continuing simple documentation

This commit is contained in:
Steve Corey 2018-07-17 13:55:10 -06:00
parent 84fd0348af
commit 51efa38751
3 changed files with 387 additions and 10 deletions

View File

@ -1,11 +1,11 @@
{ {
"cells": [ "cells": [
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# The Architecture format\n", "# The Architecture format\n",
"A complete FPGA is specified in an architecture XML file and is wrapped in an `<architecture>` tag. `v8_example_arch.xml` defines a simple FPGA.\n", "A complete FPGA is specified in an architecture XML file. The FPGA specification is wrapped in an `<architecture>` tag; `v8_example_arch.xml` defines a simple FPGA.\n",
"\n", "\n",
"### [`<models>`](http://docs.verilogtorouting.org/en/latest/arch/reference/#recognized-blif-models-models)\n", "### [`<models>`](http://docs.verilogtorouting.org/en/latest/arch/reference/#recognized-blif-models-models)\n",
"The first element in the architecture is `<models>`, which describes `blif` circuit models that the FPGA uses. The models `.names`, `.latch`, `.input`, and `.output` are automatically recognized and don't need to be specified in this section. The `v8_example_arch.xml` architecture is simple enough to not need any additional models specified here.\n", "The first element in the architecture is `<models>`, which describes `blif` circuit models that the FPGA uses. The models `.names`, `.latch`, `.input`, and `.output` are automatically recognized and don't need to be specified in this section. The `v8_example_arch.xml` architecture is simple enough to not need any additional models specified here.\n",
@ -42,25 +42,50 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## [`<complexblocklist>`](http://docs.verilogtorouting.org/en/latest/arch/reference/#complex-blocks)\n", "## [`<complexblocklist>`](http://docs.verilogtorouting.org/en/latest/arch/reference/#complex-blocks)\n",
"In this example architecture, two complex blocks are defined: An input/output block, and a configurable logic block (CLB).\n",
"\n", "\n",
"### Input and Output block\n",
"`<pb_type name=\"io\" capacity=\"3\">` begins the definition of the I/O block. `pb_type` is the tag that indicates a primitive block is being defined, and multiple `pb_type`'s can be nested. `capacity` is only allowed in an I/O block, and indicates how many inputs or outpus the block will have.\n",
"\n",
"`<input name=\"outpad\" num_pins=\"1\"/>` defines what might be considered an *output* from the FPGA, which is why it is given the name `outpad`: signals coming out of the FPGA are routed to the *input* of this block and then sent out of the *outpad* to the outside world. Similarly, a signal from the outside world comes in the *inpad* and then sent out the *output* of the block to then be routed through the FPGA. Thus the *input* to the FPGA is defined by `<output name=\"inpad\" num_pins=\"1\"/>`. \n",
"\n",
"An I/O block can only be an input or an output, and the mode defines the behavior. `<mode name=\"inpad\">` begins the input behavior. `<pb_type name=\"inpad\" blif_model=\".input\" num_pb=\"1\">` gives the physical block a name `inpad`, associates it with the `.input` of the blif model, and indicates there is 1 of these `inpad`s in the parent pb_type of `io`.\n",
"\n",
"`<output name=\"inpad\" num_pins=\"1\"/>` says that there is one output of the block named `inpad`. The signal comes in the *inpad* and is sent *out* of this block to the rest of the FPGA.\n",
"\n",
"The `<interconnect>` section makes connections between the block's pins. `<direct name=\"inpad\" input=\"inpad.inpad\" output=\"io.inpad\">` creates a direct connection named `inpad`, connects its input to `inpad.inpad` which is the output of the `inpad` block, and connects its ouput to `io.inpad` which is the ouput of the `io` block.\n",
"\n",
"The `<delay_constant>` tag specifies the delay between the in_port and the out_port of the primitive block.\n",
"\n",
"`<mode name=\"outpad\">` defines the other mode of this block, and is analagous to the `inpad` definition.\n",
"\n", "\n",
"# Skip I/O for now...\n",
"\n", "\n",
"\n", "\n",
"## Logic Blocks\n", "## Logic Blocks\n",
"\n", "\n",
