if (wb_ack_o && efb_flag) begin
|
||||
n_wb_dat_i = `ALL_ZERO ;
|
||||
n_wb_adr_i = `ALL_ZERO ;
|
||||
n_wb_we_i = `LOW ;
|
||||
n_wb_stb_i = `LOW ;
|
||||
n_efb_flag = `LOW ;
|
||||
n_count_en = `LOW ;
|
||||
n_state = `state18;
|
||||
end else begin
|
||||
n_efb_flag = `HIGH ;
|
||||
n_wb_we_i = `WRITE;
|
||||
n_wb_adr_i = `MICO_EFB_I2C_TXDR;
|
||||
n_wb_dat_i = dataIn;
|
||||
n_wb_stb_i = `HIGH ;
|
||||
n_state = c_state;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
`state17: begin // Wait till Stop is Send
|
||||
if (wb_ack_o && efb_flag) begin
|
||||
n_wb_dat_i = `ALL_ZERO ;
|
||||
n_wb_adr_i = `ALL_ZERO ;
|
||||
n_wb_we_i = `LOW ;
|
||||
n_wb_stb_i = `LOW ;
|
||||
n_efb_flag = `LOW ;
|
||||
n_count_en = `LOW ;
|
||||
if(~wb_dat_o[6])begin
|
||||
n_state = `state2;
|
||||
end else begin
|
||||
n_state = c_state;
|
||||
end
|
||||
end else begin
|
||||
n_efb_flag = `HIGH ;
|
||||
n_wb_we_i = `READ_STATUS;
|
||||
n_wb_adr_i = `MICO_EFB_I2C_SR;
|
||||
n_wb_dat_i = 0 ;
|
||||
n_wb_stb_i = `HIGH ;
|
||||
n_state = c_state;
|
||||
end
|
||||
end
|
||||
|
||||
`state18: begin // Wait for TxRDY flag and send data again if required
|
||||
if (wb_ack_o && efb_flag) begin
|
||||
n_wb_dat_i = `ALL_ZERO ;
|
||||
n_wb_adr_i = `ALL_ZERO ;
|
||||
n_wb_we_i = `LOW ;
|
||||
n_wb_stb_i = `LOW ;
|
||||
n_efb_flag = `LOW ;
|
||||
n_count_en = `LOW ;
|
||||
if(wb_dat_o & (`MICO_EFB_I2C_SR_TRRDY))begin
|
||||
n_state = `state15; // Send Data
|
||||
end else if (~wb_dat_o[6]) begin// If Stop go to beginning
|
||||
n_state = `state2;
|
||||
end else begin
|
||||
n_state = c_state;
|
||||
end
|
||||
end else begin
|
||||
n_efb_flag = `HIGH ;
|
||||
n_wb_we_i = `READ_STATUS;
|
||||
n_wb_adr_i = `MICO_EFB_I2C_SR;
|
||||
n_wb_dat_i = 0 ;
|
||||
n_wb_stb_i = `HIGH ;
|
||||
n_state = c_state;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
`state19: begin // Wait for TRRDY bit
|
||||
if (wb_ack_o && efb_flag) begin
|
||||
n_wb_dat_i = `ALL_ZERO ;
|
||||
n_wb_adr_i = `ALL_ZERO ;
|
||||
n_wb_we_i = `LOW ;
|
||||
n_wb_stb_i = `LOW ;
|
||||
n_efb_flag = `LOW ;
|
||||
n_count_en = `LOW ;
|
||||
if(wb_dat_o & (`MICO_EFB_I2C_SR_TRRDY)) begin
|
||||
n_state = `state14;
|
||||
end else if (~wb_dat_o[6])begin
|
||||
n_state = `state2;
|
||||
end else begin
|
||||
n_state = c_state;
|
||||
end
|
||||
end else begin
|
||||
n_efb_flag = `HIGH ;
|
||||
n_wb_we_i = `READ_STATUS;
|
||||
n_wb_adr_i = `MICO_EFB_I2C_SR;
|
||||
n_wb_dat_i = 0 ;
|
||||
n_wb_stb_i = `HIGH ;
|
||||
n_state = c_state;
|
||||
end
|
||||
end
|
||||
endcase
|
||||
end
|
||||
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,203 @@
|
|||
//==================================================================
|
||||
// >>>>>>>>>>>>>>>>>>>>>>> COPYRIGHT NOTICE <<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
// ------------------------------------------------------------------
|
||||
// Copyright (c) 2014 by Lattice Semiconductor Corporation
|
||||
// ALL RIGHTS RESERVED
|
||||
// ------------------------------------------------------------------
|
||||
//
|
||||
// Permission:
|
||||
//
|
||||
// Lattice SG Pte. Ltd. grants permission to use this code for use
|
||||
// in synthesis for any Lattice programmable logic product. Other
|
||||
// use of this code, including the selling or duplication of any
|
||||
// portion is strictly prohibited.
|
||||
|
||||
//
|
||||
// Disclaimer:
|
||||
//
|
||||
// This VHDL or Verilog source code is intended as a design reference
|
||||
// which illustrates how these types of functions can be implemented.
|
||||
// It is the user's responsibility to verify their design for
|
||||
// consistency and functionality through the use of formal
|
||||
// verification methods. Lattice provides no warranty
|
||||
// regarding the use or functionality of this code.
|
||||
//
|
||||
// --------------------------------------------------------------------
|
||||
//
|
||||
// Lattice SG Pte. Ltd.
|
||||
// 101 Thomson Road, United Square #07-02
|
||||
// Singapore 307591
|
||||
//
|
||||
//
|
||||
// TEL: 1-800-Lattice (USA and Canada)
|
||||
// +65-6631-2000 (Singapore)
|
||||
// +1-503-268-8001 (other locations)
|
||||
//
|
||||
// web: http://www.latticesemi.com/
|
||||
// email: techsupport@latticesemi.com
|
||||
//
|
||||
// --------------------------------------------------------------------
|
||||
//
|
||||
|
||||
|
||||
module led_driver (
|
||||
input sys_clk,
|
||||
input rst_n,
|
||||
input txn_start,
|
||||
input mobeam_start_stop,
|
||||
input led_polarity,
|
||||
input [7:0] bar_width,
|
||||
input [7:0] barcode_array,
|
||||
output drive_on,
|
||||
output byte_done,
|
||||
output bit_done,
|
||||
output oled
|
||||
//output dynamic_clk);
|
||||
);
|
||||
|
||||
//reg [15:0] clk_count;
|
||||
|
||||
/*
|
||||
always @(posedge sys_clk or negedge rst_n)
|
||||
begin
|
||||
if (~rst_n)
|
||||
clk_count <= 16'b0;
|
||||
else
|
||||
if (clk_count==16'd4)
|
||||
clk_count<= 0;
|
||||
else
|
||||
clk_count <= clk_count + 1'b1;
|
||||
|
||||
end */// always @ (posedge sys_clk or negedge rst_n)
|
||||
|
||||
// assign dynamic_clk = (clk_count==16'd4);
|
||||
|
||||
|
||||
reg oled,drive_on;
|
||||
reg oled_int;
|
||||
reg [15:0] bw_count;
|
||||
reg [7:0] ba_reg = 8'b10011001;
|
||||
reg reload_ba_reg;
|
||||
reg driver_busy;
|
||||
|
||||
wire [7:0] BW;
|
||||
reg [15:0] BWx10 /* synthesis syn_multstyle = logic */;
|
||||
reg [2:0] bit_cnt;
|
||||
reg byte_done_int;
|
||||
reg txn_start_d;
|
||||
/////////////////TXN_Start edge detect/////////////////
|
||||
|
||||
always @(posedge sys_clk or negedge rst_n)
|
||||
begin
|
||||
if (~rst_n || !mobeam_start_stop) begin
|
||||
txn_start_d<= 1'b0;
|
||||
end
|
||||
else
|
||||
txn_start_d<=txn_start;
|
||||
|
||||
end
|
||||
assign txn_start_pos = txn_start & (~txn_start_d);
|
||||
|
||||
|
||||
|
||||
|
||||
assign BW =bar_width;
|
||||
//assign byte_done_mod= (&bit_cnt) & reload_ba_reg;
|
||||
//assign byte_done_mod= (&bit_cnt) && (bw_count==1'b1);
|
||||
assign byte_done_mod= (BWx10==16'd4)?(&bit_cnt) && (bw_count==1'b1):byte_done_int;
|
||||
assign byte_done = byte_done_mod;
|
||||
assign bit_done = reload_ba_reg;
|
||||
// assign BWx10 = BW * 10 - 1'b1;
|
||||
|
||||
always @(posedge sys_clk or negedge rst_n)
|
||||
begin
|
||||
if (~rst_n || !mobeam_start_stop) begin
|
||||
ba_reg <= 8'd0;
|
||||
BWx10<=16'd4;
|
||||
byte_done_int<= 1'b0;
|
||||
bit_cnt<= 3'd0;
|
||||
end
|
||||
else begin
|
||||
if (BW==0)
|
||||
BWx10<= 4;
|
||||
else begin
|
||||
BWx10 <= BW * 10 - 1'b1;
|
||||
// BWX5 <= BW * 5 - 1'b1; //for 25% duty cycle
|
||||
// BWX15 <=
|
||||
end
|
||||
|
||||
//if (txn_start_pos) begin
|
||||
if (txn_start && bit_cnt==3'd0) begin
|
||||
ba_reg <=barcode_array;
|
||||
end
|
||||
if (reload_ba_reg) begin
|
||||
//ba_reg <= {ba_reg[0],ba_reg[7:1]}; //lsb first
|
||||
ba_reg <= {ba_reg[6:0],ba_reg[7]}; //msb first
|
||||
if (bit_cnt==3'd7)
|
||||
byte_done_int<=1'b1;
|
||||
else
|
||||
byte_done_int<=1'b0;
|
||||
|
||||
if (&bit_cnt) begin
|
||||
//byte_done_int<=1'b1;
|
||||
bit_cnt<= 3'd0;
|
||||
end
|
||||
else begin
|
||||
// byte_done_int<= 1'b0;
|
||||
bit_cnt<= bit_cnt + 1'b1;
|
||||
end
|
||||
|
||||
end
|
||||
else
|
||||
byte_done_int<= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge sys_clk or negedge rst_n)
|
||||
begin
|
||||
if (~rst_n || !mobeam_start_stop)
|
||||
begin
|
||||
oled_int <= 1'b0;
|
||||
bw_count <= 16'b0;
|
||||
reload_ba_reg <= 1'b0;
|
||||
driver_busy<= 1'b0;
|
||||
|
||||
end
|
||||
else
|
||||
if (txn_start) begin
|
||||
// driver_busy<= 1'b1;
|
||||
if (bw_count == BWx10)
|
||||
begin
|
||||
//oled<=ba_reg[0]; //lsb_first
|
||||
oled_int<=ba_reg[7]; //msb first
|
||||
bw_count<=16'b0;
|
||||
reload_ba_reg <= 1'b1;
|
||||
end
|
||||
|
||||
else begin
|
||||
oled_int<= oled_int;
|
||||
bw_count<= bw_count + 1'b1;
|
||||
reload_ba_reg <= 1'b0;
|
||||
end
|
||||
end
|
||||
else
|
||||
reload_ba_reg <= 1'b0;
|
||||
end // always @ (posedge sys_clk or negedge rst_n)
|
||||
|
||||
always @(posedge sys_clk ) begin
|
||||
if (~rst_n || !mobeam_start_stop) begin
|
||||
oled<=0;
|
||||
end else begin
|
||||
if(led_polarity)begin
|
||||
oled <= oled_int;
|
||||
drive_on<=oled_int;
|
||||
end else begin
|
||||
oled <= ~oled_int;
|
||||
drive_on<=~oled_int;
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
endmodule // clk_gen
|
||||
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,160 @@
|
|||
//==================================================================
|
||||
// >>>>>>>>>>>>>>>>>>>>>>> COPYRIGHT NOTICE <<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
// ------------------------------------------------------------------
|
||||
// Copyright (c) 2014 by Lattice Semiconductor Corporation
|
||||
// ALL RIGHTS RESERVED
|
||||
// ------------------------------------------------------------------
|
||||
//
|
||||
// Permission:
|
||||
//
|
||||
// Lattice SG Pte. Ltd. grants permission to use this code for use
|
||||
// in synthesis for any Lattice programmable logic product. Other
|
||||
// use of this code, including the selling or duplication of any
|
||||
// portion is strictly prohibited.
|
||||
|
||||
//
|
||||
// Disclaimer:
|
||||
//
|
||||
// This VHDL or Verilog source code is intended as a design reference
|
||||
// which illustrates how these types of functions can be implemented.
|
||||
// It is the user's responsibility to verify their design for
|
||||
// consistency and functionality through the use of formal
|
||||
// verification methods. Lattice provides no warranty
|
||||
// regarding the use or functionality of this code.
|
||||
//
|
||||
// --------------------------------------------------------------------
|
||||
//
|
||||
// Lattice SG Pte. Ltd.
