Added architecture and replaced variables
This commit is contained in:
parent
cb5b16c949
commit
5116aa2ae1
|
@ -1,76 +1,76 @@
|
|||
<!--
|
||||
<!--
|
||||
Flagship Heterogeneous Architecture with Carry Chains for VTR 7.0.
|
||||
|
||||
- 40 nm technology
|
||||
- General purpose logic block:
|
||||
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with all 5 inputs shared)
|
||||
- General purpose logic block:
|
||||
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with all 5 inputs shared)
|
||||
with optionally registered outputs
|
||||
Each 5-LUT has an arithemtic mode that converts it to a single-bit adder with both inputs driven by 4-LUTs (both 4-LUTs share all 4 inputs)
|
||||
Carry chain links to vertically adjacent logic blocks
|
||||
- Memory size 32 Kbits, memory aspect ratios vary from a data width of 1 to data width of 64.
|
||||
- Memory size 32 Kbits, memory aspect ratios vary from a data width of 1 to data width of 64.
|
||||
Height = 6, found on every (8n+2)th column
|
||||
- Multiplier modes: one 36x36, two 18x18, each 18x18 can also operate as two 9x9.
|
||||
- Multiplier modes: one 36x36, two 18x18, each 18x18 can also operate as two 9x9.
|
||||
Height = 4, found on every (8n+6)th column
|
||||
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
|
||||
|
||||
Details on Modelling:
|
||||
|
||||
The electrical design of the architecture described here is NOT from an
|
||||
optimized, SPICED architecture. Instead, we attempt to create a reasonable
|
||||
architecture file by using an existing commercial FPGA to approximate the area,
|
||||
delay, and power of the underlying components. This is combined with a reasonable 40 nm
|
||||
The electrical design of the architecture described here is NOT from an
|
||||
optimized, SPICED architecture. Instead, we attempt to create a reasonable
|
||||
architecture file by using an existing commercial FPGA to approximate the area,
|
||||
delay, and power of the underlying components. This is combined with a reasonable 40 nm
|
||||
model of wiring and circuit design for low-level routing components, where available.
|
||||
The resulting architecture has delays that roughly match a commercial 40 nm FPGA, but also
|
||||
has wiring electrical parameters that allow the wire lengths and switch patterns to be
|
||||
The resulting architecture has delays that roughly match a commercial 40 nm FPGA, but also
|
||||
has wiring electrical parameters that allow the wire lengths and switch patterns to be
|
||||
modified and you will still get reasonable delay results for the new architecture.
|
||||
The following describes, in detail, how we obtained the various electrical values for this
|
||||
The following describes, in detail, how we obtained the various electrical values for this
|
||||
architecture.
|
||||
|
||||
Rmin for nmos and pmos, routing buffer sizes, and I/O pad delays are from the ifar
|
||||
architecture created by Ian Kuon: K06 N10 45nm fc 0.15 area-delay optimized architecture.
|
||||
(n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml)
|
||||
This routing architecture was optimized for 45 nm, and we have scaled it linearly to 40 nm to
|
||||
Rmin for nmos and pmos, routing buffer sizes, and I/O pad delays are from the ifar
|
||||
architecture created by Ian Kuon: K06 N10 45nm fc 0.15 area-delay optimized architecture.
|
||||
(n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml)
|
||||
This routing architecture was optimized for 45 nm, and we have scaled it linearly to 40 nm to
|
||||
match the overall target (a 40 nm FPGA).
|
||||
|
||||
We obtain delay numbers by measuring delays of routing, soft logic blocks,
|
||||
memories, and multipliers from test circuits on a Stratix IV GX device
|
||||
(EP4SGX230DF29C2X, i.e. fastest speed grade). For routing, we took the average delay of H4 and V4
|
||||
wires. Rmetal and Cmetal values for the routing wires were obtained from work done by Charles
|
||||
Chiasson. We use a 96 nm half-pitch (corresponding to mid-level metal stack 40 nm routing) and
|
||||
take the R and C data from the ITRS roadmap.
|
||||
We obtain delay numbers by measuring delays of routing, soft logic blocks,
|
||||
memories, and multipliers from test circuits on a Stratix IV GX device
|
||||
(EP4SGX230DF29C2X, i.e. fastest speed grade). For routing, we took the average delay of H4 and V4
|
||||
wires. Rmetal and Cmetal values for the routing wires were obtained from work done by Charles
|
||||
Chiasson. We use a 96 nm half-pitch (corresponding to mid-level metal stack 40 nm routing) and
|
||||
take the R and C data from the ITRS roadmap.
|
||||
|
||||
For the general purpose logic block, we assume that the area and delays of the Stratix IV
|
||||
crossbar is close enough to the crossbar modelled here. We use 40 inputs and 20 feedback lines in
|
||||
For the general purpose logic block, we assume that the area and delays of the Stratix IV
|
||||
crossbar is close enough to the crossbar modelled here. We use 40 inputs and 20 feedback lines in
|
||||
the cluster and a full crossbar, leading to 53:1 multiplexers in front of each BLE input.
|
||||
Stratix IV uses 52 inputs and 20 feedback lines, but only a half-populated crossbar, leading to
|
||||
Stratix IV uses 52 inputs and 20 feedback lines, but only a half-populated crossbar, leading to
|
||||
36:1 multiplexers. We require 60 such multiplexers, while Stratix IV requires 88 for its more
|
||||
complex fracturable BLEs + the extra control signals. We justify this rough approximation as follows:
|
||||
The Stratix IV crossbar has more inputs (72 vs. 60) and
|
||||
outputs (88 vs. 60) than our full crossbar which should increase its area and delay, but the
|
||||
Stratix IV crossbar is also 50% sparse (each mux is 36:1 instead of 53:1) which should reduce its
|
||||
area and delay. The total number of crossbar switch points is roughly similar between the two
|
||||
architectures (3160 for SIV and 3600 for the academic architecture below), so we use the area
|
||||
complex fracturable BLEs + the extra control signals. We justify this rough approximation as follows:
|
||||
The Stratix IV crossbar has more inputs (72 vs. 60) and
|
||||
outputs (88 vs. 60) than our full crossbar which should increase its area and delay, but the
|
||||
Stratix IV crossbar is also 50% sparse (each mux is 36:1 instead of 53:1) which should reduce its
|
||||
area and delay. The total number of crossbar switch points is roughly similar between the two
|
||||
architectures (3160 for SIV and 3600 for the academic architecture below), so we use the area
|
||||
& delay of the Stratix IV crossbar as a rough approximation of our crossbar.
|
||||
|
||||
For LUTs, we include LUT
|
||||
delays measured from Stratix IV which is dependant on the input used (ie. some
|
||||
LUT inputs are faster than others). The CAD tools at the time of VTR 7 does
|
||||
For LUTs, we include LUT
|
||||
delays measured from Stratix IV which is dependant on the input used (ie. some
|
||||
LUT inputs are faster than others). The CAD tools at the time of VTR 7 does
|
||||
not consider differences in LUT input delays.
|
||||
|
||||
Adder delays obtained as approximate values from a Stratix IV EP4SE230F29C3 device.
|
||||
Delay obtained by compiling a 256 bit adder (registered inputs and outputs,
|
||||
all pins except clock virtual) then measuring the delays in chip-planner,
|
||||
sumout delay = 0.271ns to 0.348 ns, intra-block carry delay = 0.011 ns,
|
||||
inter-block carry delay = 0.327 ns. Given this data, I will approximate
|
||||
sumout 0.3 ns, intra-block carry-delay = 0.01 ns, and
|
||||
inter-block carry-delay = 0.16 ns (since Altera inter-block carry delay has
|
||||
overhead that we don't have, I'll approximate the delay of a simpler chain at
|
||||
one half what they have. This is very rough, anything from 0.01ns to 0.327ns
|
||||
Adder delays obtained as approximate values from a Stratix IV EP4SE230F29C3 device.