"Line 115 is where the general purpuse *complex logic block* or *clb* definition begins. `<pb_type>` is the tag to define a physical block on the FPGA. Next, the inputs and outputs to the block are defined; here there are 10 inputs, 4 outputs, and 1 clock input. The inputs and outputs have `equivalent=true` attributes, which means that they are logically equivalent and so order doesn't matter when routing.\n", "`<pb_type name=\"clb\">` is where the general purpuse *complex logic block* or *clb* definition begins. `<pb_type>` is the tag to define a primitive block on the FPGA. Next, the inputs and outputs to the block are defined; here there are 10 inputs, 3 outputs, and 1 clock input. The inputs and outputs have `equivalent=true` attributes, which means that they are logically equivalent and so order doesn't matter when routing.\n",
"\n", "\n",
"Line 121 defines the *basic logic element* or *BLE* that makes up the clb. The `<pb_type name=\"fle\" num_pb=\"4\">` attribute indicates that 4 of these BLEs called `fle` are contained in the surrounding `clb`. The next lines define 4 inputs, one output, and one clock line.\n", "`<pb_type name=\"ble4\" num_pb=\"3\">` defines the *basic logic element* or *BLE* that makes up the clb. The `<pb_type name=\"ble4\" num_pb=\"3\">` attribute indicates that 3 of these BLEs called `ble4` are contained in the surrounding `clb`. The next lines define 4 inputs, one output, and one clock line.\n",
"\n", "\n",
"Skipping down to line 134, the core lookup-table of the BLE is defined: `<pb_type name=\"lut4\" blif_model=\".names\" num_pb=\"1\" class=\"lut\">`. This indicates 1 lookup-table named `lut4`; `.names` is the BLIF keyword for lookup-table. The next two lines show 4 inputs and 1 output to the LUT. The `<delay_matrix>` attribute specifies the propogation delay through the LUT's inputs to output.\n", "`<pb_type name=\"lut4\" blif_model=\".names\" num_pb=\"1\" class=\"lut\">` defines the lookup-table named `lut4`; `.names` is the BLIF keyword for lookup-table. The next two lines show 4 inputs and 1 output to the LUT. The `<delay_matrix>` attribute specifies the propogation delay through the LUT's inputs to output.\n",
"\n", "\n",
"Line 147 defines the flip-flop in the BLE: `<pb_type name=\"ff\" blif_model=\".latch\" num_pb=\"1\" class=\"flipflop\">`: 1 flip-flop named `ff`; `.latch` is the BLIF keyword for flip-flop. The next lines specify the I/Os and timing parameters.\n", "`<pb_type name=\"ff\" blif_model=\".latch\" num_pb=\"1\" class=\"flipflop\">` defines the flip-flop in the BLE: 1 flip-flop named `ff`; `.latch` is the BLIF keyword for flip-flop. The next lines specify the I/Os and timing parameters.\n",
"\n", "\n",
"Skipping back up to line 126, a mode named `n1_lut4` for the block named `fle` is defined. A block can have multiple modes specified, but a block can only use one mode at a time. This particular block only defines one mode. The mode defines a block on line 128 named `ble4` which contains the LUT `lut4` and flip-flop `ff`.\n", "The `<interconnect>` section wires the blocks together. The input of `ble4` is connected to the input of `lut4`, the output of `lut4` is connected to the D-input of `ff`. The clk inputs are wired together. Finally, a mux is defined to set the output of `ble4` to be either the direct output of `lut4` or the latched output of `ff`.\n",
"\n", "\n",
"Moving back down to line 155, `<interconnect>` indicates how the blocks are connected. The `<direct>` element means to simply wire the nets together. Line 156 wires the input of `ble4` to the input of `lut4`, line 157 wires the output of `lut4` to the D-input of `ff`. Line 161 wires the clk inputs together. Line 162 defines a mux to set the output of `ble4` to be either the direct output of `lut4` or the latched output of `ff`." "That completes the *ble* definition, now the *clb* needs to be completed with its `<interconnect>` section. The `<complete>` tag indicates a fully connected crossbar, so any input of the clb can be routed to any of the bles. Also, `input=\"clb.I ble4[2:0].out\"` means that there are two inputs to the crossbar: the input to the clb as well as the output of the bles, giving a feedback configuration. The output of the crossbar is connected to the inputs of the bles. Finally, the output of the bles are connected to the output of the clb.\n",
"\n",
"At the end of the top-level `pb_type` definition, the configuration of pins is specified. `<fc in_type=\"frac\" in_val=\"0.15\" out_type=\"frac\" out_val=\"0.25\"/>` shows the percentage of tracks in the channel drive the block's pins. \n",
"\n",
"`<pinlocations pattern=\"spread\"/>` says that the pins should be spread evenly around the edges of the block."