|
||||
// 101 Thomson Road, United Square #07-02
|
||||
// Singapore 307591
|
||||
//
|
||||
//
|
||||
// TEL: 1-800-Lattice (USA and Canada)
|
||||
// +65-6631-2000 (Singapore)
|
||||
// +1-503-268-8001 (other locations)
|
||||
//
|
||||
// web: http://www.latticesemi.com/
|
||||
// email: techsupport@latticesemi.com
|
||||
//
|
||||
// --------------------------------------------------------------------
|
||||
//
|
||||
|
||||
|
||||
module mobeam_delay_gen(
|
||||
input clk,
|
||||
input rst_n,
|
||||
input [15:0] isd_val,
|
||||
input [15:0] ipd_val,
|
||||
input config_reg_done,
|
||||
input symbol_shift_done,
|
||||
input packet_shift_done,
|
||||
output reg isd_delay_en,
|
||||
output reg ipd_delay_en
|
||||
);
|
||||
|
||||
reg [15:0] isd_val_temp;
|
||||
reg [15:0] ipd_val_temp;
|
||||
reg [15:0] isd_count;
|
||||
reg [15:0] ipd_count;
|
||||
wire [15:0] max_count,max_count_pkt;
|
||||
reg clk_count,clk_count_pkt;
|
||||
reg count_done,count_done_pkt;
|
||||
|
||||
parameter const=10;
|
||||
assign max_count=isd_val_temp * const;
|
||||
assign max_count_pkt=ipd_val_temp * const;
|
||||
|
||||
wire count_enable,count_enable_pkt;
|
||||
//wire config_done;
|
||||
//assign config_done= !rst_n ? 0 : config_reg_done ? 1 : config_done;
|
||||
assign count_enable= !rst_n ? 0 : count_done ? 0 : symbol_shift_done ? 1 : count_enable;
|
||||
assign count_enable_pkt= !rst_n ? 0 : count_done_pkt ? 0 : packet_shift_done ? 1 : count_enable_pkt;
|
||||
|
||||
//assign isd_delay_en=symbol_shift_done ? 1 : (isd_count==max_count-1) :
|
||||
|
||||
///////////////////////symbol////////////////////////////////////
|
||||
always @(posedge clk or negedge rst_n) begin
|
||||
if(!rst_n) begin
|
||||
isd_count<=0;
|
||||
count_done<=0;
|
||||
end
|
||||
else begin
|
||||
count_done<=0;
|
||||
if(count_enable) begin
|
||||
if(isd_count==max_count-1) begin
|
||||
isd_count<=0;
|
||||
count_done<=1;
|
||||
isd_delay_en<=0;
|
||||
end
|
||||
else begin
|
||||
isd_delay_en<=1;
|
||||
isd_count<=isd_count+1;
|
||||
end
|
||||
end
|
||||
else begin
|
||||
isd_delay_en<=0;
|
||||
isd_count<=0;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge clk or negedge rst_n) begin
|
||||
if(!rst_n) begin
|
||||
isd_val_temp<=0;
|
||||
clk_count<=0;
|
||||
end
|
||||
else begin
|
||||
if(clk_count)
|
||||
isd_val_temp<=isd_val_temp;
|
||||
else if(config_reg_done) begin
|
||||
clk_count<=clk_count+1;
|
||||
isd_val_temp<=isd_val;
|
||||
end
|
||||
else
|
||||
isd_val_temp<=isd_val_temp;
|
||||
end
|
||||
end
|
||||
///////////////packet//////////////////////
|
||||
always @(posedge clk or negedge rst_n) begin
|
||||
if(!rst_n) begin
|
||||
ipd_count<=0;
|
||||
count_done_pkt<=0;
|
||||
end
|
||||
else begin
|
||||
count_done_pkt<=0;
|
||||
if(count_enable_pkt) begin
|
||||
if(ipd_count==max_count_pkt-1) begin
|
||||
ipd_count<=0;
|
||||
count_done_pkt<=1;
|
||||
ipd_delay_en<=0;
|
||||
end
|
||||
else begin
|
||||
ipd_delay_en<=1;
|
||||
ipd_count<=ipd_count+1;
|
||||
end
|
||||
end
|
||||
else begin
|
||||
ipd_delay_en<=0;
|
||||
ipd_count<=0;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge clk or negedge rst_n) begin
|
||||
if(!rst_n) begin
|
||||
ipd_val_temp<=0;
|
||||
clk_count_pkt<=0;
|
||||
end
|
||||
else begin
|
||||
if(clk_count_pkt)
|
||||
ipd_val_temp<=ipd_val_temp;
|
||||
else if(config_reg_done) begin
|
||||
clk_count_pkt<=clk_count_pkt+1;
|
||||
ipd_val_temp<=ipd_val;
|
||||
end
|
||||
else
|
||||
ipd_val_temp<=ipd_val_temp;
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,377 @@
|
|||
//==================================================================
|
||||
// >>>>>>>>>>>>>>>>>>>>>>> COPYRIGHT NOTICE <<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
// ------------------------------------------------------------------
|
||||
// Copyright (c) 2014 by Lattice Semiconductor Corporation
|
||||
// ALL RIGHTS RESERVED
|
||||
// ------------------------------------------------------------------
|
||||
//
|
||||
// Permission:
|
||||
//
|
||||
// Lattice SG Pte. Ltd. grants permission to use this code for use
|
||||
// in synthesis for any Lattice programmable logic product. Other
|
||||
// use of this code, including the selling or duplication of any
|
||||
// portion is strictly prohibited.
|
||||
|
||||
//
|
||||
// Disclaimer:
|
||||
//
|
||||
// This VHDL or Verilog source code is intended as a design reference
|
||||
// which illustrates how these types of functions can be implemented.
|
||||
// It is the user's responsibility to verify their design for
|
||||
// consistency and functionality through the use of formal
|
||||
// verification methods. Lattice provides no warranty
|
||||
// regarding the use or functionality of this code.
|
||||
//
|
||||
// --------------------------------------------------------------------
|
||||
//
|
||||
// Lattice SG Pte. Ltd.
|
||||
// 101 Thomson Road, United Square #07-02
|
||||
// Singapore 307591
|
||||
//
|
||||
//
|
||||
// TEL: 1-800-Lattice (USA and Canada)
|
||||
// +65-6631-2000 (Singapore)
|
||||
// +1-503-268-8001 (other locations)
|
||||
//
|
||||
// web: http://www.latticesemi.com/
|
||||
// email: techsupport@latticesemi.com
|
||||
//
|
||||
// --------------------------------------------------------------------
|
||||
//
|
||||
|
||||
|
||||
module mobeam_i2c_reg_interface(
|
||||
rst_i,
|
||||
clk_i,
|
||||
//i2c slave interface signals///
|
||||
i2c_master_to_slave_data_i,
|
||||
i2c_slave_to_master_data_o,
|
||||
i2c_slave_data_address_i,
|
||||
wr_en_i,
|
||||
rd_en_i,
|
||||
i2c_start_i,
|
||||
//MoBeam control logic interface//
|
||||
rd_revision_code,
|
||||
rst_mobeam,
|
||||
mobeam_start_stop,
|
||||
led_polarity,
|
||||
o_ba_mem_data,
|
||||
i_ba_mem_addr,
|
||||
i_ba_mem_rd_en,
|
||||
i_ba_mem_rd_clk,
|
||||
o_bsr_mem_data,
|
||||
i_bsr_mem_addr,
|
||||
i_bsr_mem_rd_en,
|
||||
i_bsr_mem_rd_clk
|
||||
// i_config_reg_done,
|
||||
// o_new_data_rd,
|
||||
// o_data_strobe
|
||||
);
|
||||
//i2c slave interface signals///
|
||||
input [7:0] i2c_master_to_slave_data_i;
|
||||
output reg [7:0]i2c_slave_to_master_data_o;
|
||||
input [7:0] i2c_slave_data_address_i;
|
||||
input wr_en_i;
|
||||
input rd_en_i;
|
||||
input i2c_start_i;
|
||||
input rst_i;
|
||||
input clk_i;
|
||||
//mobeam control logic interface//
|
||||
output [15:0] o_ba_mem_data;
|
||||
input [7:0] i_ba_mem_addr;
|
||||
input i_ba_mem_rd_en;
|
||||
input i_ba_mem_rd_clk;
|
||||
output reg rd_revision_code=0;
|
||||
output reg rst_mobeam=0;
|
||||
//input[7:0] i_revision_code_data;
|
||||
//input rd_revision_code;
|
||||
output [7:0] o_bsr_mem_data;
|
||||
//output reg [15:0] mem_data_buf16;
|
||||
input [8:0] i_bsr_mem_addr;
|
||||
input i_bsr_mem_rd_en;
|
||||
input i_bsr_mem_rd_clk;
|
||||
output reg mobeam_start_stop=1'b0;
|
||||
output reg led_polarity=1'b0;
|
||||
//output reg o_new_data_rd=1'b0;
|
||||
//output reg o_data_strobe=1'b0;
|
||||
//input i_config_reg_done;
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
//////////////wire & reg declarations//////////////////
|
||||
wire wr_en;
|
||||
wire rd_en;
|
||||
reg d1_wr_en_i;
|
||||
reg d2_wr_en_i;
|
||||
reg d1_rd_en_i;
|
||||
reg d2_rd_en_i;
|
||||
|
||||
parameter revision_code=8'hF1;
|
||||
|
||||
|
||||
|
||||
|
||||
/////////////////////BSR and CONFIG data memory//////////////
|
||||
|
||||
SB_RAM512x8 ram512x8_inst
|
||||
(
|
||||
.RDATA(o_bsr_mem_data),// EBR512x8_data
|
||||
.RADDR(i_bsr_mem_addr),// EBR512x8_addr
|
||||
.RCLK(i_bsr_mem_rd_clk),
|
||||
.RCLKE(i_bsr_mem_rd_en),
|
||||
.RE(i_bsr_mem_rd_en),// EBR512x8_re
|
||||
.WADDR({1'b0,bsr_mem_addr_in}),
|
||||
.WCLK(clk_i),
|
||||
.WCLKE(1'b1),///*bsr_wr_en/*wr_en*/),
|
||||
.WDATA(i2c_master_to_slave_data_i),
|
||||
.WE(bsr_wr_en) ////*bsr_wr_en/*wr_en*/)
|
||||
);
|
||||
|
||||
defparam ram512x8_inst.INIT_0 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram512x8_inst.INIT_1 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram512x8_inst.INIT_2 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram512x8_inst.INIT_3 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram512x8_inst.INIT_4 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram512x8_inst.INIT_5 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
//ICE Technology Library 66
|
||||
//Lattice Semiconductor Corporation Confidential
|
||||
defparam ram512x8_inst.INIT_6 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram512x8_inst.INIT_7 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram512x8_inst.INIT_8 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram512x8_inst.INIT_9 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram512x8_inst.INIT_A = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram512x8_inst.INIT_B = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram512x8_inst.INIT_C = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram512x8_inst.INIT_D = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram512x8_inst.INIT_E = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram512x8_inst.INIT_F = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
|
||||
|
||||
///////////////////////BA i.e. beamable data memory//////////////
|
||||
SB_RAM256x16 ram256x16_inst (
|
||||
.RDATA(o_ba_mem_data),
|
||||
.RADDR(i_ba_mem_addr),
|
||||
.RCLK(i_ba_mem_rd_clk),
|
||||
.RCLKE(i_ba_mem_rd_en),
|
||||
.RE(i_ba_mem_rd_en),
|
||||
.WADDR(ba_mem_addr_in_delayed_1),
|
||||
.WCLK(clk_i),
|
||||
.WCLKE(1'b1),///*ba_wr_en/*wr_en*/),
|
||||
.WDATA(ba_mem_data_buffer),
|
||||
.WE(ba_wr_en_delayed),///*wr_en*/),
|
||||
.MASK(16'd0)
|
||||
);
|
||||