|
||||
Delay obtained by compiling a 256 bit adder (registered inputs and outputs,
|
||||
all pins except clock virtual) then measuring the delays in chip-planner,
|
||||
sumout delay = 0.271ns to 0.348 ns, intra-block carry delay = 0.011 ns,
|
||||
inter-block carry delay = 0.327 ns. Given this data, I will approximate
|
||||
sumout 0.3 ns, intra-block carry-delay = 0.01 ns, and
|
||||
inter-block carry-delay = 0.16 ns (since Altera inter-block carry delay has
|
||||
overhead that we don't have, I'll approximate the delay of a simpler chain at
|
||||
one half what they have. This is very rough, anything from 0.01ns to 0.327ns
|
||||
can be justified).
|
||||
|
||||
Logic block area numbers obtained by scaling overall tile area of a 65nm
|
||||
Stratix III device, (as given in Wong, Betz and Rose, FPGA 2011) to 40 nm, then subtracting out
|
||||
routing area at a channel width of 300. We use a channel width of 300 because it can route
|
||||
Logic block area numbers obtained by scaling overall tile area of a 65nm
|
||||
Stratix III device, (as given in Wong, Betz and Rose, FPGA 2011) to 40 nm, then subtracting out
|
||||
routing area at a channel width of 300. We use a channel width of 300 because it can route
|
||||
all the VTR 6.0 benchmark circuits with an approximately 20% safety margin, and is also close to the
|
||||
total channel width of Stratix IV. Hence this channel width is close to the commercial practice of
|
||||
choosing a width that provides high routability. The architecture can be routed at different channel
|
||||
|
@ -78,23 +78,23 @@
|
|||
a channel width of 300.
|
||||
|
||||
Sanity checks employed:
|
||||
1. We confirmed the routing buffer delay is ~1/3rd of total routing delay at L = 4. This matches
|
||||
1. We confirmed the routing buffer delay is ~1/3rd of total routing delay at L = 4. This matches
|
||||
common electrical design.
|
||||
|
||||
|
||||
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
|
||||
-->
|
||||
|
||||
|
||||
|
||||
|
||||
<architecture>
|
||||
|
||||
<!--
|
||||
ODIN II specific config begins
|
||||
Describes the types of user-specified netlist blocks (in blif, this corresponds to
|
||||
|
||||
<!--
|
||||
ODIN II specific config begins
|
||||
Describes the types of user-specified netlist blocks (in blif, this corresponds to
|
||||
".model [type_of_block]") that this architecture supports.
|
||||
|
||||
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
|
||||
already special structures in blif (.names, .input, .output, and .latch)
|
||||
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
|
||||
already special structures in blif (.names, .input, .output, and .latch)
|
||||
that describe them.
|
||||
-->
|
||||
<models>
|
||||
|
@ -161,7 +161,7 @@
|
|||
</model>
|
||||
</models>
|
||||
<!-- ODIN II specific config ends -->
|
||||
|
||||
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout auto="1.0" tileable_routing="off"/>
|
||||
<!--layout width="12" height="12" tileable_routing="off"/-->
|
||||
|
@ -192,15 +192,15 @@
|
|||
<rise slew_time="25e-12" slew_type="abs"/>
|
||||
<fall slew_time="25e-12" slew_type="abs"/>
|
||||
</input>
|
||||
</stimulate>
|
||||
</stimulate>
|
||||
</parameters>
|
||||
<tech_lib lib_type="academia" transistor_type="TOP_TT" lib_path="OPENFPGAPATHKEYWORD/fpga_flow/tech/PTM_45nm/45nm.pm" nominal_vdd="1.0" io_vdd="2.5"/>
|
||||
<tech_lib lib_type="academia" transistor_type="TOP_TT" lib_path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm" nominal_vdd="1.0" io_vdd="2.5"/>
|
||||
<transistors pn_ratio="2" model_ref="M">
|
||||
<nmos model_name="nch" chan_length="40e-9" min_width="140e-9"/>
|
||||
<pmos model_name="pch" chan_length="40e-9" min_width="140e-9"/>
|
||||
<io_nmos model_name="nch_25" chan_length="270e-9" min_width="320e-9"/>
|
||||
<io_pmos model_name="pch_25" chan_length="270e-9" min_width="320e-9"/>
|
||||
</transistors>
|
||||
</transistors>
|
||||
<module_circuit_models>
|
||||
<circuit_model type="inv_buf" name="INV1X" prefix="INV1X" is_default="1">
|
||||
<design_technology type="cmos" topology="inverter" size="1" tapered="off"/>
|
||||
|
@ -344,7 +344,7 @@
|
|||
<port type="output" prefix="out" size="1"/>
|
||||
</circuit_model>
|
||||
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
|
||||
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="OPENFPGAPATHKEYWORD/vpr7_x2p/vpr/SpiceNetlists/ff.sp" verilog_netlist="FFPATHKEYWORD">
|
||||
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerlogNetlists/ff.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" circuit_model_name="INV1X"/>
|
||||
<output_buffer exist="on" circuit_model_name="INV1X"/>
|
||||
|
@ -386,7 +386,7 @@
|
|||
<port type="sram" prefix="mode" size="2" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
|
||||
</circuit_model>
|
||||
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
|
||||
<circuit_model type="sff" name="sc_dff_compact" prefix="scff" spice_netlist="OPENFPGAPATHKEYWORD/vpr7_x2p/vpr/SpiceNetlists/ff.sp" verilog_netlist="FFPATHKEYWORD">
|
||||
<circuit_model type="sff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerlogNetlists/ff.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" circuit_model_name="INV1X"/>
|
||||
<output_buffer exist="on" circuit_model_name="INV1X"/>
|
||||
|
@ -398,7 +398,7 @@
|
|||
<port type="output" prefix="Qb" size="1"/>
|
||||
<port type="clock" prefix="prog_clk" size="1" is_global="true" default_val="0" is_prog="true"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="OPENFPGAPATHKEYWORD/vpr7_x2p/vpr/SpiceNetlists/io.sp" verilog_netlist="OPENFPGAPATHKEYWORD/vpr7_x2p/vpr/VerilogNetlists/io.v">
|
||||
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" circuit_model_name="INV1X"/>
|
||||
<output_buffer exist="on" circuit_model_name="INV1X"/>
|
||||
|
@ -411,7 +411,7 @@
|
|||
<port type="output" prefix="inpad" size="1"/>
|
||||
</circuit_model>
|
||||
<!-- Hard logic definition for heterogenous blocks -->
|
||||
<circuit_model type="hard_logic" name="adder" prefix="adder" dump_explicit_port_map="true" spice_netlist="OPENFPGAPATHKEYWORD/vpr7_x2p/vpr/SpiceNetlists/adder.sp" verilog_netlist="OPENFPGAPATHKEYWORD/vpr7_x2p/vpr/VerilogNetlists/adder.v">
|
||||
<circuit_model type="hard_logic" name="adder" prefix="adder" dump_explicit_port_map="true" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/adder.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/adder.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" circuit_model_name="INV1X"/>
|
||||
<output_buffer exist="on" circuit_model_name="INV1X"/>
|
||||
|
@ -421,7 +421,7 @@
|
|||
<port type="output" prefix="sumout" size="1"/>
|
||||
<port type="output" prefix="cout" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="hard_logic" name="dpram" prefix="dpram" dump_explicit_port_map="true" spice_netlist="OPENFPGAPATHKEYWORD/vpr7_x2p/vpr/VerilogNetlists/spram.sp" verilog_netlist="OPENFPGAPATHKEYWORD/vpr7_x2p/vpr/VerilogNetlists/memory_wrapper.v">
|
||||
<circuit_model type="hard_logic" name="dpram" prefix="dpram" dump_explicit_port_map="true" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/spram.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/memory_wrapper.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" circuit_model_name="buf1"/>
|
||||
<output_buffer exist="on" circuit_model_name="buf1"/>
|
||||
|
@ -433,7 +433,7 @@
|
|||
<port type="output" prefix="d_out" size="64"/>
|
||||
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="sram" name="sram6T" prefix="sram" spice_netlist="OPENFPGAPATHKEYWORD/vpr7_x2p/vpr/SpiceNetlists/sram.sp" verilog_netlist="OPENFPGAPATHKEYWORD/vpr7_x2p/vpr/VerilogNetlists/sram.v">
|
||||
<circuit_model type="sram" name="sram6T" prefix="sram" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/sram.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/sram.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" circuit_model_name="INV1X"/>
|
||||
<output_buffer exist="on" circuit_model_name="INV1X"/>
|
||||
|
@ -445,29 +445,29 @@
|
|||
</module_circuit_models>
|
||||
</spice_settings>
|
||||
<device>
|
||||
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
|
||||
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
|
||||
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
|
||||
lined up with Stratix IV.