] ]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
} }
], ],
"metadata": { "metadata": {

View File

@ -0,0 +1,62 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Multimode CLB\n",
"In the I/O section of the architecture, the `<mode>` tag was used to define different modes for the block. One mode was for input, the other mode for output. Modes are also used in CLBs. Open the file `OpenFPGA/tutorial/02_multimode_arch.xml`. It defines two modes for its CLB: a 6-LUT, or two 5-LUTs with shared inputs.\n",
"\n",
"Find the line `<pb_type name=\"clb\" area=\"53894\">` which begins the definition of the CLB. The next few lines define the inputs and outputs: 40 input pins, 20 output pins, and a clock pin. The inputs are marked with `equivalent=\"full\"` which indicates that the inputs have logical equivalence so their locations may be freely swapped. The outputs are `equivalent=\"none\"` so they may not be swapped.\n",
"\n",
"The next primitive block is `<pb_type name=\"fle\" num_pb=\"10\">` which is a fracturable logic element that contains the two different modes of this CLB. There are 10 of this `fle` in the CLB. Each `fle` has 6 inputs, 2 outputs, and one clock pin.\n",
"\n",
"### First Mode\n",
"`<mode name=\"n2_lut5\">` begins the definition of the first mode. Moving down the architecture file, we see that in this mode, the `fle` contains one `lut5inter` block which contains two `ble5` blocks. The `ble5` blocks have 5 inputs and 1 output. The next group of lines define the LUT and FF in `ble5`.\n",
"\n",
"Moving down to the second `<interconnect>` block:\n",
"```\n",
"<interconnect>\n",
" <direct name=\"direct1\" input=\"lut5inter.in\" output=\"ble5[0:0].in\"/>\n",
" <direct name=\"direct2\" input=\"lut5inter.in\" output=\"ble5[1:1].in\"/>\n",
" <direct name=\"direct3\" input=\"ble5[1:0].out\" output=\"lut5inter.out\"/> \n",
" <complete name=\"complete1\" input=\"lut5inter.clk\" output=\"ble5[1:0].clk\"/> \n",
"</interconnect>\n",
"```\n",
"we see that the input of `lut5inter` is connected to the inputs of both the first and second `ble5` blocks. Then the two outputs of the two `ble5` blocks go to the two outputs of `lut5inter`. Finally, there is a fully connected crossbar that connects the `lut5inter` clock input to the two `ble5` clock inputs.\n",
"\n",
"Finishing out this mode, there is the last interconnect section. Note the line: `<direct name=\"direct1\" input=\"fle.in[4:0]\" output=\"lut5inter.in\"/>`. It shows that out of the 6 `fle` input lines, only the first 5 lines are connected to `lut5inter`. The remaining line is unused.\n",
"\n",
"### Second Mode\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -0,0 +1,290 @@
<!--
Architecture file translated from ifar repository N04K04L01.FC15FO25.AREA1DELAY1.CMOS90NM.BPTM
Simple architecture file for vpr version 8 consisting of clusters of BLEs, each BLE contains a 4-LUT+FF pair. Delay models from 90nm PTM.
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: This simple architecture needs no models defined here. Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch) that describe them.