defparam ram256x16_inst.INIT_0 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram256x16_inst.INIT_1 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram256x16_inst.INIT_2 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram256x16_inst.INIT_3 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram256x16_inst.INIT_4 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram256x16_inst.INIT_5 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram256x16_inst.INIT_6 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram256x16_inst.INIT_7 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram256x16_inst.INIT_8 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram256x16_inst.INIT_9 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram256x16_inst.INIT_A = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram256x16_inst.INIT_B = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram256x16_inst.INIT_C = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram256x16_inst.INIT_D = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram256x16_inst.INIT_E = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
defparam ram256x16_inst.INIT_F = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
|
||||
|
||||
// Write valid pulse
|
||||
always @(posedge clk_i or posedge rst_i) begin
|
||||
if (rst_i) begin
|
||||
d1_wr_en_i <= 0;
|
||||
d2_wr_en_i <= 0;
|
||||
end else begin
|
||||
d1_wr_en_i <= wr_en_i;
|
||||
d2_wr_en_i <= d1_wr_en_i;
|
||||
end
|
||||
end
|
||||
|
||||
assign wr_en = d2_wr_en_i && ~d1_wr_en_i;
|
||||
|
||||
// Read enable pulse
|
||||
always @(posedge clk_i or posedge rst_i) begin
|
||||
if (rst_i) begin
|
||||
d1_rd_en_i <= 0;
|
||||
d2_rd_en_i <= 0;
|
||||
end else begin
|
||||
d1_rd_en_i <= rd_en_i;
|
||||
d2_rd_en_i <= d1_rd_en_i;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
assign rd_en = ~d2_rd_en_i && d1_rd_en_i;
|
||||
|
||||
reg [7:0] bsr_mem_addr_in;
|
||||
|
||||
reg [7:0] ba_mem_addr_in;
|
||||
reg ba_wr_en;
|
||||
|
||||
|
||||
always @(posedge clk_i or posedge rst_i) begin
|
||||
if (rst_i) begin
|
||||
bsr_mem_addr_in <= 9'd0;
|
||||
|
||||
end
|
||||
else
|
||||
if (i2c_start_i)
|
||||
bsr_mem_addr_in <= i2c_slave_data_address_i;
|
||||
|
||||
else if (i2c_slave_data_address_i == 8'h80) begin
|
||||
if (wr_en) begin
|
||||
bsr_mem_addr_in <=bsr_mem_addr_in + 1'b1;
|
||||
|
||||
end
|
||||
|
||||
end
|
||||
end
|
||||
|
||||
assign bsr_wr_en = (i2c_slave_data_address_i == 8'h00)?1'b0:wr_en;
|
||||
|
||||
//MOBEAM START-STOP
|
||||
always @(posedge clk_i or posedge rst_i) begin
|
||||
if (rst_i) begin
|
||||
mobeam_start_stop<=1'b0;
|
||||
|
||||
end
|
||||
else
|
||||
if (i2c_slave_data_address_i == 8'hF0) //8'hEC
|
||||
if (wr_en & (i2c_master_to_slave_data_i==8'b00000001))begin
|
||||
mobeam_start_stop<=1'b1;
|
||||
end
|
||||
else if(wr_en & (i2c_master_to_slave_data_i==8'b00000000))begin
|
||||
mobeam_start_stop<=1'b0;
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
|
||||
//MOBEAM RESET
|
||||
always @(posedge clk_i or posedge rst_i) begin
|
||||
if (rst_i) begin
|
||||
rst_mobeam<=1'b0;
|
||||
|
||||
end
|
||||
else
|
||||
if (i2c_slave_data_address_i == 8'hF1)
|
||||
if (wr_en & (i2c_master_to_slave_data_i==8'b00000001))begin
|
||||
rst_mobeam<=1'b1;
|
||||
end
|
||||
else if(wr_en & (i2c_master_to_slave_data_i==8'b00000000))begin
|
||||
rst_mobeam<=1'b0;
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
//REVISION CODE
|
||||
always @(posedge clk_i or posedge rst_i) begin
|
||||
if (rst_i) begin
|
||||
rd_revision_code<=1'b0;
|
||||
|
||||
end
|
||||
else
|
||||
if (rd_en)begin
|
||||
if (i2c_slave_data_address_i == 8'hF2) begin
|
||||
rd_revision_code<=1'b1;
|
||||
i2c_slave_to_master_data_o<=revision_code;
|
||||
end
|
||||
else begin
|
||||
rd_revision_code<=1'b0;
|
||||
i2c_slave_to_master_data_o<=0;
|
||||
end
|
||||
end
|
||||
else
|
||||
i2c_slave_to_master_data_o<=0;
|
||||
|
||||
end
|
||||
|
||||
//LED POLARITY
|
||||
always @(posedge clk_i or posedge rst_i) begin
|
||||
if (rst_i) begin
|
||||
led_polarity<=1'b0;
|
||||
|
||||
end else begin
|
||||
//if (wr_en)begin
|
||||
//if (i2c_slave_data_address_i == 8'hEB)begin
|
||||
//if (i2c_master_to_slave_data_i==8'b00000001)begin
|
||||
led_polarity<=1'b1;
|
||||
//end else begin
|
||||
//led_polarity<=1'b0;
|
||||
//end
|
||||
//end
|
||||
//end
|
||||
end
|
||||
end
|
||||
|
||||
reg ba_wr_en_delayed;
|
||||
reg wr_en_cnt;
|
||||
reg [7:0] ba_mem_addr_in_delayed,ba_mem_addr_in_delayed_1;
|
||||
reg [7:0] data_buffer;
|
||||
reg [15:0] ba_mem_data_buffer;
|
||||
|
||||
|
||||
always @(posedge clk_i or posedge rst_i) begin
|
||||
if (rst_i) begin
|
||||
ba_mem_addr_in_delayed<=8'd0;
|
||||
ba_mem_addr_in_delayed_1<=8'd0;
|
||||
ba_wr_en_delayed<= 1'b0;
|
||||
|
||||
end
|
||||
else begin
|
||||
ba_mem_addr_in_delayed<= ba_mem_addr_in;
|
||||
ba_mem_addr_in_delayed_1<= ba_mem_addr_in_delayed;
|
||||
ba_wr_en_delayed<= ba_wr_en;
|
||||
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
//assign ba_mem_data_buffer = { i2c_master_to_slave_data_i,data_buffer};
|
||||
always @(posedge clk_i or posedge rst_i) begin
|
||||
if (rst_i) begin
|
||||
ba_mem_addr_in <= 9'd0;
|
||||
ba_wr_en<= 1'b0;
|
||||
wr_en_cnt<= 1'b0;
|
||||
end
|
||||
else
|
||||
|
||||
if (i2c_slave_data_address_i == 8'h00) begin
|
||||
|
||||
if (wr_en_cnt) begin
|
||||
ba_mem_data_buffer <= { i2c_master_to_slave_data_i,data_buffer};
|
||||
end
|
||||
|
||||
|
||||
if (wr_en) begin
|
||||
wr_en_cnt<= wr_en_cnt + 1'b1;
|
||||
ba_wr_en<= 1'b1;
|
||||
if (~wr_en_cnt)begin
|
||||
data_buffer <= i2c_master_to_slave_data_i;
|
||||
end
|
||||
else
|
||||
ba_mem_addr_in <= ba_mem_addr_in + 1'b1;
|
||||
end
|
||||
else
|
||||
ba_wr_en<= 1'b0;
|
||||
|
||||
end
|
||||
else begin
|
||||
ba_mem_addr_in<=0;
|
||||
ba_wr_en<= 1'b0;
|
||||
wr_en_cnt<=0;
|
||||
end
|
||||
|
||||
end
|
||||
endmodule
|
|
@ -0,0 +1,82 @@
|
|||
//==================================================================
|
||||
// >>>>>>>>>>>>>>>>>>>>>>> COPYRIGHT NOTICE <<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
// ------------------------------------------------------------------
|
||||
// Copyright (c) 2014 by Lattice Semiconductor Corporation
|
||||
// ALL RIGHTS RESERVED
|
||||
// ------------------------------------------------------------------
|
||||
//
|
||||
// Permission:
|
||||
//
|
||||
// Lattice SG Pte. Ltd. grants permission to use this code for use
|
||||
// in synthesis for any Lattice programmable logic product. Other
|
||||
// use of this code, including the selling or duplication of any
|
||||
// portion is strictly prohibited.
|
||||
|
||||
//
|
||||
// Disclaimer:
|
||||
//
|
||||
// This VHDL or Verilog source code is intended as a design reference
|
||||
// which illustrates how these types of functions can be implemented.
|
||||
// It is the user's responsibility to verify their design for
|
||||
// consistency and functionality through the use of formal
|
||||
// verification methods. Lattice provides no warranty
|
||||
// regarding the use or functionality of this code.
|
||||
//
|
||||
// --------------------------------------------------------------------
|
||||
//
|
||||
// Lattice SG Pte. Ltd.
|
||||
// 101 Thomson Road, United Square #07-02
|
||||
// Singapore 307591
|
||||
//
|
||||
//
|
||||
// TEL: 1-800-Lattice (USA and Canada)
|
||||
// +65-6631-2000 (Singapore)
|
||||
// +1-503-268-8001 (other locations)
|
||||
//
|
||||
// web: http://www.latticesemi.com/
|
||||
// email: techsupport@latticesemi.com
|
||||
//
|
||||
// --------------------------------------------------------------------
|
||||
//
|
||||
|
||||
|
||||
module testpll_pll(REFERENCECLK,
|
||||
PLLOUTCORE,
|
||||
PLLOUTGLOBAL,
|
||||
RESET,
|
||||
LOCK);
|
||||
|
||||
input REFERENCECLK;
|
||||
input RESET; /* To initialize the simulation properly, the RESET signal (Active Low) must be asserted at the beginning of the simulation */
|
||||
output PLLOUTCORE;
|
||||
output PLLOUTGLOBAL;
|
||||
output LOCK;
|
||||
|
||||
SB_PLL40_CORE testpll_pll_inst(.REFERENCECLK(REFERENCECLK),
|
||||
.PLLOUTCORE(PLLOUTCORE),
|
||||
.PLLOUTGLOBAL(PLLOUTGLOBAL),
|
||||
.EXTFEEDBACK(),
|
||||
.DYNAMICDELAY(),
|
||||
.RESETB(RESET),
|
||||
.BYPASS(1'b0),
|
||||
.LATCHINPUTVALUE(),
|
||||
.LOCK(LOCK),
|
||||
.SDI(),
|
||||
.SDO(),
|
||||
.SCLK());
|
||||
|
||||
//\\ Fin=27, Fout=20.05;
|
||||
defparam testpll_pll_inst.DIVR = 4'b0000;
|
||||
defparam testpll_pll_inst.DIVF = 7'b0010111;
|
||||
defparam testpll_pll_inst.DIVQ = 3'b101;
|
||||
defparam testpll_pll_inst.FILTER_RANGE = 3'b011;
|
||||
defparam testpll_pll_inst.FEEDBACK_PATH = "SIMPLE";
|
||||
defparam testpll_pll_inst.DELAY_ADJUSTMENT_MODE_FEEDBACK = "FIXED";
|
||||
defparam testpll_pll_inst.FDA_FEEDBACK = 4'b0000;
|
||||
defparam testpll_pll_inst.DELAY_ADJUSTMENT_MODE_RELATIVE = "FIXED";
|
||||
defparam testpll_pll_inst.FDA_RELATIVE = 4'b0000;
|
||||
defparam testpll_pll_inst.SHIFTREG_DIV_MODE = 2'b00;
|
||||
defparam testpll_pll_inst.PLLOUT_SELECT = "GENCLK";
|
||||
defparam testpll_pll_inst.ENABLE_ICEGATE = 1'b0;
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,334 @@
|
|||
//==================================================================
|
||||
// >>>>>>>>>>>>>>>>>>>>>>> COPYRIGHT NOTICE <<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
// ------------------------------------------------------------------
|
||||
// Copyright (c) 2014 by Lattice Semiconductor Corporation
|
||||
// ALL RIGHTS RESERVED
|
||||
// ------------------------------------------------------------------
|
||||
//
|
||||
// Permission:
|
||||
//
|
||||
// Lattice SG Pte. Ltd. grants permission to use this code for use
|
||||
// in synthesis for any Lattice programmable logic product. Other
|
||||
// use of this code, including the selling or duplication of any
|
||||
// portion is strictly prohibited.
|
||||
|
||||
//
|
||||
// Disclaimer:
|
||||
//
|
||||
// This VHDL or Verilog source code is intended as a design reference
|
||||
// which illustrates how these types of functions can be implemented.
|
||||
// It is the user's responsibility to verify their design for
|
||||
// consistency and functionality through the use of formal
|
||||
// verification methods. Lattice provides no warranty
|
||||
// regarding the use or functionality of this code.
|
||||
//
|
||||
// --------------------------------------------------------------------
|
||||
//
|
||||
// Lattice SG Pte. Ltd.