|
||||
lined up with Stratix IV.
|
||||
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
|
||||
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
|
||||
by 2.5x when looking up in Jeff's tables.
|
||||
The delay values are lined up with Stratix IV, which has an architecture similar to this
|
||||
proposed FPGA, and which is also 40 nm
|
||||
proposed FPGA, and which is also 40 nm
|
||||
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
|
||||
4x minimum drive strength buffer. -->
|
||||
|
||||
|
||||
<sizing R_minW_nmos="8926" R_minW_pmos="16067" ipin_mux_trans_size="9"/>
|
||||
<timing C_ipin_cblock="596e-18" T_ipin_cblock="77.93e-12"/>
|
||||
|
||||
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
|
||||
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
|
||||
-->
|
||||
<area grid_logic_tile_area="0"/>
|
||||
<area grid_logic_tile_area="0"/>
|
||||
<sram area="6">
|
||||
<verilog organization="scan-chain" circuit_model_name="sc_dff_compact"/>
|
||||
<!--verilog organization="memory-bank" circuit_model_name="sram6T_blwl"/-->
|
||||
|
@ -488,14 +488,14 @@
|
|||
<switchlist>
|
||||
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
|
||||
book area formula. This means the mux transistors are about 5x minimum drive strength.
|
||||
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
|
||||
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
|
||||
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
|
||||
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||
2.5x when looking up in Jeff's tables.
|
||||
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
|
||||
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
|
||||
|
@ -509,7 +509,7 @@
|
|||
</switch>
|
||||
</switchlist>
|
||||
<segmentlist>
|
||||
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
|
||||
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
|
||||
<segment freq="0.13" length="16" type="unidir" Rmetal="101" Cmetal="22.5e-15" circuit_model_name="chan_segment">
|
||||
|
@ -524,7 +524,7 @@
|
|||
</segment>
|
||||
</segmentlist>
|
||||
<!--switch_segment_patterns>
|
||||
<pattern type="unbuf_sb" seg_length="1" seg_type="unidir" pattern_length="2">
|
||||
<pattern type="unbuf_sb" seg_length="1" seg_type="unidir" pattern_length="2">
|
||||
<unbuf_mux name="1"/>
|
||||
<sb type ="pattern">0 1</sb>
|
||||
</pattern>
|
||||
|
@ -564,7 +564,7 @@
|
|||
|
||||
<!-- IOs can operate as either inputs or outputs.§
|
||||
Delays below come from Ian Kuon. They are small, so they should be interpreted as
|
||||
the delays to and from registers in the I/O (and generally I/Os are registered
|
||||
the delays to and from registers in the I/O (and generally I/Os are registered
|
||||
today and that is when you timing analyze them.
|
||||
-->
|
||||
<mode name="inpad">
|
||||
|
@ -591,7 +591,7 @@
|
|||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<fc default_in_type="frac" default_in_val="0.055" default_out_type="frac" default_out_val="0.10"/>
|
||||
|
||||
<!-- IOs go on the periphery of the FPGA, for consistency,
|
||||
<!-- IOs go on the periphery of the FPGA, for consistency,
|
||||
make it physically equivalent on all sides so that only one definition of I/Os is needed.
|
||||
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
|
||||
-->
|
||||
|
@ -607,7 +607,7 @@
|
|||
<loc type="perimeter" priority="10"/>
|
||||
</gridlocations>
|
||||
|
||||
<power method="ignore"/>
|
||||
<power method="ignore"/>
|
||||
</pb_type>
|
||||
<!-- Define I/O pads ends -->
|
||||
|
||||
|
@ -662,9 +662,9 @@
|
|||
<direct name="clk" input="memory.clk" output="dpram.clk">
|
||||
</direct>
|
||||
</interconnect>
|
||||
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="waddr" input="memory_dp.waddr" output="memory.waddr"/>
|
||||
<direct name="raddr" input="memory_dp.raddr" output="memory.raddr"/>
|
||||
<direct name="data" input="memory_dp.d_in" output="memory.d_in"/>
|
||||
|
@ -693,14 +693,14 @@
|
|||
|
||||
|
||||
<!-- Define general purpose logic block (CLB) begin -->
|
||||
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
|
||||
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
|
||||
area is 60 L^2 yields a tile area of 84375 MWTAs.
|
||||
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
|
||||
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
|
||||
This means that only 37% of our area is in the general routing, and 63% is inside the logic
|
||||
block. Note that the crossbar / local interconnect is considered part of the logic block
|
||||
area in this analysis. That is a lower proportion of of routing area than most academics
|
||||
assume, but note that the total routing area really includes the crossbar, which would push
|
||||
routing area up significantly, we estimate into the ~70% range.
|
||||
routing area up significantly, we estimate into the ~70% range.
|
||||
-->
|
||||
<pb_type name="clb" area="11388">
|
||||
<input name="I0" num_pins="10" equivalent="true"/>
|
||||
|
@ -715,8 +715,8 @@
|
|||
<output name="regout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
|
||||
<!-- Describe fracturable logic element.
|
||||
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
|
||||
<!-- Describe fracturable logic element.