-->
<models>
</models>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout>
<auto_layout aspect_ratio="1.000000">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</auto_layout>
</layout>
<device>
<sizing R_minW_nmos="6065.520020" R_minW_pmos="18138.500000"/>
<area grid_logic_tile_area="7238.080078"/>
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<switch type="mux" name="switchblock" R="0.000000" Cin="0.000000e+00" Cout="0.000000e+00" Tdel="7.958000e-11" mux_trans_size="2.074780" buf_size="19.261999"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="1516.380005" Cout="0." Cin="0.000000e+00" Tdel="7.362000e-11" mux_trans_size="1.240240" buf_size="auto"/>
</switchlist>
<segmentlist>
<segment freq="1.000000" length="4" type="unidir" Rmetal="0.000000" Cmetal="0.000000e+00">
<mux name="switchblock"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<complexblocklist>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<pb_type name="io" capacity="3">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<clock name="clock" num_pins="1"/>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="9.492000e-11" in_port="inpad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="2.675000e-11" in_port="io.outpad" out_port="outpad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<!-- IOs go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of I/Os is needed.
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
-->
<pinlocations pattern="custom">
<loc side="left">io.outpad io.inpad io.clock</loc>
<loc side="top">io.outpad io.inpad io.clock</loc>
<loc side="right">io.outpad io.inpad io.clock</loc>
<loc side="bottom">io.outpad io.inpad io.clock</loc>
</pinlocations>
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<pb_type name="clb" area="53894">
<input name="I" num_pins="40" equivalent="full"/>
<output name="O" num_pins="20" equivalent="none"/>
<clock name="clk" num_pins="1"/>
<!-- Describe fracturable logic element.
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
The outputs of the fracturable logic element can be optionally registered
-->
<pb_type name="fle" num_pb="10">
<input name="in" num_pins="6"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<!-- Dual 5-LUT mode definition begin -->
<mode name="n2_lut5">
<pb_type name="lut5inter" num_pb="1">
<input name="in" num_pins="5"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<pb_type name="ble5" num_pb="2">
<input name="in" num_pins="5"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define the LUT -->
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="5" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
-->
<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
235e-12
235e-12
235e-12
235e-12
235e-12
</delay_matrix>
</pb_type>
<!-- Define the flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble5.in[4:0]" output="lut5[0:0].in[4:0]"/>
<direct name="direct2" input="lut5[0:0].out" output="ff[0:0].D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
<pack_pattern name="ble5" in_port="lut5[0:0].out" out_port="ff[0:0].D"/>
</direct>
<direct name="direct3" input="ble5.clk" output="ff[0:0].clk"/>
<mux name="mux1" input="ff[0:0].Q lut5.out[0:0]" output="ble5.out[0:0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut5.out[0:0]" out_port="ble5.out[0:0]" />
<delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="ble5.out[0:0]" />
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="lut5inter.in" output="ble5[0:0].in"/>
<direct name="direct2" input="lut5inter.in" output="ble5[1:1].in"/>
<direct name="direct3" input="ble5[1:0].out" output="lut5inter.out"/>
<complete name="complete1" input="lut5inter.clk" output="ble5[1:0].clk"/>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[4:0]" output="lut5inter.in"/>
<direct name="direct2" input="lut5inter.out" output="fle.out"/>
<direct name="direct3" input="fle.clk" output="lut5inter.clk"/>
</interconnect>
</mode>
<!-- Dual 5-LUT mode definition end -->
<!-- 6-LUT mode definition begin -->
<mode name="n1_lut6">
<!-- Define 6-LUT mode -->
<pb_type name="ble6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define LUT -->
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="6" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
261e-12
261e-12
261e-12
261e-12
261e-12
261e-12
</delay_matrix>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
<direct name="direct2" input="lut6.out" output="ff.D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out" />
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out" />
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="ble6.in"/>
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
</interconnect>
</mode>
<!-- 6-LUT mode definition end -->
</pb_type>
<interconnect>
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in">
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in" />
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in" />
</complete>
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>
<direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/>
</interconnect>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="spread"/>
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
</complexblocklist>
</architecture>