|
||||
// 101 Thomson Road, United Square #07-02
|
||||
// Singapore 307591
|
||||
//
|
||||
//
|
||||
// TEL: 1-800-Lattice (USA and Canada)
|
||||
// +65-6631-2000 (Singapore)
|
||||
// +1-503-268-8001 (other locations)
|
||||
//
|
||||
// web: http://www.latticesemi.com/
|
||||
// email: techsupport@latticesemi.com
|
||||
//
|
||||
// --------------------------------------------------------------------
|
||||
//
|
||||
|
||||
//`define SIM
|
||||
`define i2c
|
||||
//`define spi
|
||||
//`define uart
|
||||
|
||||
|
||||
|
||||
module top_module
|
||||
// Outputs
|
||||
( o_led,
|
||||
// Inouts
|
||||
`ifdef i2c
|
||||
io_i2c_scl, io_i2c_sda,
|
||||
`endif
|
||||
//spi signals
|
||||
`ifdef spi
|
||||
i_sck, i_csn, i_mosi,o_miso,
|
||||
`endif
|
||||
`ifdef uart
|
||||
o_tx,i_rx,
|
||||
`endif
|
||||
//testpoints
|
||||
drive_on,
|
||||
// Inputs
|
||||
i_clk
|
||||
)/*synthesis syn_dspstyle=logic*/;
|
||||
|
||||
//input i_rst;
|
||||
|
||||
output wire o_led;
|
||||
output drive_on;
|
||||
input i_clk;
|
||||
`ifdef i2c
|
||||
inout io_i2c_scl;
|
||||
inout io_i2c_sda;
|
||||
`endif
|
||||
`ifdef spi
|
||||
input i_sck;
|
||||
input i_csn;
|
||||
input i_mosi;
|
||||
output o_miso;
|
||||
`endif
|
||||
`ifdef uart
|
||||
output o_tx;
|
||||
input i_rx;
|
||||
`endif
|
||||
wire sclin_i;
|
||||
wire sdain_i;
|
||||
wire sdaout_i;
|
||||
wire [7:0] datain_i;
|
||||
wire write_en_i;
|
||||
wire [7:0] dataout_i;
|
||||
wire [7:0] regaddr_i;
|
||||
wire read_en_i;
|
||||
reg [15:0] poweron_reset_count_i = 0; //initialized for simulation
|
||||
reg poweron_reset_n_i = 0; // initialized for simulation
|
||||
wire rst_i;
|
||||
|
||||
//mobeam control logic interface//
|
||||
wire [15:0] o_ba_mem_data;
|
||||
wire [7:0] i_ba_mem_addr;
|
||||
wire i_ba_mem_rd_en;
|
||||
wire i_ba_mem_rd_clk;
|
||||
wire rd_revision_code;
|
||||
wire rst_mobeam;
|
||||
wire [7:0] o_bsr_mem_data;
|
||||
wire [8:0] i_bsr_mem_addr;
|
||||
wire i_bsr_mem_rd_en;
|
||||
wire i_bsr_mem_rd_clk;
|
||||
wire o_new_data_rd;
|
||||
wire o_bsr_data_strobe;
|
||||
wire i_config_reg_done;
|
||||
////////////////////////////////
|
||||
wire clk_20mhz_g;
|
||||
|
||||
testpll_pll testpll_pll_inst(.REFERENCECLK(i_clk),
|
||||
.PLLOUTCORE(),
|
||||
.PLLOUTGLOBAL(clk_20mhz_g),
|
||||
.RESET(~rst_i/*1'b1*/),
|
||||
.LOCK());
|
||||
|
||||
//selection of SPI or I2C///
|
||||
`ifdef spi
|
||||
user_logic_control_reg_spidata_buf spi_mobeam_logic_interface
|
||||
(
|
||||
///spi Signal/////
|
||||
.i_sys_clk(i_clk),
|
||||
.rst(rst_i),
|
||||
.i_sck(i_sck),
|
||||
.i_csn(i_csn),
|
||||
.i_mosi(i_mosi),
|
||||
.o_miso(o_miso),
|
||||
///Mobeam Control Signals///
|
||||
.rd_revision_code(rd_revision_code),
|
||||
.rst_mobeam(rst_mobeam),
|
||||
.led_polarity(led_polarity),
|
||||
.mobeam_start_stop(mobeam_start_stop),
|
||||
.o_ba_mem_data(o_ba_mem_data),
|
||||
.i_ba_mem_addr(i_ba_mem_addr),
|
||||
.i_ba_mem_rd_en(i_ba_mem_rd_en),
|
||||
.i_ba_mem_rd_clk(i_ba_mem_rd_clk),
|
||||
.o_bsr_mem_data(o_bsr_mem_data),
|
||||
.i_bsr_mem_addr(i_bsr_mem_addr),
|
||||
.i_bsr_mem_rd_en(i_bsr_mem_rd_en),
|
||||
.i_bsr_mem_rd_clk(i_bsr_mem_rd_clk)
|
||||
// .i_config_reg_done(i_config_reg_done),
|
||||
// .o_new_data_rd(o_new_data_rd),
|
||||
// .o_data_strobe(o_bsr_data_strobe)
|
||||
);
|
||||
`endif
|
||||
|
||||
`ifdef i2c
|
||||
user_logic_control_reg_data_buf i2c_mobeam_logic_interface
|
||||
(
|
||||
///i2c Signal/////
|
||||
.clk(clk_20mhz_g),
|
||||
.rst(rst_i),
|
||||
.scl(sclin_i),
|
||||
.sdaout(sdaout_i),
|
||||
.sdaIn(sdain_i),
|
||||
///Mobeam Control Signals///
|
||||
.rd_revision_code(rd_revision_code),
|
||||
.rst_mobeam(rst_mobeam),
|
||||
.led_polarity(led_polarity),
|
||||
.mobeam_start_stop(mobeam_start_stop),
|
||||
.o_ba_mem_data(o_ba_mem_data),
|
||||
.i_ba_mem_addr(i_ba_mem_addr),
|
||||
.i_ba_mem_rd_en(i_ba_mem_rd_en),
|
||||
.i_ba_mem_rd_clk(i_ba_mem_rd_clk),
|
||||
.o_bsr_mem_data(o_bsr_mem_data),
|
||||
.i_bsr_mem_addr(i_bsr_mem_addr),
|
||||
.i_bsr_mem_rd_en(i_bsr_mem_rd_en),
|
||||
.i_bsr_mem_rd_clk(i_bsr_mem_rd_clk)
|
||||
// .i_config_reg_done(i_config_reg_done),
|
||||
// .o_new_data_rd(o_new_data_rd),
|
||||
// .o_data_strobe(o_bsr_data_strobe)
|
||||
);
|
||||
`endif
|
||||
|
||||
//--------------------------------------------------------------
|
||||
//uart module instantiation
|
||||
`ifdef uart
|
||||
uart_top u_inst(
|
||||
.i_sys_clk (clk_20mhz_g),
|
||||
.i_sys_rst (rst_i),
|
||||
.i_rx (i_rx),
|
||||
//outputs
|
||||
.o_tx (o_tx),
|
||||
.o_done (done_i),
|
||||
///Mobeam Control Signals
|
||||
.rd_revision_code (rd_revision_code),
|
||||
.rst_mobeam (rst_mobeam),
|
||||
.led_polarity (led_polarity),
|
||||
.mobeam_start_stop (mobeam_start_stop),
|
||||
.o_ba_mem_data (o_ba_mem_data),
|
||||
.i_ba_mem_addr (i_ba_mem_addr),
|
||||
.i_ba_mem_rd_en (i_ba_mem_rd_en),
|
||||
.i_ba_mem_rd_clk (i_ba_mem_rd_clk),
|
||||
.o_bsr_mem_data (o_bsr_mem_data),
|
||||
.i_bsr_mem_addr (i_bsr_mem_addr),
|
||||
.i_bsr_mem_rd_en (i_bsr_mem_rd_en),
|
||||
.i_bsr_mem_rd_clk (i_bsr_mem_rd_clk)
|
||||
);
|
||||
`endif
|
||||
///////////////////////////////////////////////////////
|
||||
|
||||
////MobeamControlFSM//////
|
||||
mobeam_control_fsm fsm_mobeam(
|
||||
.sys_clk_i(clk_20mhz_g),
|
||||
///Mobeam Control Signals///
|
||||
.start_stop(mobeam_start_stop),
|
||||
.rst_mobeam(rst_mobeam|rst_i),
|
||||
//bsr memory signals
|
||||
.bsr_mem_data(o_bsr_mem_data),
|
||||
.bsr_mem_clk(i_bsr_mem_rd_clk),
|
||||
.bsr_mem_addr(i_bsr_mem_addr),
|
||||
.bsr_mem_rd_en(i_bsr_mem_rd_en),
|
||||
|
||||
//ba memory signals
|
||||
.ba_mem_data(o_ba_mem_data),
|
||||
.ba_mem_clk(i_ba_mem_rd_clk),
|
||||
.ba_mem_addr(i_ba_mem_addr),
|
||||
.ba_mem_rd_en(i_ba_mem_rd_en),
|
||||
|
||||
//TO LED DRIVER
|
||||
.o_byte_data(barcode_array),
|
||||
.shift_done(byte_done),
|
||||
.bit_done(bit_done),
|
||||
.txn_start(txn_start),
|
||||
// .bsr_load_done(),
|
||||
.bsr_bw(bar_width)
|
||||
|
||||
);
|
||||
|
||||
wire [7:0] bar_width, barcode_array;
|
||||
/////LED Driver//////
|
||||
led_driver led_drive_inst (
|
||||
.sys_clk(clk_20mhz_g),
|
||||
.mobeam_start_stop(mobeam_start_stop),
|
||||
.led_polarity(led_polarity),
|
||||
.rst_n(~rst_i|rst_mobeam),
|
||||
.txn_start(txn_start),
|
||||
.bar_width(bar_width),
|
||||
.barcode_array(barcode_array),
|
||||
.byte_done(byte_done),
|
||||
.bit_done(bit_done),
|
||||
.drive_on(drive_on),
|
||||
.oled(o_led)
|
||||
//output dynamic_clk);
|
||||
);
|
||||
////////////////////////////////////////
|
||||
|
||||
////////////////////////////////////////////////
|
||||
/////oled data verification/////////////////////
|
||||
`ifdef SIM
|
||||
|
||||
reg [7:0] capture_oled=0;
|
||||
reg [7:0] oled_check=0;
|
||||
integer i=8;
|
||||
integer mon;
|
||||
|
||||
|
||||
initial begin
|
||||
mon = $fopen("monitor.txt","w"); //file to write
|
||||
end
|
||||
|
||||
always @(posedge i_clk) begin
|
||||
// $fwrite(mon,"%h \n",oled_check);
|
||||
if(txn_start && /*rise_reload_ba_reg_dtc*/fall_reload_ba_reg_dtc) begin
|
||||
//if(led_polarity)
|
||||
capture_oled[i]= o_led;
|
||||
//else
|
||||
// capture_oled[i]= ~o_led;
|
||||
end
|
||||
end
|
||||
|
||||
always @( negedge fall_reload_ba_reg_dtc) begin
|
||||
if(i==0) begin
|
||||
oled_check=capture_oled;
|
||||
|
||||
i<=7;
|
||||
end
|
||||
else
|
||||
|
||||
i<=i-1;
|
||||
end
|
||||
|
||||
|
||||
always @(posedge i_clk) begin
|
||||
if(txn_start && byte_done)
|
||||
$fwrite(mon,"%h \n",oled_check);
|
||||
end
|
||||
|
||||
|
||||
reg q_reload_ba_reg;
|
||||
always @(posedge i_clk or posedge rst_i) begin
|
||||
if(rst_i)
|
||||
q_reload_ba_reg<=0;
|
||||
else
|
||||
q_reload_ba_reg<=led_drive_inst.reload_ba_reg;
|
||||
end
|
||||
assign rise_reload_ba_reg_dtc=(~q_reload_ba_reg) && led_drive_inst.reload_ba_reg;
|
||||
|
||||
assign fall_reload_ba_reg_dtc=(q_reload_ba_reg) && (~led_drive_inst.reload_ba_reg);
|
||||
|
||||
`endif
|
||||
|
||||
//end
|
||||
///////////////////////////////////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////
|
||||
`ifdef i2c
|
||||
assign io_i2c_sda = (sdaout_i == 1'b0) ? 1'b0 : 1'bz;
|
||||
assign sdain_i = io_i2c_sda;
|
||||
assign sclin_i = io_i2c_scl;
|
||||
`endif
|
||||
|
||||
always @(posedge i_clk)begin
|
||||
if(poweron_reset_count_i == 256)begin
|
||||
poweron_reset_count_i <= 256;
|
||||
end else begin
|
||||
poweron_reset_count_i <= poweron_reset_count_i + 1;
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge i_clk)begin
|
||||
if(poweron_reset_count_i == 256)begin
|
||||
poweron_reset_n_i <= 1;
|
||||
end else begin
|
||||
poweron_reset_n_i <= 0;
|
||||
end
|
||||
end
|
||||
assign rst_i = ~poweron_reset_n_i;
|
||||
endmodule // i2c_slave
|
|
@ -0,0 +1,138 @@
|
|||
//==================================================================
|
||||
// >>>>>>>>>>>>>>>>>>>>>>> COPYRIGHT NOTICE <<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
// ------------------------------------------------------------------
|
||||
// Copyright (c) 2014 by Lattice Semiconductor Corporation
|
||||
// ALL RIGHTS RESERVED
|
||||
// ------------------------------------------------------------------
|
||||
//
|
||||
// Permission:
|
||||
//
|
||||
// Lattice SG Pte. Ltd. grants permission to use this code for use
|
||||
// in synthesis for any Lattice programmable logic product. Other
|
||||
// use of this code, including the selling or duplication of any
|
||||
// portion is strictly prohibited.
|
||||
|
||||
//
|
||||
// Disclaimer:
|
||||
//
|
||||
// This VHDL or Verilog source code is intended as a design reference
|
||||
// which illustrates how these types of functions can be implemented.
|
||||
// It is the user's responsibility to verify their design for
|
||||
// consistency and functionality through the use of formal
|
||||
// verification methods. Lattice provides no warranty
|
||||
// regarding the use or functionality of this code.
|
||||
//
|
||||
// --------------------------------------------------------------------
|
||||
//
|
||||
// Lattice SG Pte. Ltd.