|
||||
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
|
||||
The outputs of the fracturable logic element can be optionally registered
|
||||
-->
|
||||
<pb_type name="fle" num_pb="10" physical_mode_name="fle_phy" idle_mode_name="n2_lut5">
|
||||
|
@ -727,7 +727,7 @@
|
|||
<output name="cout" num_pins="1"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
|
||||
|
||||
<mode name="fle_phy" disabled_in_packing="true">
|
||||
<!--pb_type name="fle_phy" num_pb="1" circuit_model_name="fle_phy">
|
||||
<input name="in" num_pins="6"/>
|
||||
|
@ -746,15 +746,15 @@
|
|||
<output name="lut4_out" num_pins="4"/>
|
||||
<output name="lut5_out" num_pins="2"/>
|
||||
<output name="lut6_out" num_pins="1"/>
|
||||
</pb_type>
|
||||
</pb_type>
|
||||
<pb_type name="adder_phy" blif_model=".subckt adder" num_pb="2" circuit_model_name="adder">
|
||||
<input name="a" num_pins="1"/>
|
||||
<input name="b" num_pins="1"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<output name="sumout" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<interconnect>
|
||||
<direct name="direct_fraclut_in" input="frac_logic.in[5:0]" output="frac_lut6.in[5:0]"/>
|
||||
<direct name="direct_cin" input="frac_logic.cin" output="adder_phy[0].cin"/>
|
||||
<direct name="direct_carry" input="adder_phy[0].cout" output="adder_phy[1].cin"/>
|
||||
|
@ -767,7 +767,7 @@
|
|||
</mux>
|
||||
<mux name="mux2" input="adder_phy[1].sumout frac_lut6.lut5_out[1] frac_lut6.lut6_out[0] frac_logic.regchain[0]" output="frac_logic.out[1]">
|
||||
</mux>
|
||||
</interconnect>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<pb_type name="ff_phy" blif_model=".latch" num_pb="2" class="flipflop" circuit_model_name="static_dff">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
|
@ -776,7 +776,7 @@
|
|||
<T_setup value="66e-12" port="ff_phy.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff_phy.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<interconnect>
|
||||
<complete name="direct_clk" input="fle.clk" output="ff_phy[1:0].clk"/>
|
||||
<direct name="direct_in" input="fle.in[5:0]" output="frac_logic.in[5:0]"/>
|
||||
<direct name="direct_regin" input="fle.regin" output="frac_logic.regin"/>
|
||||
|
@ -805,12 +805,12 @@
|
|||
<input name="cin" num_pins="1"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<mode name="blut5">
|
||||
<pb_type name="flut5" num_pb="1">
|
||||
<input name="in" num_pins="5"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Regular LUT mode -->
|
||||
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut" mode_bits="01" physical_pb_type_name="frac_lut6" physical_pb_type_index_factor="0.5">
|
||||
<input name="in" num_pins="5" port_class="lut_in" physical_mode_pin="in[5:0]"/>
|
||||
|
@ -831,8 +831,8 @@
|
|||
255e-12
|
||||
255e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
|
||||
</pb_type>
|
||||
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop" physical_pb_type_name="ff_phy">
|
||||
<input name="D" num_pins="1" port_class="D" physical_mode_pin="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q" physical_mode_pin="Q"/>
|
||||
|
@ -845,7 +845,7 @@
|
|||
<direct name="direct2" input="lut5.out" output="ff.D">
|
||||
<pack_pattern name="ble5" in_port="lut5.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="flut5.clk" output="ff.clk"/>
|
||||
<direct name="direct3" input="flut5.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut5.out" output="flut5.out" spice_model_sram_offset="0">
|
||||
<delay_constant max="25e-12" in_port="lut5.out" out_port="flut5.out" />
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="flut5.out" />
|
||||
|
@ -855,7 +855,7 @@
|
|||
<interconnect>
|
||||
<direct name="direct1" input="ble5.in" output="flut5.in"/>
|
||||
<direct name="direct2" input="ble5.clk" output="flut5.clk"/>
|
||||
<direct name="direct3" input="flut5.out" output="ble5.out"/>
|
||||
<direct name="direct3" input="flut5.out" output="ble5.out"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="arithmetic">
|
||||
|
@ -864,7 +864,7 @@
|
|||
<input name="cin" num_pins="1"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Special dual-LUT mode that drives adder only -->
|
||||
<pb_type name="lut4" blif_model=".names" num_pb="2" class="lut" mode_bits="11" physical_pb_type_name="frac_lut6" physical_pb_type_index_factor="0.25">
|
||||
<input name="in" num_pins="4" port_class="lut_in" physical_mode_pin="in[4:0]"/>
|
||||
|
@ -883,11 +883,11 @@
|
|||
202e-12
|
||||
202e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
</pb_type>
|
||||
<pb_type name="adder" blif_model=".subckt adder" num_pb="1" physical_pb_type_name="adder_phy">
|
||||
<input name="a" num_pins="1" physical_mode_pin="a"/>
|
||||
<input name="b" num_pins="1" physical_mode_pin="b"/>
|
||||
<input name="cin" num_pins="1" physical_mode_pin="cin"/>
|
||||
<input name="cin" num_pins="1" physical_mode_pin="cin"/>
|
||||
<output name="cout" num_pins="1" physical_mode_pin="cout"/>
|
||||
<output name="sumout" num_pins="1" physical_mode_pin="sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
|
||||
|
@ -937,14 +937,14 @@
|
|||
<pack_pattern name="chain" in_port="arithmetic.cout" out_port="ble5.cout"/>
|
||||
</direct>
|
||||
<direct name="direct2" input="ble5.clk" output="arithmetic.clk"/>
|
||||
<direct name="direct3" input="arithmetic.out" output="ble5.out"/>
|
||||
<direct name="direct3" input="arithmetic.out" output="ble5.out"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="lut5inter.in" output="ble5[0:0].in"/>
|
||||
<direct name="direct2" input="lut5inter.in" output="ble5[1:1].in"/>
|
||||
<direct name="direct3" input="ble5[1:0].out" output="lut5inter.out"/>
|
||||
<direct name="direct3" input="ble5[1:0].out" output="lut5inter.out"/>
|
||||
<direct name="carry_in" input="lut5inter.cin" output="ble5[0:0].cin">
|
||||
<pack_pattern name="chain" in_port="lut5inter.cin" out_port="ble5[0:0].cin"/>
|
||||
</direct>
|
||||
|
@ -954,7 +954,7 @@
|
|||
<direct name="carry_link" input="ble5[0:0].cout" output="ble5[1:1].cin">
|
||||
<pack_pattern name="chain" in_port="ble5[0:0].cout" out_port="ble5[1:1].cout"/>
|
||||
</direct>
|
||||
<complete name="complete1" input="lut5inter.clk" output="ble5[1:0].clk"/>
|
||||
<complete name="complete1" input="lut5inter.clk" output="ble5[1:0].clk"/>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
|
@ -973,7 +973,7 @@
|
|||
<pb_type name="ble6" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut" mode_bits="00" physical_pb_type_name="frac_lut6" spice_model_sram_offset="0">
|
||||
<input name="in" num_pins="6" port_class="lut_in" physical_mode_pin="in[5:0]"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out" physical_mode_pin="lut6_out[0]"/>
|
||||
|
@ -1009,7 +1009,7 @@
|
|||
<direct name="direct2" input="lut6.out" output="ff.D">
|
||||
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
|
||||
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
|
||||
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out" />
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out" />
|
||||
|
@ -1027,7 +1027,7 @@
|
|||
<input name="in" num_pins="1"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="ff" blif_model=".subckt shift" num_pb="2" class="flipflop" physical_pb_type_name="ff_phy">
|
||||
<input name="D" num_pins="1" port_class="D" physical_mode_pin="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q" physical_mode_pin="Q"/>
|
||||
|
@ -1039,11 +1039,11 @@
|
|||
<direct name="direct1" input="ble_shift.in" output="ff[0].D"/>
|
||||
<direct name="direct2" input="ff[0].Q" output="ff[1].D">
|
||||
<pack_pattern name="ble_shift" in_port="ff[0].Q" out_port="ff[1].D"/>
|
||||
</direct>
|
||||
<direct name="out1" input="ff[0].Q" output="ble_shift.out[0]"/>
|
||||
</direct>
|
||||
<direct name="out1" input="ff[0].Q" output="ble_shift.out[0]"/>
|
||||
<direct name="out2" input="ff[1].Q" output="ble_shift.out[1]"/>
|
||||
<direct name="direct_regout" input="ff[1].Q" output="ble_shift.regout"/>
|
||||
<complete name="direct3" input="ble_shift.clk" output="ff[1:0].clk"/>
|
||||
<complete name="direct3" input="ble_shift.clk" output="ff[1:0].clk"/>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
|
@ -1055,13 +1055,13 @@
|
|||
</mode> <!-- shift_register -->
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
|
||||
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
|
||||
The delays below come from Stratix IV. the delay through a connection block
|
||||
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
|
||||
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
|
||||
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
|
||||
delay within the crossbar is 95 ps.
|
||||
delay within the crossbar is 95 ps.
|
||||
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
|
||||
Since all our outputs LUT outputs go to a BLE output, and have a delay of
|
||||
Since all our outputs LUT outputs go to a BLE output, and have a delay of
|
||||
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
|
||||
to get the part that should be marked on the crossbar. -->
|
||||
<complete name="crossbar0" input="clb.I2 clb.I3 fle[9:0].out" output="fle[9:0].in[0]" circuit_model_name="mux_2level">
|
||||
|
@ -1095,8 +1095,8 @@
|
|||
<pack_pattern name="chain" in_port="clb.cin_trick" out_port="fle[0:0].cin"/>
|
||||
</complete>
|
||||
|
||||
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
|
||||
naive specification).
|
||||
-->
|
||||
|
@ -1147,7 +1147,7 @@
|
|||
<local_interconnect C_wire="2.5e-10"/>
|
||||
<mux_transistor_size mux_transistor_size="3"/>
|
||||
<FF_size FF_size="4"/>
|
||||
<LUT_transistor_size LUT_transistor_size="4"/>
|
||||
<LUT_transistor_size LUT_transistor_size="4"/>
|
||||
</power>
|
||||
<clocks>
|
||||
<clock buffer_size="auto" C_wire="2.5e-10"/>
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -1,76 +1,76 @@
|
|||
<!--
|
||||
<!--
|
||||
Flagship Heterogeneous Architecture with Carry Chains for VTR 7.0.
|
||||
|
||||
- 40 nm technology
|
||||
- General purpose logic block:
|
||||
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with all 5 inputs shared)
|
||||
- General purpose logic block:
|
||||
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with all 5 inputs shared)
|
||||
with optionally registered outputs
|
||||
Each 5-LUT has an arithemtic mode that converts it to a single-bit adder with both inputs driven by 4-LUTs (both 4-LUTs share all 4 inputs)
|
||||
Carry chain links to vertically adjacent logic blocks
|
||||
- Memory size 32 Kbits, memory aspect ratios vary from a data width of 1 to data width of 64.
|
||||
- Memory size 32 Kbits, memory aspect ratios vary from a data width of 1 to data width of 64.
|
||||
Height = 6, found on every (8n+2)th column
|
||||
- Multiplier modes: one 36x36, two 18x18, each 18x18 can also operate as two 9x9.
|
||||
- Multiplier modes: one 36x36, two 18x18, each 18x18 can also operate as two 9x9.
|
||||
Height = 4, found on every (8n+6)th column
|
||||
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
|
||||
|
||||
Details on Modelling:
|
||||
|
||||
The electrical design of the architecture described here is NOT from an
|
||||
optimized, SPICED architecture. Instead, we attempt to create a reasonable
|
||||
architecture file by using an existing commercial FPGA to approximate the area,
|
||||
delay, and power of the underlying components. This is combined with a reasonable 40 nm
|
||||
The electrical design of the architecture described here is NOT from an
|
||||
optimized, SPICED architecture. Instead, we attempt to create a reasonable
|
||||
architecture file by using an existing commercial FPGA to approximate the area,
|
||||
delay, and power of the underlying components. This is combined with a reasonable 40 nm
|
||||
model of wiring and circuit design for low-level routing components, where available.
|
||||
The resulting architecture has delays that roughly match a commercial 40 nm FPGA, but also
|
||||
has wiring electrical parameters that allow the wire lengths and switch patterns to be
|
||||
The resulting architecture has delays that roughly match a commercial 40 nm FPGA, but also
|
||||
has wiring electrical parameters that allow the wire lengths and switch patterns to be
|
||||
modified and you will still get reasonable delay results for the new architecture.
|
||||
The following describes, in detail, how we obtained the various electrical values for this
|
||||
The following describes, in detail, how we obtained the various electrical values for this
|
||||
architecture.
|
||||
|
||||
Rmin for nmos and pmos, routing buffer sizes, and I/O pad delays are from the ifar
|
||||
architecture created by Ian Kuon: K06 N10 45nm fc 0.15 area-delay optimized architecture.
|
||||
(n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml)
|
||||
This routing architecture was optimized for 45 nm, and we have scaled it linearly to 40 nm to
|
||||
Rmin for nmos and pmos, routing buffer sizes, and I/O pad delays are from the ifar
|
||||
architecture created by Ian Kuon: K06 N10 45nm fc 0.15 area-delay optimized architecture.
|
||||
(n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml)
|
||||
This routing architecture was optimized for 45 nm, and we have scaled it linearly to 40 nm to
|
||||
match the overall target (a 40 nm FPGA).
|
||||
|
||||
We obtain delay numbers by measuring delays of routing, soft logic blocks,
|
||||
memories, and multipliers from test circuits on a Stratix IV GX device
|
||||
(EP4SGX230DF29C2X, i.e. fastest speed grade). For routing, we took the average delay of H4 and V4
|
||||
wires. Rmetal and Cmetal values for the routing wires were obtained from work done by Charles
|
||||
Chiasson. We use a 96 nm half-pitch (corresponding to mid-level metal stack 40 nm routing) and
|
||||
take the R and C data from the ITRS roadmap.
|
||||
We obtain delay numbers by measuring delays of routing, soft logic blocks,
|
||||
memories, and multipliers from test circuits on a Stratix IV GX device
|
||||
(EP4SGX230DF29C2X, i.e. fastest speed grade). For routing, we took the average delay of H4 and V4
|
||||
wires. Rmetal and Cmetal values for the routing wires were obtained from work done by Charles
|
||||
Chiasson. We use a 96 nm half-pitch (corresponding to mid-level metal stack 40 nm routing) and
|
||||
take the R and C data from the ITRS roadmap.
|
||||
|
||||
For the general purpose logic block, we assume that the area and delays of the Stratix IV
|
||||
crossbar is close enough to the crossbar modelled here. We use 40 inputs and 20 feedback lines in
|
||||
For the general purpose logic block, we assume that the area and delays of the Stratix IV
|
||||
crossbar is close enough to the crossbar modelled here. We use 40 inputs and 20 feedback lines in
|
||||
the cluster and a full crossbar, leading to 53:1 multiplexers in front of each BLE input.
|
||||
Stratix IV uses 52 inputs and 20 feedback lines, but only a half-populated crossbar, leading to
|
||||
Stratix IV uses 52 inputs and 20 feedback lines, but only a half-populated crossbar, leading to
|
||||
36:1 multiplexers. We require 60 such multiplexers, while Stratix IV requires 88 for its more
|
||||
complex fracturable BLEs + the extra control signals. We justify this rough approximation as follows:
|
||||
The Stratix IV crossbar has more inputs (72 vs. 60) and
|
||||
outputs (88 vs. 60) than our full crossbar which should increase its area and delay, but the
|
||||
Stratix IV crossbar is also 50% sparse (each mux is 36:1 instead of 53:1) which should reduce its
|
||||
area and delay. The total number of crossbar switch points is roughly similar between the two
|
||||
architectures (3160 for SIV and 3600 for the academic architecture below), so we use the area
|
||||
complex fracturable BLEs + the extra control signals. We justify this rough approximation as follows:
|
||||
The Stratix IV crossbar has more inputs (72 vs. 60) and
|
||||
outputs (88 vs. 60) than our full crossbar which should increase its area and delay, but the
|
||||
Stratix IV crossbar is also 50% sparse (each mux is 36:1 instead of 53:1) which should reduce its
|
||||
area and delay. The total number of crossbar switch points is roughly similar between the two
|
||||
architectures (3160 for SIV and 3600 for the academic architecture below), so we use the area
|
||||
& delay of the Stratix IV crossbar as a rough approximation of our crossbar.
|
||||
|
||||
For LUTs, we include LUT
|
||||
delays measured from Stratix IV which is dependant on the input used (ie. some
|
||||
LUT inputs are faster than others). The CAD tools at the time of VTR 7 does
|
||||
For LUTs, we include LUT
|
||||
delays measured from Stratix IV which is dependant on the input used (ie. some
|
||||
LUT inputs are faster than others). The CAD tools at the time of VTR 7 does
|
||||
not consider differences in LUT input delays.
|
||||
|
||||
Adder delays obtained as approximate values from a Stratix IV EP4SE230F29C3 device.
|
||||
Delay obtained by compiling a 256 bit adder (registered inputs and outputs,
|
||||
all pins except clock virtual) then measuring the delays in chip-planner,
|
||||
sumout delay = 0.271ns to 0.348 ns, intra-block carry delay = 0.011 ns,
|
||||
inter-block carry delay = 0.327 ns. Given this data, I will approximate
|
||||
sumout 0.3 ns, intra-block carry-delay = 0.01 ns, and
|
||||
inter-block carry-delay = 0.16 ns (since Altera inter-block carry delay has
|
||||
overhead that we don't have, I'll approximate the delay of a simpler chain at
|
||||
one half what they have. This is very rough, anything from 0.01ns to 0.327ns
|
||||
Adder delays obtained as approximate values from a Stratix IV EP4SE230F29C3 device.