|
||||
// 101 Thomson Road, United Square #07-02
|
||||
// Singapore 307591
|
||||
//
|
||||
//
|
||||
// TEL: 1-800-Lattice (USA and Canada)
|
||||
// +65-6631-2000 (Singapore)
|
||||
// +1-503-268-8001 (other locations)
|
||||
//
|
||||
// web: http://www.latticesemi.com/
|
||||
// email: techsupport@latticesemi.com
|
||||
//
|
||||
// --------------------------------------------------------------------
|
||||
//
|
||||
|
||||
|
||||
module user_logic_control_reg_data_buf
|
||||
(
|
||||
///i2c signal/////
|
||||
clk,
|
||||
rst,
|
||||
scl,
|
||||
sdaout,
|
||||
sdaIn,
|
||||
///mobeam control signals///
|
||||
rd_revision_code,
|
||||
rst_mobeam,
|
||||
led_polarity,
|
||||
mobeam_start_stop,
|
||||
o_ba_mem_data,
|
||||
i_ba_mem_addr,
|
||||
i_ba_mem_rd_en,
|
||||
i_ba_mem_rd_clk,
|
||||
o_bsr_mem_data,
|
||||
i_bsr_mem_addr,
|
||||
i_bsr_mem_rd_en,
|
||||
i_bsr_mem_rd_clk
|
||||
);
|
||||
///////i2c signals interface///////
|
||||
input clk;
|
||||
input rst;
|
||||
inout scl;
|
||||
output sdaout;
|
||||
input sdaIn;
|
||||
//////////////////////////////////
|
||||
//mobeam control logic interface//
|
||||
output [15:0] o_ba_mem_data;
|
||||
input [7:0] i_ba_mem_addr;
|
||||
input i_ba_mem_rd_en;
|
||||
input i_ba_mem_rd_clk;
|
||||
output rd_revision_code;
|
||||
output rst_mobeam;
|
||||
output mobeam_start_stop;
|
||||
output [7:0] o_bsr_mem_data;
|
||||
input [8:0] i_bsr_mem_addr;
|
||||
input i_bsr_mem_rd_en;
|
||||
input i_bsr_mem_rd_clk;
|
||||
|
||||
output led_polarity;
|
||||
|
||||
//////////////////////////////////
|
||||
///////wires and reg declarations////
|
||||
wire[7:0]dataOut;
|
||||
wire[7:0]regAddr;
|
||||
wire writeEn;
|
||||
wire readEn;
|
||||
wire i2c_start;
|
||||
wire[7:0]dataIn;
|
||||
///////////////////////////////////////
|
||||
serialInterface i2cslavedatafsm(/*AUTOARG*/
|
||||
// Outputs
|
||||
.dataOut(dataOut),
|
||||
.regAddr(regAddr),
|
||||
.sdaOut(sdaout),
|
||||
.writeEn(writeEn),
|
||||
.readEn(readEn),
|
||||
.i2c_start(i2c_start),
|
||||
// Inputs
|
||||
.clk(clk),
|
||||
.dataIn(dataIn),
|
||||
.rst(rst),
|
||||
.scl(scl),
|
||||
.sdaIn(sdaIn)
|
||||
);
|
||||
|
||||
|
||||
/*mobeam_reg_sets*/mobeam_i2c_reg_interface mobeam_registers(
|
||||
.rst_i(rst),
|
||||
.clk_i(clk),
|
||||
//i2c slave interface signals///
|
||||
.i2c_master_to_slave_data_i(dataOut),
|
||||
.i2c_slave_to_master_data_o(dataIn),
|
||||
.i2c_slave_data_address_i(regAddr),
|
||||
.wr_en_i(writeEn),
|
||||
.rd_en_i(readEn),
|
||||
.i2c_start_i(i2c_start),
|
||||
//MoBeam control logic interface//
|
||||
.rd_revision_code(rd_revision_code),
|
||||
.rst_mobeam(rst_mobeam),
|
||||
.led_polarity(led_polarity),
|
||||
.mobeam_start_stop(mobeam_start_stop),
|
||||
.o_ba_mem_data(o_ba_mem_data),
|
||||
.i_ba_mem_addr(i_ba_mem_addr),
|
||||
.i_ba_mem_rd_en(i_ba_mem_rd_en),
|
||||
.i_ba_mem_rd_clk(i_ba_mem_rd_clk),
|
||||
.o_bsr_mem_data(o_bsr_mem_data),
|
||||
.i_bsr_mem_addr(i_bsr_mem_addr),
|
||||
.i_bsr_mem_rd_en(i_bsr_mem_rd_en),
|
||||
.i_bsr_mem_rd_clk(i_bsr_mem_rd_clk)
|
||||
);
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,31 @@
|
|||
# Standard Configuration Example
|
||||
[dir_path]
|
||||
script_base = OPENFPGAPATHKEYWORD/fpga_flow/scripts/
|
||||
benchmark_dir = OPENFPGAPATHKEYWORD/fpga_flow/benchmarks/Verilog/lattice_ultra_example/PID_Controller
|
||||
yosys_path = OPENFPGAPATHKEYWORD/yosys/yosys
|
||||
odin2_path = OPENFPGAPATHKEYWORD/fpga_flow/not_used_atm/odin2.exe
|
||||
cirkit_path = OPENFPGAPATHKEYWORD/fpga_flow/not_used_atm/cirkit
|
||||
abc_path = OPENFPGAPATHKEYWORD/yosys/yosys-abc
|
||||
abc_mccl_path = OPENFPGAPATHKEYWORD/abc_with_bb_support/abc
|
||||
abc_with_bb_support_path = OPENFPGAPATHKEYWORD/abc_with_bb_support/abc
|
||||
mpack1_path = OPENFPGAPATHKEYWORD/fpga_flow/not_used_atm/mpack1
|
||||
m2net_path = OPENFPGAPATHKEYWORD/fpga_flow/not_used_atm/m2net
|
||||
mpack2_path = OPENFPGAPATHKEYWORD/fpga_flow/not_used_atm/mpack2
|
||||
vpr_path = OPENFPGAPATHKEYWORD/vpr7_x2p/vpr/vpr
|
||||
rpt_dir = OPENFPGAPATHKEYWORD/fpga_flow/results
|
||||
ace_path = OPENFPGAPATHKEYWORD/ace2/ace
|
||||
|
||||
[flow_conf]
|
||||
#Flow Types standard|mpack2|mpack1|vtr_standard|vtr|yosys_vpr
|
||||
flow_type = yosys_vpr
|
||||
vpr_arch = OPENFPGAPATHKEYWORD/fpga_flow/arch/winbond90/k6_N10_rram_memory_bank_SC_winbond90.xml
|
||||
mpack1_abc_stdlib = Not_Required
|
||||
m2net_conf = Not_Required
|
||||
mpack2_arch = Not_Required
|
||||
power_tech_xml = OPENFPGAPATHKEYWORD/fpga_flow/tech/winbond90nm/winbond90nm_power_properties.xml
|
||||
|
||||
[csv_tags]
|
||||
mpack1_tags = Global mapping efficiency: | efficiency: | occupancy wo buf: | efficiency wo buf:
|
||||
mpack2_tags = BLE Number: | BLE Fill Rate:
|
||||
vpr_tags = Netlist clb blocks: | Final critical path: | Total logic delay: | total net delay: | Total routing area: | Total used logic block area: | Total wirelength: | Packing took | Placement took | Routing took | Average net density: | Median net density: | Recommend no. of clock cycles:
|
||||
vpr_power_tags = PB Types | Routing | Switch Box | Connection Box | Primitives | Interc Structures | lut6 | ff
|
|
@ -0,0 +1,71 @@
|
|||
#! /bin/bash
|
||||
# Exit if error occurs
|
||||
set -e
|
||||
# Make sure a clear start
|
||||
default_task='lattice_benchmark'
|
||||
pwd_path="$PWD"
|
||||
task_name=${1:-$default_task} # run task defined in argument else run default task
|
||||
config_file="$PWD/configs/${task_name}.conf"
|
||||
bench_txt="$PWD/benchmarks/List/${task_name}.txt"
|
||||
rpt_file="$PWD/csv_rpts/fpga_spice/${task_name}.csv"
|
||||
task_file="$PWD/vpr_fpga_spice_task_lists/${task_name}"
|
||||
|
||||
verilog_path="${PWD}/regression_${task_name}"
|
||||
|
||||
config_file_final=$(echo ${config_file/.conf/_final.conf})
|
||||
|
||||
# List of argument passed to FPGA flow
|
||||
vpr_config_flags=(
|
||||
'-N 10'
|
||||
'-K 6'
|
||||
'-ace_d 0.5'
|
||||
'-multi_thread 1'
|
||||
'-vpr_fpga_x2p_rename_illegal_port'
|
||||
'-vpr_fpga_verilog'
|
||||
'-vpr_fpga_bitstream_generator'
|
||||
'-vpr_fpga_verilog_print_autocheck_top_testbench'
|
||||
'-vpr_fpga_verilog_include_timing'
|
||||
'-vpr_fpga_verilog_include_signal_init'
|
||||
'-vpr_fpga_verilog_formal_verification_top_netlist'
|
||||
'-fix_route_chan_width'
|
||||
'-vpr_fpga_verilog_include_icarus_simulator'
|
||||
'-power'
|
||||
)
|
||||
# vpr_config_flags+=("$@") # Append provided arguments
|
||||
|
||||
#=============== Argument Sanity Check =====================
|
||||
#Check if script running in correct (OpenFPGA/fpga_flow) folder
|
||||
if [[ $pwd_path != *"OpenFPGA/fpga_flow"* ]]; then
|
||||
echo "Error : Execute script from OpenFPGA/fpga_flow project folder"
|
||||
exitflag=1
|
||||
fi
|
||||
|
||||
#Check if fconfig and benchmark_list file exists
|
||||
for filepath in $config_file $bench_txt; do
|
||||
if [ ! -f $filepath ]; then
|
||||
echo "$filepath File not found!"
|
||||
exitflag=1
|
||||
fi
|
||||
done
|
||||
if [ -n "$exitflag" ]; then
|
||||
echo "Terminating script . . . . . . "
|
||||
exit 1
|
||||
fi
|
||||
#=======================================================
|
||||
#======== Replace variables in config file =============
|
||||
|
||||
#Extract OpenFPGA Project Path and Escape
|
||||
OPENFPGAPATHKEYWORD=$(echo "$(echo $pwd_path | sed 's/.OpenFPGA.*$//')/OpenFPGA" | sed 's/\//\\\//g')
|
||||
|
||||
# Create final config file with replaced keywords replaced variables
|
||||
sed 's/OPENFPGAPATHKEYWORD/'"${OPENFPGAPATHKEYWORD}"'/g' $config_file >$config_file_final
|
||||
|
||||
#==================Clean result, change directory and execute ===============
|
||||
cd ${pwd_path}/scripts
|
||||
|
||||
# perl fpga_flow.pl -conf ${config_file_final} -benchmark ${bench_txt} -rpt ${rpt_file} -vpr_fpga_verilog_dir $verilog_path $(echo "${vpr_config_flags[@]}")
|
||||
|
||||
perl fpga_flow.pl -conf ${config_file_final} -benchmark ${bench_txt} -rpt ${rpt_file} -N 10 -K 6 -ace_d 0.5 -multi_thread 1 -vpr_fpga_x2p_rename_illegal_port -vpr_fpga_verilog -vpr_fpga_verilog_dir $verilog_path -vpr_fpga_bitstream_generator -vpr_fpga_verilog_print_autocheck_top_testbench -vpr_fpga_verilog_include_timing -vpr_fpga_verilog_include_signal_init -vpr_fpga_verilog_formal_verification_top_netlist -fix_route_chan_width -vpr_fpga_verilog_include_icarus_simulator -power
|
||||
|
||||
echo "Netlists successfully generated and simulated"
|
||||
exit 0
|
File diff suppressed because it is too large
Load Diff
|
@ -32,17 +32,17 @@ sub opts_read()
|
|||
if ($#ARGV == -1){
|
||||
print "Error: Not enough input argument!\n";
|
||||
&print_usage();
|
||||
exit(1);
|
||||
exit(1);
|
||||
} else {
|
||||
for (my $iargv = 0; $iargv < $#ARGV+1; $iargv++){
|
||||
if ("-i" eq $ARGV[$iargv]){
|
||||
if ("-i" eq $ARGV[$iargv]){
|
||||
$arch_file = $ARGV[$iargv+1];
|
||||
$iargv++;
|
||||
} elsif ("-o" eq $ARGV[$iargv]){
|
||||
} elsif ("-o" eq $ARGV[$iargv]){
|
||||
$new_arch_file = $ARGV[$iargv+1];
|
||||
$overwrite = "FALSE";
|
||||
$iargv++;
|
||||
} elsif ("-k" eq $ARGV[$iargv]){
|
||||
} elsif ("-k" eq $ARGV[$iargv]){
|
||||
$keyword = $ARGV[$iargv+1];
|
||||
$change_to = $ARGV[$iargv+2];
|
||||
$default_keyword = "FALSE";
|
||||
|
@ -77,8 +77,8 @@ sub save_original($)
|
|||
my ($template) = @_;
|
||||
my $renamed_template = "$template".".bak";
|
||||
rename($template, $renamed_template);
|
||||
|
||||
return $renamed_template;
|
||||
|
||||
return $renamed_template;
|
||||
}
|
||||
|
||||
sub findPath(){
|
||||
|
@ -103,7 +103,7 @@ sub rewrite_file($ $)
|
|||
my ($arch, $template) = @_;
|
||||
open(IN, '<'.$template);
|
||||
open(OUT, '>'.$arch);
|
||||
|
||||
|
||||
if($default_keyword eq "TRUE"){
|
||||
my $myPath = &findPath();
|
||||
while(<IN>){
|
||||
|
@ -125,7 +125,7 @@ sub main()
|
|||
my $rewrite_needed = &rewriting_required_check($arch_file);
|
||||
if($rewrite_needed == 1){
|
||||
if($overwrite eq "TRUE"){
|
||||
my $template_file = &save_original($arch_file);
|
||||
my $template_file = &save_original($arch_file);
|
||||
&rewrite_file($arch_file, $template_file);
|
||||
} else {
|
||||
&rewrite_file($new_arch_file, $arch_file);
|
||||
|
@ -133,6 +133,6 @@ sub main()
|
|||
}
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
&main();
|
||||
exit(0);
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
winbond90nm
|
|
@ -0,0 +1,2 @@
|
|||
docker run -it --rm -v "%cd%":/localfile -w="/localfile/vpr7_x2p/vpr" goreganesh/open_fpga ./go_ganesh.sh
|
||||
pause
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,882 @@
|
|||
<!--
|
||||
Flagship Heterogeneous Architecture with Carry Chains for VTR 7.0.