|
||||
Delay obtained by compiling a 256 bit adder (registered inputs and outputs,
|
||||
all pins except clock virtual) then measuring the delays in chip-planner,
|
||||
sumout delay = 0.271ns to 0.348 ns, intra-block carry delay = 0.011 ns,
|
||||
inter-block carry delay = 0.327 ns. Given this data, I will approximate
|
||||
sumout 0.3 ns, intra-block carry-delay = 0.01 ns, and
|
||||
inter-block carry-delay = 0.16 ns (since Altera inter-block carry delay has
|
||||
overhead that we don't have, I'll approximate the delay of a simpler chain at
|
||||
one half what they have. This is very rough, anything from 0.01ns to 0.327ns
|
||||
can be justified).
|
||||
|
||||
Logic block area numbers obtained by scaling overall tile area of a 65nm
|
||||
Stratix III device, (as given in Wong, Betz and Rose, FPGA 2011) to 40 nm, then subtracting out
|
||||
routing area at a channel width of 300. We use a channel width of 300 because it can route
|
||||
Logic block area numbers obtained by scaling overall tile area of a 65nm
|
||||
Stratix III device, (as given in Wong, Betz and Rose, FPGA 2011) to 40 nm, then subtracting out
|
||||
routing area at a channel width of 300. We use a channel width of 300 because it can route
|
||||
all the VTR 6.0 benchmark circuits with an approximately 20% safety margin, and is also close to the
|
||||
total channel width of Stratix IV. Hence this channel width is close to the commercial practice of
|
||||
choosing a width that provides high routability. The architecture can be routed at different channel
|
||||
|
@ -78,23 +78,23 @@
|
|||
a channel width of 300.
|
||||
|
||||
Sanity checks employed:
|
||||
1. We confirmed the routing buffer delay is ~1/3rd of total routing delay at L = 4. This matches
|
||||
1. We confirmed the routing buffer delay is ~1/3rd of total routing delay at L = 4. This matches
|
||||
common electrical design.
|
||||
|
||||
|
||||
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
|
||||
-->
|
||||
|
||||
|
||||
|
||||
|
||||
<architecture>
|
||||
|
||||
<!--
|
||||
ODIN II specific config begins
|
||||
Describes the types of user-specified netlist blocks (in blif, this corresponds to
|
||||
|
||||
<!--
|
||||
ODIN II specific config begins
|
||||
Describes the types of user-specified netlist blocks (in blif, this corresponds to
|
||||
".model [type_of_block]") that this architecture supports.
|
||||
|
||||
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
|
||||
already special structures in blif (.names, .input, .output, and .latch)
|
||||
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
|
||||
already special structures in blif (.names, .input, .output, and .latch)
|
||||
that describe them.
|
||||
-->
|
||||
<models>
|
||||
|
@ -148,7 +148,7 @@
|
|||
</model>
|
||||
</models>
|
||||
<!-- ODIN II specific config ends -->
|
||||
|
||||
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout auto="1.0" tileable_routing="off"/>
|
||||
<spice_settings>
|
||||
|
@ -177,7 +177,7 @@
|
|||
<rise slew_time="25e-12" slew_type="abs"/>
|
||||
<fall slew_time="25e-12" slew_type="abs"/>
|
||||
</input>
|
||||
</stimulate>
|
||||
</stimulate>
|
||||
</parameters>
|
||||
<tech_lib lib_type="academia" transistor_type="TOP_TT" lib_path="OPENFPGAPATHKEYWORD/fpga_flow/tech/PTM_45nm/45nm.pm" nominal_vdd="1.0" io_vdd="2.5"/>
|
||||
<transistors pn_ratio="2" model_ref="M">
|
||||
|
@ -185,7 +185,7 @@
|
|||
<pmos model_name="pch" chan_length="40e-9" min_width="140e-9"/>
|
||||
<io_nmos model_name="nch_25" chan_length="270e-9" min_width="320e-9"/>
|
||||
<io_pmos model_name="pch_25" chan_length="270e-9" min_width="320e-9"/>
|
||||
</transistors>
|
||||
</transistors>
|
||||
<module_circuit_models>
|
||||
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="1">
|
||||
<design_technology type="cmos" topology="inverter" size="1" tapered="off"/>
|
||||
|
@ -237,10 +237,10 @@
|
|||
10e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="a" out_port="out">
|
||||
10e-12
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="b" out_port="out">
|
||||
10e-12
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="1">
|
||||
|
@ -290,7 +290,7 @@
|
|||
<port type="sram" prefix="sram" size="1"/>
|
||||
</circuit_model>
|
||||
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
|
||||
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="OPENFPGAPATHKEYWORD/vpr7_x2p/vpr/SpiceNetlists/ff.sp" verilog_netlist="FFPATHKEYWORD">
|
||||
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerlogNetlists/ff.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="on" circuit_model_name="INVTX1"/>
|
||||
|
@ -342,7 +342,7 @@
|
|||
<port type="sram" prefix="sram" size="16"/>
|
||||
<port type="sram" prefix="mode" size="2" mode_select="true" circuit_model_name="sram6T_blwl" default_val="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="sram" name="sram6T" prefix="sram" spice_netlist="OPENFPGAPATHKEYWORD/vpr7_x2p/vpr/SpiceNetlists/sram.sp" verilog_netlist="OPENFPGAPATHKEYWORD/vpr7_x2p/vpr/VerilogNetlists/sram.v" >
|
||||
<circuit_model type="sram" name="sram6T" prefix="sram" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/sram.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/sram.v" >
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="on" circuit_model_name="INVTX1"/>
|
||||
|
@ -350,7 +350,7 @@
|
|||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="2"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="sram" name="sram6T_blwl" prefix="sram_blwl" spice_netlist="OPENFPGAPATHKEYWORD/vpr7_x2p/vpr/SpiceNetlists/sram.sp" verilog_netlist="OPENFPGAPATHKEYWORD/vpr7_x2p/vpr/VerilogNetlists/sram.v">
|
||||
<circuit_model type="sram" name="sram6T_blwl" prefix="sram_blwl" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/sram.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/sram.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="on" circuit_model_name="INVTX1"/>
|
||||
|
@ -362,7 +362,7 @@
|
|||
<port type="wl" prefix="wl" size="1" default_val="0" inv_circuit_model_name="INVTX1"/>
|
||||
</circuit_model>
|
||||
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
|
||||
<circuit_model type="sff" name="sc_dff_compact" prefix="scff" spice_netlist="OPENFPGAPATHKEYWORD/vpr7_x2p/vpr/SpiceNetlists/ff.sp" verilog_netlist="FFPATHKEYWORD">
|
||||
<circuit_model type="sff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerlogNetlists/ff.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="on" circuit_model_name="INVTX1"/>
|
||||
|
@ -373,7 +373,7 @@
|
|||
<port type="output" prefix="Qb" size="1"/>
|
||||
<port type="clock" prefix="prog_clk" size="1" is_global="true" default_val="0" is_prog="true"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="OPENFPGAPATHKEYWORD/vpr7_x2p/vpr/SpiceNetlists/io.sp" verilog_netlist="OPENFPGAPATHKEYWORD/vpr7_x2p/vpr/VerilogNetlists/io.v">
|
||||
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="on" circuit_model_name="INVTX1"/>
|
||||
|
@ -384,7 +384,7 @@
|
|||
<port type="output" prefix="inpad" size="1"/>
|
||||
</circuit_model>
|
||||
<!-- Hard logic definition for heterogenous blocks -->
|
||||
<circuit_model type="hard_logic" name="adder" prefix="adder" spice_netlist="OPENFPGAPATHKEYWORD/vpr7_x2p/vpr/SpiceNetlists/adder.sp" verilog_netlist="OPENFPGAPATHKEYWORD/vpr7_x2p/vpr/VerilogNetlists/adder.v">
|
||||
<circuit_model type="hard_logic" name="adder" prefix="adder" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/adder.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/adder.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="on" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="on" circuit_model_name="INVTX1"/>
|
||||
|
@ -397,29 +397,29 @@
|
|||
</module_circuit_models>
|
||||
</spice_settings>
|
||||
<device>
|
||||
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
|
||||
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
|
||||
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
|
||||
lined up with Stratix IV.