|
||||
|
||||
- 40 nm technology
|
||||
- General purpose logic block:
|
||||
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with all 5 inputs shared)
|
||||
with optionally registered outputs
|
||||
Each 5-LUT has an arithemtic mode that converts it to a single-bit adder with both inputs driven by 4-LUTs (both 4-LUTs share all 4 inputs)
|
||||
Carry chain links to vertically adjacent logic blocks
|
||||
- Memory size 32 Kbits, memory aspect ratios vary from a data width of 1 to data width of 64.
|
||||
Height = 6, found on every (8n+2)th column
|
||||
- Multiplier modes: one 36x36, two 18x18, each 18x18 can also operate as two 9x9.
|
||||
Height = 4, found on every (8n+6)th column
|
||||
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
|
||||
|
||||
Details on Modelling:
|
||||
|
||||
The electrical design of the architecture described here is NOT from an
|
||||
optimized, SPICED architecture. Instead, we attempt to create a reasonable
|
||||
architecture file by using an existing commercial FPGA to approximate the area,
|
||||
delay, and power of the underlying components. This is combined with a reasonable 40 nm
|
||||
model of wiring and circuit design for low-level routing components, where available.
|
||||
The resulting architecture has delays that roughly match a commercial 40 nm FPGA, but also
|
||||
has wiring electrical parameters that allow the wire lengths and switch patterns to be
|
||||
modified and you will still get reasonable delay results for the new architecture.
|
||||
The following describes, in detail, how we obtained the various electrical values for this
|
||||
architecture.
|
||||
|
||||
Rmin for nmos and pmos, routing buffer sizes, and I/O pad delays are from the ifar
|
||||
architecture created by Ian Kuon: K06 N10 45nm fc 0.15 area-delay optimized architecture.
|
||||
(n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml)
|
||||
This routing architecture was optimized for 45 nm, and we have scaled it linearly to 40 nm to
|
||||
match the overall target (a 40 nm FPGA).
|
||||
|
||||
We obtain delay numbers by measuring delays of routing, soft logic blocks,
|
||||
memories, and multipliers from test circuits on a Stratix IV GX device
|
||||
(EP4SGX230DF29C2X, i.e. fastest speed grade). For routing, we took the average delay of H4 and V4
|
||||
wires. Rmetal and Cmetal values for the routing wires were obtained from work done by Charles
|
||||
Chiasson. We use a 96 nm half-pitch (corresponding to mid-level metal stack 40 nm routing) and
|
||||
take the R and C data from the ITRS roadmap.
|
||||
|
||||
For the general purpose logic block, we assume that the area and delays of the Stratix IV
|
||||
crossbar is close enough to the crossbar modelled here. We use 40 inputs and 20 feedback lines in
|
||||
the cluster and a full crossbar, leading to 53:1 multiplexers in front of each BLE input.
|
||||
Stratix IV uses 52 inputs and 20 feedback lines, but only a half-populated crossbar, leading to
|
||||
36:1 multiplexers. We require 60 such multiplexers, while Stratix IV requires 88 for its more
|
||||
complex fracturable BLEs + the extra control signals. We justify this rough approximation as follows:
|
||||
The Stratix IV crossbar has more inputs (72 vs. 60) and
|
||||
outputs (88 vs. 60) than our full crossbar which should increase its area and delay, but the
|
||||
Stratix IV crossbar is also 50% sparse (each mux is 36:1 instead of 53:1) which should reduce its
|
||||
area and delay. The total number of crossbar switch points is roughly similar between the two
|
||||
architectures (3160 for SIV and 3600 for the academic architecture below), so we use the area
|
||||
& delay of the Stratix IV crossbar as a rough approximation of our crossbar.
|
||||
|
||||
For LUTs, we include LUT
|
||||
delays measured from Stratix IV which is dependant on the input used (ie. some
|
||||
LUT inputs are faster than others). The CAD tools at the time of VTR 7 does
|
||||
not consider differences in LUT input delays.
|
||||
|
||||
Adder delays obtained as approximate values from a Stratix IV EP4SE230F29C3 device.
|
||||
Delay obtained by compiling a 256 bit adder (registered inputs and outputs,
|
||||
all pins except clock virtual) then measuring the delays in chip-planner,
|
||||
sumout delay = 0.271ns to 0.348 ns, intra-block carry delay = 0.011 ns,
|
||||
inter-block carry delay = 0.327 ns. Given this data, I will approximate
|
||||
sumout 0.3 ns, intra-block carry-delay = 0.01 ns, and
|
||||
inter-block carry-delay = 0.16 ns (since Altera inter-block carry delay has
|
||||
overhead that we don't have, I'll approximate the delay of a simpler chain at
|
||||
one half what they have. This is very rough, anything from 0.01ns to 0.327ns
|
||||
can be justified).
|
||||
|
||||
Logic block area numbers obtained by scaling overall tile area of a 65nm
|
||||
Stratix III device, (as given in Wong, Betz and Rose, FPGA 2011) to 40 nm, then subtracting out
|
||||
routing area at a channel width of 300. We use a channel width of 300 because it can route
|
||||
all the VTR 6.0 benchmark circuits with an approximately 20% safety margin, and is also close to the
|
||||
total channel width of Stratix IV. Hence this channel width is close to the commercial practice of
|
||||
choosing a width that provides high routability. The architecture can be routed at different channel
|
||||
widths, but we estimate the tile size and hence the physical length of routing wires assuming
|
||||
a channel width of 300.
|
||||
|
||||
Sanity checks employed:
|
||||
1. We confirmed the routing buffer delay is ~1/3rd of total routing delay at L = 4. This matches
|
||||
common electrical design.
|
||||
|
||||
|
||||
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
|
||||
-->
|
||||
|
||||
|
||||
<architecture>
|
||||
|
||||
<!--
|
||||
ODIN II specific config begins
|
||||
Describes the types of user-specified netlist blocks (in blif, this corresponds to
|
||||
".model [type_of_block]") that this architecture supports.
|
||||
|
||||
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
|
||||
already special structures in blif (.names, .input, .output, and .latch)
|
||||
that describe them.
|
||||
-->
|
||||
<models>
|
||||
<model name="io">
|
||||
<input_ports>
|
||||
<port name="outpad"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="inpad"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
<model name="adder">
|
||||
<input_ports>
|
||||
<port name="a"/>
|
||||
<port name="b"/>
|
||||
<port name="cin"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="cout"/>
|
||||
<port name="sumout"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
<model name="frac_lut6">
|
||||
<input_ports>
|
||||
<port name="in"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="lut6_out"/>
|
||||
<port name="lut5_out"/>
|
||||
<port name="lut4_out"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
</models>
|
||||
<!-- ODIN II specific config ends -->
|
||||
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout width="2" height="2"/>
|
||||
<spice_settings>
|
||||
<parameters>
|
||||
<options sim_temp="25" post="off" captab="off" fast="on"/>
|
||||
<monte_carlo mc_sim="off" num_mc_points="2" cmos_variation="off" rram_variation="off">
|
||||
<cmos abs_variation="0.1" num_sigma="3"/>
|
||||
<rram abs_variation="0.1" num_sigma="3"/>
|
||||
</monte_carlo>
|
||||
<measure sim_num_clock_cycle="auto" accuracy="1e-13" accuracy_type="abs">
|
||||
<slew>
|
||||
<rise upper_thres_pct="0.95" lower_thres_pct="0.05"/>
|
||||
<fall upper_thres_pct="0.05" lower_thres_pct="0.95"/>
|
||||
</slew>
|
||||
<delay>
|
||||
<rise input_thres_pct="0.5" output_thres_pct="0.5"/>
|
||||
<fall input_thres_pct="0.5" output_thres_pct="0.5"/>
|
||||
</delay>
|
||||
</measure>
|
||||
<stimulate>
|
||||
<clock op_freq="auto" sim_slack="0.2" prog_freq="2.5e6">
|
||||
<rise slew_time="20e-12" slew_type="abs"/>
|
||||
<fall slew_time="20e-12" slew_type="abs"/>
|
||||
</clock>
|
||||
<input>
|
||||
<rise slew_time="25e-12" slew_type="abs"/>
|
||||
<fall slew_time="25e-12" slew_type="abs"/>
|
||||
</input>
|
||||
</stimulate>
|
||||
</parameters>
|
||||
<tech_lib lib_type="industry" transistor_type="TOP_TT" lib_path="/research/ece/lnis/USERS/tang/tangxifan-eda-tools/branches/subvt_fpga/process/tsmc40nm/toplevel.l" nominal_vdd="0.9" io_vdd="2.5"/>
|
||||
<transistors pn_ratio="2" model_ref="M">
|
||||
<nmos model_name="nch" chan_length="40e-9" min_width="140e-9"/>
|
||||
<pmos model_name="pch" chan_length="40e-9" min_width="140e-9"/>
|
||||
<io_nmos model_name="nch_25" chan_length="270e-9" min_width="320e-9"/>
|
||||
<io_pmos model_name="pch_25" chan_length="270e-9" min_width="320e-9"/>
|
||||
</transistors>
|
||||
<module_circuit_models>
|
||||
<circuit_model type="inv_buf" name="inv1" prefix="inv1" is_default="1">
|
||||
<design_technology type="cmos" topology="inverter" size="1" tapered="off"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="0">
|
||||
<design_technology type="cmos" topology="buffer" size="1" tapered="on" tap_drive_level="2" f_per_stage="4"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="inv_buf" name="tap_inv4" prefix="tap_inv4" is_default="0">
|
||||
<design_technology type="cmos" topology="buffer" size="1" tapered="on" tap_drive_level="3" f_per_stage="4"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="pass_gate" name="tgate" prefix="tgate" is_default="1">
|
||||
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
|
||||
<input_buffer exist="off"/>
|
||||
<output_buffer exist="off"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="input" prefix="sel" size="1"/>
|
||||
<port type="input" prefix="selb" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
|
||||
10e-12 0e-12 0e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
|
||||
10e-12 0e-12 0e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="gate" name="or2" prefix="or2" is_default="1" verilog_netlist="/research/ece/lnis/USERS/alacchi/clone_github/tangxifan-eda-tools/branches/vpr7_rram/vpr/VerilogNetlists/sram.v/VerilogNetlists/essential_gates.v">
|
||||
<design_technology type="cmos" topology="OR"/>
|
||||
<input_buffer exist="off"/>
|
||||
<output_buffer exist="off"/>
|
||||
<port type="input" prefix="in" size="2"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="1">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="off"/>
|
||||
<output_buffer exist="off"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<wire_param model_type="pie" res_val="101" cap_val="22.5e-15" level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
|
||||
</circuit_model>
|
||||
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="1">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="off"/>
|
||||
<output_buffer exist="off"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<wire_param model_type="pie" res_val="0" cap_val="0" level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
|
||||
</circuit_model>
|
||||
<circuit_model type="mux" name="mux_tree_like" prefix="mux_tree_like" dump_structural_verilog="true">
|
||||
<design_technology type="cmos" structure="tree-like" add_const_input="true" const_input_val="1"/>
|
||||
<input_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<output_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<!--mux2to1 subckt_name="mux2to1"/-->
|
||||
<pass_gate_logic circuit_model_name="tgate"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="mux" name="mux_tree_like_tapbuf" prefix="mux_tree_like_tapbuf" dump_structural_verilog="true" is_default="0">
|
||||
<design_technology type="cmos" structure="tree-like" add_const_input="true" const_input_val="1"/>
|
||||
<input_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<output_buffer exist="on" circuit_model_name="tap_inv4"/>
|
||||
<!--mux2to1 subckt_name="mux2to1"/-->
|
||||
<pass_gate_logic circuit_model_name="tgate"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" is_default="1" dump_structural_verilog="true">
|
||||
<design_technology type="cmos" structure="tree-like" add_const_input="true" const_input_val="1"/>
|
||||
<input_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<output_buffer exist="on" circuit_model_name="tap_inv4"/>
|
||||
<!--mux2to1 subckt_name="mux2to1"/-->
|
||||
<pass_gate_logic circuit_model_name="tgate"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="1"/>
|
||||
</circuit_model>
|
||||
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
|
||||
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/SpiceNetlists/ff.sp" verilog_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/VerilogNetlists/ff.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<output_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<pass_gate_logic circuit_model_name="tgate"/>
|
||||
<port type="input" prefix="D" size="1"/>
|
||||
<port type="input" prefix="Set" size="1" is_global="true" default_val="0" is_set="true"/>
|
||||
<port type="input" prefix="Reset" size="1" is_global="true" default_val="1" is_reset="true"/>
|
||||
<port type="output" prefix="Q" size="1"/>
|
||||
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
|
||||
</circuit_model>
|
||||
<circuit_model type="lut" name="frac_lut6" prefix="frac_lut6" dump_structural_verilog="true">
|
||||
<design_technology type="cmos" fracturable_lut="true"/>
|
||||
<input_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<output_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<lut_input_buffer exist="on" circuit_model_name="buf4"/>
|
||||
<lut_input_inverter exist="on" circuit_model_name="inv1"/>
|
||||
<pass_gate_logic circuit_model_name="tgate"/>
|
||||
<port type="input" prefix="in" size="6" tri_state_map="----11" circuit_model_name="or2"/>
|
||||
<port type="output" prefix="lut4_out" size="4" lut_frac_level="4" lut_output_mask="0,1,2,3"/>
|
||||
<port type="output" prefix="lut5_out" size="2" lut_frac_level="5" lut_output_mask="0,1"/>
|
||||
<port type="output" prefix="lut6_out" size="1" lut_output_mask="0"/>
|
||||
<port type="sram" prefix="sram" size="64"/>
|
||||
<port type="sram" prefix="mode" size="2" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
|
||||
</circuit_model>
|
||||
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
|
||||
<circuit_model type="sff" name="sc_dff_compact" prefix="scff" spice_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/SpiceNetlists/ff.sp" verilog_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/VerilogNetlists/ff.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<output_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<pass_gate_logic circuit_model_name="tgate"/>
|
||||
<port type="input" prefix="pReset" size="1" is_global="true" default_val="1" is_reset="true" is_prog="true"/>
|
||||
<port type="input" prefix="pSet" size="1" is_global="true" default_val="0" is_set="true" is_prog="true"/>
|
||||
<port type="input" prefix="D" size="1"/>
|
||||
<port type="output" prefix="Q" size="1"/>
|
||||
<port type="output" prefix="Qb" size="1"/>
|
||||
<port type="clock" prefix="prog_clk" size="1" is_global="true" default_val="0" is_prog="true"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/SpiceNetlists/io.sp" verilog_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/VerilogNetlists/io.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<output_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<pass_gate_logic circuit_model_name="tgate"/>
|
||||
<port type="inout" prefix="pad" size="1"/>
|
||||
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
|
||||
<!--port type="sram" prefix="enb" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="0"/-->
|
||||
<port type="input" prefix="outpad" size="1"/>
|
||||
<!-- <port type="input" prefix="zin" size="1" is_global="true" default_val="0" /> -->
|
||||
<port type="output" prefix="inpad" size="1"/>
|
||||
</circuit_model>
|
||||
<!-- Hard logic definition for heterogenous blocks -->
|
||||
<circuit_model type="hard_logic" name="adder_1bit" prefix="adder" spice_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/SpiceNetlists/adder.sp" verilog_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/VerilogNetlists/adder.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<output_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<port type="input" prefix="a" size="1"/>
|
||||
<port type="input" prefix="b" size="1"/>
|
||||
<port type="input" prefix="cin" size="1"/>
|
||||
<port type="output" prefix="sumout" size="1"/>
|
||||
<port type="output" prefix="cout" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="sram" name="sram6T" prefix="sram" spice_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/SpiceNetlists/sram.sp" verilog_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/VerilogNetlists/sram.v" >
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<output_buffer exist="on" circuit_model_name="inv1"/>
|
||||
<pass_gate_logic circuit_model_name="tgate"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="2"/>
|
||||
</circuit_model>
|
||||
|
||||
</module_circuit_models>
|
||||
</spice_settings>
|
||||
<device>
|
||||
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
|
||||
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
|
||||
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
|
||||
lined up with Stratix IV.
|
||||
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
|
||||
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
|
||||
by 2.5x when looking up in Jeff's tables.
|
||||
The delay values are lined up with Stratix IV, which has an architecture similar to this
|
||||
proposed FPGA, and which is also 40 nm
|
||||
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
|
||||
4x minimum drive strength buffer. -->
|
||||
|
||||
<sizing R_minW_nmos="8926" R_minW_pmos="16067" ipin_mux_trans_size="9"/>
|
||||
<timing C_ipin_cblock="596e-18" T_ipin_cblock="77.93e-12"/>
|
||||
|
||||
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
|
||||
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
|
||||
-->
|
||||
<area grid_logic_tile_area="0"/>
|
||||
<sram area="6">
|
||||
<verilog organization="scan-chain" circuit_model_name="sc_dff_compact"/>
|
||||
<!--verilog organization="memory-bank" circuit_model_name="sram6T_blwl"/-->
|
||||
<spice organization="standalone" circuit_model_name="sram6T" />
|
||||
</sram>
|
||||
<chan_width_distr>
|
||||
<io width="1.000000"/>
|
||||
<x distr="uniform" peak="1.000000"/>
|
||||
<y distr="uniform" peak="1.000000"/>
|
||||
</chan_width_distr>
|
||||
<switch_block type="wilton" fs="3"/>
|
||||
</device>
|
||||
|
||||
<cblocks>
|
||||
<switch type="mux" name="cb_mux" R="0" Cin="596e-18" Cout="0" Tdel="77.93e-12" mux_trans_size="3" buf_size="63" circuit_model_name="mux_tree_like_tapbuf" structure="tree-like" num_level="2">
|
||||
</switch>
|
||||
</cblocks>
|
||||
<switchlist>
|
||||
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
|
||||
book area formula. This means the mux transistors are about 5x minimum drive strength.
|
||||
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
|
||||
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
|
||||
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
|
||||
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||
2.5x when looking up in Jeff's tables.
|
||||
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
|
||||
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
|
||||
<switch type="mux" name="sb_mux_L4" R="105" Cin="596e-18" Cout="0e-15" Tdel="47.2e-12" mux_trans_size="3" buf_size="63" circuit_model_name="mux_tree_like_tapbuf" structure="tree-like" num_level="1">
|
||||
</switch>
|
||||
<switch type="mux" name="sb_mux_L2" R="115" Cin="596e-18" Cout="0e-15" Tdel="47.2e-12" mux_trans_size="3" buf_size="63" circuit_model_name="mux_tree_like_tapbuf" structure="tree-like" num_level="1">
|
||||
</switch>
|
||||
<switch type="mux" name="sb_mux_L1" R="128" Cin="596e-18" Cout="0e-15" Tdel="47.2e-12" mux_trans_size="3" buf_size="63" circuit_model_name="mux_tree_like_tapbuf" structure="tree-like" num_level="1">
|
||||
</switch>
|
||||
</switchlist>
|
||||
<segmentlist>
|
||||
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
|
||||
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
|
||||
<segment freq="0.4" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15" circuit_model_name="chan_segment">
|
||||
<mux name="sb_mux_L4"/>
|
||||
<sb type="pattern">1 1 1 1 1</sb>
|
||||
<cb type="pattern">1 1 1 1</cb>
|
||||
</segment>
|
||||
<segment freq="0.3" length="2" type="unidir" Rmetal="101" Cmetal="22.5e-15" circuit_model_name="chan_segment">
|
||||
<mux name="sb_mux_L4"/>
|
||||
<sb type="pattern">1 1 1</sb>
|
||||
<cb type="pattern">1 1 </cb>
|
||||
</segment>
|
||||
<segment freq="0.3" length="1" type="unidir" Rmetal="101" Cmetal="22.5e-15" circuit_model_name="chan_segment">
|
||||
<mux name="sb_mux_L4"/>
|
||||
<sb type="pattern">1 1</sb>
|
||||
<cb type="pattern">1</cb>
|
||||
</segment>
|
||||
</segmentlist>
|
||||
<!--switch_segment_patterns>
|
||||
<pattern type="unbuf_sb" seg_length="1" seg_type="unidir" pattern_length="2">
|
||||
<unbuf_mux name="1"/>
|
||||
<sb type ="pattern">0 1</sb>
|
||||
</pattern>
|
||||
</switch_segment_patterns-->
|
||||
|
||||
<complexblocklist>
|
||||
|
||||
<!-- Define I/O pads begin -->
|
||||
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
|
||||
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
|
||||
<pb_type name="io" capacity="7" area="0" idle_mode_name="inpad" physical_mode_name="io_phy">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
|
||||
<!-- physical design description -->
|
||||
<mode name="io_phy" disabled_in_packing="true">
|
||||
<pb_type name="iopad" blif_model=".subckt io" num_pb="1" circuit_model_name="iopad" mode_bits="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="inpad" input="iopad.inpad" output="io.inpad">
|
||||
<delay_constant max="0e-11" in_port="iopad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
<direct name="outpad" input="io.outpad" output="iopad.outpad">
|
||||
<delay_constant max="0e-11" in_port="io.outpad" out_port="iopad.outpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
|
||||
<!-- IOs can operate as either inputs or outputs.§
|
||||
Delays below come from Ian Kuon. They are small, so they should be interpreted as
|
||||
the delays to and from registers in the I/O (and generally I/Os are registered
|
||||
today and that is when you timing analyze them.
|
||||
-->
|
||||
<mode name="inpad">
|
||||
<pb_type name="inpad" blif_model=".input" num_pb="1" physical_pb_type_name="iopad" mode_bits="1">
|
||||
<output name="inpad" num_pins="1" physical_mode_pin="inpad"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="inpad" input="inpad.inpad" output="io.inpad">
|
||||
<delay_constant max="0e-11" in_port="inpad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="outpad">
|
||||
<pb_type name="outpad" blif_model=".output" num_pb="1" physical_pb_type_name="iopad" mode_bits="0">
|
||||
<input name="outpad" num_pins="1" physical_mode_pin="outpad"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="outpad.outpad">
|
||||
<delay_constant max="0e-11" in_port="io.outpad" out_port="outpad.outpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<fc default_in_type="frac" default_in_val="0.15" default_out_type="frac" default_out_val="0.10"/>
|
||||
|
||||
<!-- IOs go on the periphery of the FPGA, for consistency,
|
||||
make it physically equivalent on all sides so that only one definition of I/Os is needed.
|
||||
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
|
||||
-->
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">io.outpad io.inpad</loc>
|
||||
<loc side="top">io.outpad io.inpad</loc>
|
||||
<loc side="right">io.outpad io.inpad</loc>
|
||||
<loc side="bottom">io.outpad io.inpad</loc>
|
||||
</pinlocations>
|
||||
|
||||
<!-- Place I/Os on the sides of the FPGA -->
|
||||
<gridlocations>
|
||||
<loc type="perimeter" priority="10"/>
|
||||
</gridlocations>
|
||||
|
||||
<power method="ignore"/>
|
||||
</pb_type>
|
||||
<!-- Define I/O pads ends -->
|
||||
|
||||
|
||||
<!-- Define general purpose logic block (CLB) begin -->
|
||||
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
|
||||
area is 60 L^2 yields a tile area of 84375 MWTAs.
|
||||
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
|
||||
This means that only 37% of our area is in the general routing, and 63% is inside the logic
|
||||
block. Note that the crossbar / local interconnect is considered part of the logic block
|
||||
area in this analysis. That is a lower proportion of of routing area than most academics
|
||||
assume, but note that the total routing area really includes the crossbar, which would push
|
||||
routing area up significantly, we estimate into the ~70% range.
|
||||
-->
|
||||
<pb_type name="clb" area="53894">
|
||||
<input name="I" num_pins="40" equivalent="true"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="O" num_pins="20" equivalent="false"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
|
||||
<!-- Describe fracturable logic element.