|
||||
lined up with Stratix IV.
|
||||
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
|
||||
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
|
||||
by 2.5x when looking up in Jeff's tables.
|
||||
The delay values are lined up with Stratix IV, which has an architecture similar to this
|
||||
proposed FPGA, and which is also 40 nm
|
||||
proposed FPGA, and which is also 40 nm
|
||||
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
|
||||
4x minimum drive strength buffer. -->
|
||||
|
||||
|
||||
<sizing R_minW_nmos="8926" R_minW_pmos="16067" ipin_mux_trans_size="9"/>
|
||||
<timing C_ipin_cblock="596e-18" T_ipin_cblock="77.93e-12"/>
|
||||
|
||||
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
|
||||
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
|
||||
-->
|
||||
<area grid_logic_tile_area="0"/>
|
||||
<area grid_logic_tile_area="0"/>
|
||||
<sram area="6">
|
||||
<verilog organization="scan-chain" circuit_model_name="sc_dff_compact"/>
|
||||
<!--verilog organization="memory_bank" circuit_model_name="sram6T_blwl"/-->
|
||||
|
@ -440,14 +440,14 @@
|
|||
<switchlist>
|
||||
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
|
||||
book area formula. This means the mux transistors are about 5x minimum drive strength.
|
||||
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
|
||||
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
|
||||
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
|
||||
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||
2.5x when looking up in Jeff's tables.
|
||||
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
|
||||
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
|
||||
|
@ -459,7 +459,7 @@
|
|||
</switch>
|
||||
</switchlist>
|
||||
<segmentlist>
|
||||
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
|
||||
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
|
||||
<segment freq="0.4" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15" circuit_model_name="chan_segment">
|
||||
|
@ -479,7 +479,7 @@
|
|||
</segment>
|
||||
</segmentlist>
|
||||
<!--switch_segment_patterns>
|
||||
<pattern type="unbuf_sb" seg_length="1" seg_type="unidir" pattern_length="2">
|
||||
<pattern type="unbuf_sb" seg_length="1" seg_type="unidir" pattern_length="2">
|
||||
<unbuf_mux name="1"/>
|
||||
<sb type ="pattern">0 1</sb>
|
||||
</pattern>
|
||||
|
@ -512,7 +512,7 @@
|
|||
|
||||
<!-- IOs can operate as either inputs or outputs.§
|
||||
Delays below come from Ian Kuon. They are small, so they should be interpreted as
|
||||
the delays to and from registers in the I/O (and generally I/Os are registered
|
||||
the delays to and from registers in the I/O (and generally I/Os are registered
|
||||
today and that is when you timing analyze them.
|
||||
-->
|
||||
<mode name="inpad">
|
||||
|
@ -539,7 +539,7 @@
|
|||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<fc default_in_type="frac" default_in_val="0.15" default_out_type="frac" default_out_val="0.10"/>
|
||||
|
||||
<!-- IOs go on the periphery of the FPGA, for consistency,
|
||||
<!-- IOs go on the periphery of the FPGA, for consistency,
|
||||
make it physically equivalent on all sides so that only one definition of I/Os is needed.
|
||||
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
|
||||
-->
|
||||
|
@ -555,20 +555,20 @@
|
|||
<loc type="perimeter" priority="10"/>
|
||||
</gridlocations>
|
||||
|
||||
<power method="ignore"/>
|
||||
<power method="ignore"/>
|
||||
</pb_type>
|
||||
<!-- Define I/O pads ends -->
|
||||
|
||||
|
||||
<!-- Define general purpose logic block (CLB) begin -->
|
||||
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
|
||||
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
|
||||
area is 60 L^2 yields a tile area of 84375 MWTAs.
|
||||
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
|
||||
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
|
||||
This means that only 37% of our area is in the general routing, and 63% is inside the logic
|
||||
block. Note that the crossbar / local interconnect is considered part of the logic block
|
||||
area in this analysis. That is a lower proportion of of routing area than most academics
|
||||
assume, but note that the total routing area really includes the crossbar, which would push
|
||||
routing area up significantly, we estimate into the ~70% range.
|
||||
routing area up significantly, we estimate into the ~70% range.
|
||||
-->
|
||||
<pb_type name="clb" area="53894">
|
||||
<input name="I" num_pins="40" equivalent="true"/>
|
||||
|
@ -580,8 +580,8 @@
|
|||
<output name="regout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
|
||||
<!-- Describe fracturable logic element.
|
||||
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
|
||||
<!-- Describe fracturable logic element.
|
||||
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
|
||||
The outputs of the fracturable logic element can be optionally registered
|
||||
-->
|
||||
<pb_type name="fle" num_pb="10" physical_mode_name="fle_phy" idle_mode_name="n2_lut5">
|
||||
|
@ -592,7 +592,7 @@
|
|||
<output name="cout" num_pins="1"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
|
||||
|
||||
<mode name="fle_phy" disabled_in_packing="true">
|
||||
<!--pb_type name="fle_phy" num_pb="1" circuit_model_name="fle_phy">
|
||||
<input name="in" num_pins="6"/>
|
||||
|
@ -612,21 +612,21 @@
|
|||
<output name="lut4_out" num_pins="4"/>
|
||||
<output name="lut5_out" num_pins="2"/>
|
||||
<output name="lut6_out" num_pins="1"/>
|
||||
</pb_type>
|
||||
</pb_type>
|
||||
<pb_type name="frac_lut4" blif_model=".frac_lut4" mode_bits="11" num_pb="1" circuit_model_name="frac_lut4">
|
||||
<input name="in" num_pins="4"/>
|
||||
<output name="lut2_out" num_pins="4"/>
|
||||
<output name="lut3_out" num_pins="2"/>
|
||||
<output name="lut4_out" num_pins="1"/>
|
||||
</pb_type>
|
||||
</pb_type>
|
||||
<pb_type name="adder_phy" blif_model=".subckt adder" num_pb="2" circuit_model_name="adder">
|
||||
<input name="a" num_pins="1"/>
|
||||
<input name="b" num_pins="1"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<output name="sumout" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<interconnect>
|
||||
<direct name="direct_fraclut6_in" input="frac_logic.in[3:0]" output="frac_lut6.in[3:0]"/>
|
||||
<direct name="direct_fraclut4_in1" input="frac_logic.in[6]" output="frac_lut4.in[1]"/>
|
||||
<direct name="direct_fraclut4_in0" input="frac_logic.in[7]" output="frac_lut4.in[0]"/>
|
||||
|
@ -643,7 +643,7 @@
|
|||
</mux>
|
||||
<mux name="mux2" input="adder_phy[1].sumout frac_lut4.lut4_out[0] frac_lut4.lut3_out[0] frac_lut4.lut2_out[0] frac_lut6.lut5_out[1] frac_logic.regchain[0]" output="frac_logic.out[1]">
|
||||
</mux>
|
||||
</interconnect>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<pb_type name="ff_phy" blif_model=".latch" num_pb="2" class="flipflop" circuit_model_name="static_dff">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
|
@ -652,7 +652,7 @@
|
|||
<T_setup value="66e-12" port="ff_phy.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff_phy.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<interconnect>