|
||||
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
|
||||
The outputs of the fracturable logic element can be optionally registered
|
||||
-->
|
||||
<pb_type name="fle" num_pb="10" physical_mode_name="fle_phy" idle_mode_name="n2_lut5">
|
||||
<input name="in" num_pins="6"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
|
||||
<mode name="fle_phy" disabled_in_packing="true">
|
||||
<pb_type name="frac_logic" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<pb_type name="frac_lut6" blif_model=".frac_lut6" mode_bits="11" num_pb="1" circuit_model_name="frac_lut6">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="lut4_out" num_pins="4"/>
|
||||
<output name="lut5_out" num_pins="2"/>
|
||||
<output name="lut6_out" num_pins="1"/>
|
||||
</pb_type>
|
||||
<pb_type name="adder_phy" blif_model=".subckt adder" num_pb="2" circuit_model_name="adder_1bit">
|
||||
<input name="a" num_pins="1"/>
|
||||
<input name="b" num_pins="1"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<output name="sumout" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct_fraclut_in" input="frac_logic.in[5:0]" output="frac_lut6.in[5:0]"/>
|
||||
<direct name="direct_cin" input="frac_logic.cin" output="adder_phy[0].cin"/>
|
||||
<direct name="direct_carry" input="adder_phy[0].cout" output="adder_phy[1].cin"/>
|
||||
<direct name="direct_cout" input="adder_phy[1].cout" output="frac_logic.cout"/>
|
||||
<direct name="direct_lut4carry0" input="frac_lut6.lut4_out[0]" output="adder_phy[0].a"/>
|
||||
<direct name="direct_lut4carry1" input="frac_lut6.lut4_out[1]" output="adder_phy[0].b"/>
|
||||
<direct name="direct_lut4carry2" input="frac_lut6.lut4_out[2]" output="adder_phy[1].a"/>
|
||||
<direct name="direct_lut4carry3" input="frac_lut6.lut4_out[3]" output="adder_phy[1].b"/>
|
||||
<mux name="mux1" input="adder_phy[0].sumout frac_lut6.lut5_out[0]" output="frac_logic.out[0]">
|
||||
<mode_select mode_name="n2_lut5.arithmetic" in_port="adder_phy[0].sumout" out_port="frac_logic.out[0]"/>
|
||||
<mode_select mode_name="n2_lut5.blut5" in_port="frac_lut6.lut5_out[0]" out_port="frac_logic.out[0]"/>
|
||||
<mode_select mode_name="n1_lut6" in_port="frac_lut6.lut5_out[0]" out_port="frac_logic.out[0]"/>
|
||||
</mux>
|
||||
<mux name="mux2" input="adder_phy[1].sumout frac_lut6.lut5_out[1] frac_lut6.lut6_out[0]" output="frac_logic.out[1]">
|
||||
<mode_select mode_name="n2_lut5.arithmetic" in_port="adder_phy[1].sumout" out_port="frac_logic.out[1]"/>
|
||||
<mode_select mode_name="n2_lut5.blut5" in_port="frac_lut6.lut5_out[1]" out_port="frac_logic.out[1]"/>
|
||||
<mode_select mode_name="n1_lut6" in_port="frac_lut6.lut6_out[0]" out_port="frac_logic.out[1]"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<pb_type name="ff_phy" blif_model=".latch" num_pb="2" class="flipflop" circuit_model_name="static_dff">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff_phy.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff_phy.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<complete name="direct_clk" input="fle.clk" output="ff_phy[1:0].clk"/>
|
||||
<direct name="direct_in" input="fle.in[5:0]" output="frac_logic.in[5:0]"/>
|
||||
<direct name="direct_cin" input="fle.cin" output="frac_logic.cin"/>
|
||||
<direct name="direct_cout" input="frac_logic.cout" output="fle.cout"/>
|
||||
<direct name="direct_frac_out1" input="frac_logic.out[0]" output="ff_phy[0].D"/>
|
||||
<direct name="direct_frac_out2" input="frac_logic.out[1]" output="ff_phy[1].D"/>
|
||||
<mux name="mux1" input="ff_phy[0].Q frac_logic.out[0]" output="fle.out[0]">
|
||||
</mux>
|
||||
<mux name="mux2" input="ff_phy[1].Q frac_logic.out[1]" output="fle.out[1]">
|
||||
</mux>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="n2_lut5" disabled_in_packing="false">
|
||||
<!-- multi-mode support -->
|
||||
<pb_type name="lut5inter" num_pb="1">
|
||||
<input name="in" num_pins="5"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="ble5" num_pb="2" idle_mode_name="blut5">
|
||||
<input name="in" num_pins="5"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<mode name="blut5">
|
||||
<pb_type name="flut5" num_pb="1">
|
||||
<input name="in" num_pins="5"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Regular LUT mode -->
|
||||
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut" mode_bits="01" physical_pb_type_name="frac_lut6" physical_pb_type_index_factor="0.5">
|
||||
<input name="in" num_pins="5" port_class="lut_in" physical_mode_pin="in[5:0]"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out" physical_mode_pin="lut5_out" physical_mode_pin_rotate_offset="1"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
398e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop" physical_pb_type_name="ff_phy">
|
||||
<input name="D" num_pins="1" port_class="D" physical_mode_pin="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q" physical_mode_pin="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock" physical_mode_pin="clk"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="flut5.in" output="lut5.in"/>
|
||||
<direct name="direct2" input="lut5.out" output="ff.D">
|
||||
<pack_pattern name="ble5" in_port="lut5.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="flut5.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut5.out" output="flut5.out" spice_model_sram_offset="0">
|
||||
<delay_constant max="25e-12" in_port="lut5.out" out_port="flut5.out" />
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="flut5.out" />
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble5.in" output="flut5.in"/>
|
||||
<direct name="direct2" input="ble5.clk" output="flut5.clk"/>
|
||||
<direct name="direct3" input="flut5.out" output="ble5.out"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="arithmetic">
|
||||
<pb_type name="arithmetic" num_pb="1">
|
||||
<input name="in" num_pins="4"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Special dual-LUT mode that drives adder only -->
|
||||
<pb_type name="lut4" blif_model=".names" num_pb="2" class="lut" mode_bits="11" physical_pb_type_name="frac_lut6" physical_pb_type_index_factor="0.25">
|
||||
<input name="in" num_pins="4" port_class="lut_in" physical_mode_pin="in[4:0]"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out" physical_mode_pin="lut4_out" physical_mode_pin_rotate_offset="1"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
|
||||
195e-12
|
||||
195e-12
|
||||
195e-12
|
||||
195e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<pb_type name="adder" blif_model=".subckt adder" num_pb="1" physical_pb_type_name="adder_phy">
|
||||
<input name="a" num_pins="1" physical_mode_pin="a"/>
|
||||
<input name="b" num_pins="1" physical_mode_pin="b"/>
|
||||
<input name="cin" num_pins="1" physical_mode_pin="cin"/>
|
||||
<output name="cout" num_pins="1" physical_mode_pin="cout"/>
|
||||
<output name="sumout" num_pins="1" physical_mode_pin="sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
|
||||
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
|
||||
</pb_type>
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop" physical_pb_type_name="ff_phy">
|
||||
<input name="D" num_pins="1" port_class="D" physical_mode_pin="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q" physical_mode_pin="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock" physical_mode_pin="clk"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="clock" input="arithmetic.clk" output="ff.clk"/>
|
||||
<direct name="lut_in1" input="arithmetic.in[3:0]" output="lut4[0:0].in[3:0]"/>
|
||||
<direct name="lut_in2" input="arithmetic.in[3:0]" output="lut4[1:1].in[3:0]"/>
|
||||
<direct name="lut_to_add1" input="lut4[0:0].out" output="adder.a">
|
||||
</direct>
|
||||
<direct name="lut_to_add2" input="lut4[1:1].out" output="adder.b">
|
||||
</direct>
|
||||
<direct name="add_to_ff" input="adder.sumout" output="ff.D">
|
||||
<pack_pattern name="chain" in_port="adder.sumout" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="carry_in" input="arithmetic.cin" output="adder.cin">
|
||||
<pack_pattern name="chain" in_port="arithmetic.cin" out_port="adder.cin"/>
|
||||
</direct>
|
||||
<direct name="carry_out" input="adder.cout" output="arithmetic.cout">
|
||||
<pack_pattern name="chain" in_port="adder.cout" out_port="arithmetic.cout"/>
|
||||
</direct>
|
||||
<mux name="sumout" input="ff.Q adder.sumout" output="arithmetic.out">
|
||||
<delay_constant max="25e-12" in_port="adder.sumout" out_port="arithmetic.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="arithmetic.out" />
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble5.in[3:0]" output="arithmetic.in"/>
|
||||
<direct name="carry_in" input="ble5.cin" output="arithmetic.cin">
|
||||
<pack_pattern name="chain" in_port="ble5.cin" out_port="arithmetic.cin"/>
|
||||
</direct>
|
||||
<direct name="carry_out" input="arithmetic.cout" output="ble5.cout">
|
||||
<pack_pattern name="chain" in_port="arithmetic.cout" out_port="ble5.cout"/>
|
||||
</direct>
|
||||
<direct name="direct2" input="ble5.clk" output="arithmetic.clk"/>
|
||||
<direct name="direct3" input="arithmetic.out" output="ble5.out"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="lut5inter.in" output="ble5[0:0].in"/>
|
||||
<direct name="direct2" input="lut5inter.in" output="ble5[1:1].in"/>
|
||||
<direct name="direct3" input="ble5[1:0].out" output="lut5inter.out"/>
|
||||
<direct name="carry_in" input="lut5inter.cin" output="ble5[0:0].cin">
|
||||
<pack_pattern name="chain" in_port="lut5inter.cin" out_port="ble5[0:0].cin"/>
|
||||
</direct>
|
||||
<direct name="carry_out" input="ble5[1:1].cout" output="lut5inter.cout">
|
||||
<pack_pattern name="chain" in_port="ble5[1:1].cout" out_port="lut5inter.cout"/>
|
||||
</direct>
|
||||
<direct name="carry_link" input="ble5[0:0].cout" output="ble5[1:1].cin">
|
||||
<pack_pattern name="chain" in_port="ble5[0:0].cout" out_port="ble5[1:1].cout"/>
|
||||
</direct>
|
||||
<complete name="complete1" input="lut5inter.clk" output="ble5[1:0].clk"/>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in[4:0]" output="lut5inter.in"/>
|
||||
<direct name="direct2" input="lut5inter.out" output="fle.out"/>
|
||||
<direct name="direct3" input="fle.clk" output="lut5inter.clk"/>
|
||||
<direct name="carry_in" input="fle.cin" output="lut5inter.cin">
|
||||
<pack_pattern name="chain" in_port="fle.cin" out_port="lut5inter.cin"/>
|
||||
</direct>
|
||||
<direct name="carry_out" input="lut5inter.cout" output="fle.cout">
|
||||
<pack_pattern name="chain" in_port="lut5inter.cout" out_port="fle.cout"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode> <!-- n2_lut5 -->
|
||||
<mode name="n1_lut6">
|
||||
<pb_type name="ble6" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut" mode_bits="00" physical_pb_type_name="frac_lut6" spice_model_sram_offset="0">
|
||||
<input name="in" num_pins="6" port_class="lut_in" physical_mode_pin="in[5:0]"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out" physical_mode_pin="lut6_out[0]"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
398e-12
|
||||
397e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop" physical_pb_type_name="ff_phy" physical_pb_type_index_factor="2" physical_pb_type_index_offset="1">
|
||||
<input name="D" num_pins="1" port_class="D" physical_mode_pin="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q" physical_mode_pin="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock" physical_mode_pin="clk"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
|
||||
<direct name="direct2" input="lut6.out" output="ff.D">
|
||||
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
|
||||
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out" />
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out" />
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in" output="ble6.in"/>
|
||||
<direct name="direct2" input="ble6.out" output="fle.out[1:1]"/>
|
||||
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
|
||||
</interconnect>
|
||||
</mode> <!-- n1_lut6 -->
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
|
||||
The delays below come from Stratix IV. the delay through a connection block
|
||||
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
|
||||
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
|
||||
delay within the crossbar is 95 ps.
|
||||
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
|
||||
Since all our outputs LUT outputs go to a BLE output, and have a delay of
|
||||
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
|
||||
to get the part that should be marked on the crossbar. -->
|
||||
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in" circuit_model_name="mux_tree_like">
|
||||
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in" />
|
||||
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in" />
|
||||
</complete>
|
||||
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
|
||||
</complete>
|
||||
|
||||
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
|
||||
naive specification).
|
||||
-->
|
||||
<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>
|
||||
<direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/>
|
||||
|
||||
<!-- Carry chain links -->
|
||||
<direct name="carry_in" input="clb.cin" output="fle[0:0].cin">
|
||||
<!-- Put all inter-block carry chain delay on this one edge -->
|
||||
<delay_constant max="0.16e-9" in_port="clb.cin" out_port="fle[0:0].cin"/>
|
||||
<pack_pattern name="chain" in_port="clb.cin" out_port="fle[0:0].cin"/>
|
||||
</direct>
|
||||
<direct name="carry_out" input="fle[9:9].cout" output="clb.cout">
|
||||
<pack_pattern name="chain" in_port="fle[9:9].cout" out_port="clb.cout"/>
|
||||
</direct>
|
||||
<direct name="carry_link" input="fle[8:0].cout" output="fle[9:1].cin">
|
||||
<pack_pattern name="chain" in_port="fle[8:0].cout" out_port="fle[9:1].cin"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
|
||||
<fc default_in_type="frac" default_in_val="0.15" default_out_type="frac" default_out_val="0.10">
|
||||
<pin name="cin" fc_type="frac" fc_val="0"/>
|
||||
<pin name="cout" fc_type="frac" fc_val="0"/>
|
||||
</fc>
|
||||
|
||||
<pinlocations pattern="spread"/>
|
||||
<gridlocations>
|
||||
<loc type="fill" priority="1"/>
|
||||
</gridlocations>
|
||||
</pb_type>
|
||||
<!-- Define general purpose logic block (CLB) ends -->
|
||||
</complexblocklist>
|
||||
<power>
|
||||
<local_interconnect C_wire="2.5e-10"/>
|
||||
<mux_transistor_size mux_transistor_size="3"/>
|
||||
<FF_size FF_size="4"/>
|
||||
<LUT_transistor_size LUT_transistor_size="4"/>
|
||||
</power>
|
||||
<clocks>
|
||||
<clock buffer_size="auto" C_wire="2.5e-10"/>
|
||||
</clocks>
|
||||
</architecture>
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,33 @@
|
|||
#!/bin/bash
|
||||
echo "#################################################"
|
||||
echo "The current shell environment is the following:"
|
||||
echo $0
|
||||
echo "#################################################"
|
||||
|
||||
# Example of how to run vprset circuit_name = pip_add
|
||||
#set circuit_name = pip_add
|
||||
circuit_name=sync_4bits_add
|
||||
circuit_blif=${PWD}/Circuits/${circuit_name}.blif
|
||||
arch_file=${PWD}/ARCH/k6_N10_scan_chain_ptm45nm_TT.xml
|
||||
arch_file_template=${PWD}/ARCH/k6_N10_sram_chain_HC_template.xml
|
||||
circuit_act=${PWD}/Circuits/${circuit_name}.act
|
||||
circuit_verilog=${PWD}/Circuits/${circuit_name}.v
|
||||
spice_output=${PWD}/spice_demo
|
||||
verilog_output=${PWD}/verilog_demo
|
||||
modelsim_ini=/uusoc/facility/cad_tools/Mentor/modelsim10.7b/modeltech/modelsim.ini
|
||||
openfpga_path=${PWD}/../..
|
||||
|
||||
# Make sure a clean start
|
||||
rm -rf ${spice_output}
|
||||
rm -rf ${verilog_output}
|
||||
|
||||
echo "*******************************"
|
||||
echo "THIS SCRIPT NEEDS TO BE SOURCED"
|
||||
echo "source ./go.sh"
|
||||
echo "*******************************"
|
||||
|
||||
sed "s:OPENFPGAPATH:${openfpga_path}:g" ${arch_file_template} > ${arch_file}
|
||||
|
||||
# Pack, place, and route a heterogeneous FPGA
|
||||
# Packing uses the AAPack algorithm
|
||||
./vpr ${arch_file} ${circuit_blif} --full_stats --nodisp --activity_file ${circuit_act} --route_chan_width 30 --fpga_spice --fpga_spice_rename_illegal_port --fpga_spice_dir ${spice_output} --fpga_spice_print_top_testbench
|
Loading…
Reference in New Issue