|
||||
<complete name="direct_clk" input="fle.clk" output="ff_phy[1:0].clk"/>
|
||||
<direct name="direct_in" input="fle.in[7:0]" output="frac_logic.in[7:0]"/>
|
||||
<direct name="direct_regin" input="fle.regin" output="frac_logic.regin"/>
|
||||
|
@ -681,12 +681,12 @@
|
|||
<input name="cin" num_pins="1"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<mode name="blut5_5">
|
||||
<pb_type name="flut5" num_pb="1">
|
||||
<input name="in" num_pins="5"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Regular LUT mode -->
|
||||
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut" mode_bits="01" physical_pb_type_name="frac_lut6" physical_pb_type_index_factor="0.5">
|
||||
<input name="in" num_pins="5" port_class="lut_in" physical_mode_pin="in[5:0]"/>
|
||||
|
@ -707,8 +707,8 @@
|
|||
235e-12
|
||||
235e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
|
||||
</pb_type>
|
||||
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop" physical_pb_type_name="ff_phy">
|
||||
<input name="D" num_pins="1" port_class="D" physical_mode_pin="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q" physical_mode_pin="Q"/>
|
||||
|
@ -721,7 +721,7 @@
|
|||
<direct name="direct2" input="lut5.out" output="ff.D">
|
||||
<pack_pattern name="ble5" in_port="lut5.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="flut5.clk" output="ff.clk"/>
|
||||
<direct name="direct3" input="flut5.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut5.out" output="flut5.out" spice_model_sram_offset="0">
|
||||
<delay_constant max="25e-12" in_port="lut5.out" out_port="flut5.out" />
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="flut5.out" />
|
||||
|
@ -731,7 +731,7 @@
|
|||
<interconnect>
|
||||
<direct name="direct1" input="ble5.in" output="flut5.in"/>
|
||||
<direct name="direct2" input="ble5.clk" output="flut5.clk"/>
|
||||
<direct name="direct3" input="flut5.out" output="ble5.out"/>
|
||||
<direct name="direct3" input="flut5.out" output="ble5.out"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="arithmetic">
|
||||
|
@ -740,7 +740,7 @@
|
|||
<input name="cin" num_pins="1"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Special dual-LUT mode that drives adder only -->
|
||||
<pb_type name="lut4" blif_model=".names" num_pb="2" class="lut" mode_bits="11" physical_pb_type_name="frac_lut6" physical_pb_type_index_factor="0.25">
|
||||
<input name="in" num_pins="4" port_class="lut_in" physical_mode_pin="in[4:0]"/>
|
||||
|
@ -759,11 +759,11 @@
|
|||
195e-12
|
||||
195e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
</pb_type>
|
||||
<pb_type name="adder" blif_model=".subckt adder" num_pb="1" physical_pb_type_name="adder_phy">
|
||||
<input name="a" num_pins="1" physical_mode_pin="a"/>
|
||||
<input name="b" num_pins="1" physical_mode_pin="b"/>
|
||||
<input name="cin" num_pins="1" physical_mode_pin="cin"/>
|
||||
<input name="cin" num_pins="1" physical_mode_pin="cin"/>
|
||||
<output name="cout" num_pins="1" physical_mode_pin="cout"/>
|
||||
<output name="sumout" num_pins="1" physical_mode_pin="sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
|
||||
|
@ -813,14 +813,14 @@
|
|||
<pack_pattern name="chain" in_port="arithmetic.cout" out_port="ble5.cout"/>
|
||||
</direct>
|
||||
<direct name="direct2" input="ble5.clk" output="arithmetic.clk"/>
|
||||
<direct name="direct3" input="arithmetic.out" output="ble5.out"/>
|
||||
<direct name="direct3" input="arithmetic.out" output="ble5.out"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="lut5inter.in" output="ble5[0:0].in"/>
|
||||
<direct name="direct2" input="lut5inter.in" output="ble5[1:1].in"/>
|
||||
<direct name="direct3" input="ble5[1:0].out" output="lut5inter.out"/>
|
||||
<direct name="direct3" input="ble5[1:0].out" output="lut5inter.out"/>
|
||||
<direct name="carry_in" input="lut5inter.cin" output="ble5[0:0].cin">
|
||||
<pack_pattern name="chain" in_port="lut5inter.cin" out_port="ble5[0:0].cin"/>
|
||||
</direct>
|
||||
|
@ -830,7 +830,7 @@
|
|||
<direct name="carry_link" input="ble5[0:0].cout" output="ble5[1:1].cin">
|
||||
<pack_pattern name="chain" in_port="ble5[0:0].cout" out_port="ble5[1:1].cout"/>
|
||||
</direct>
|
||||
<complete name="complete1" input="lut5inter.clk" output="ble5[1:0].clk"/>
|
||||
<complete name="complete1" input="lut5inter.clk" output="ble5[1:0].clk"/>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
|
@ -849,7 +849,7 @@
|
|||
<pb_type name="ble6_2" num_pb="1">
|
||||
<input name="in" num_pins="8"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut" mode_bits="00" physical_pb_type_name="frac_lut6" spice_model_sram_offset="0">
|
||||
<input name="in" num_pins="6" port_class="lut_in" physical_mode_pin="in[5:0]"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out" physical_mode_pin="lut6_out[0]"/>
|
||||
|
@ -898,11 +898,11 @@
|
|||
<direct name="direct4" input="lut2.out" output="ff[1].D">
|
||||
<pack_pattern name="ble2" in_port="lut2.out" out_port="ff[1].D"/>
|
||||
</direct>
|
||||
<complete name="direct5" input="ble6_2.clk" output="ff[1:0].clk"/>
|
||||
<complete name="direct5" input="ble6_2.clk" output="ff[1:0].clk"/>
|
||||
<mux name="mux1" input="ff[0].Q lut6.out" output="ble6_2.out[0]">
|
||||
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6_2.out[0]" />
|
||||
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="ble6_2.out[0]" />
|
||||
</mux>
|
||||
</mux>
|
||||
<mux name="mux2" input="ff[1].Q lut2.out" output="ble6_2.out[1]">
|
||||
<delay_constant max="25e-12" in_port="lut2.out" out_port="ble6_2.out[1]" />
|
||||
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="ble6_2.out[1]" />
|
||||
|
@ -919,7 +919,7 @@
|
|||
<pb_type name="ble4_4" num_pb="1">
|
||||
<input name="in" num_pins="8"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="lut4_from6" blif_model=".names" num_pb="1" class="lut" mode_bits="11" physical_pb_type_name="frac_lut6" spice_model_sram_offset="0">
|
||||
<input name="in" num_pins="4" port_class="lut_in" physical_mode_pin="in[3:0]"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out" physical_mode_pin="lut4_out[0]"/>
|
||||
|
@ -960,11 +960,11 @@
|
|||
<direct name="direct5" input="lut4_from4.out" output="ff[1].D">
|
||||
<pack_pattern name="ble4" in_port="lut4_from4.out" out_port="ff[1].D"/>
|
||||
</direct>
|
||||
<complete name="direct6" input="ble4_4.clk" output="ff[1:0].clk"/>
|
||||
<complete name="direct6" input="ble4_4.clk" output="ff[1:0].clk"/>
|
||||
<mux name="mux1" input="ff[0].Q lut4_from6.out" output="ble4_4.out[0]">
|
||||
<delay_constant max="25e-12" in_port="lut4_from6.out" out_port="ble4_4.out[0]" />
|
||||
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="ble4_4.out[0]" />
|
||||
</mux>
|
||||
</mux>
|
||||
<mux name="mux2" input="ff[1].Q lut4_from4.out" output="ble4_4.out[1]">
|
||||
<delay_constant max="25e-12" in_port="lut4_from4.out" out_port="ble4_4.out[1]" />
|
||||
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="ble4_4.out[1]" />
|
||||
|
@ -981,7 +981,7 @@
|
|||
<pb_type name="ble5_3" num_pb="1">
|
||||
<input name="in" num_pins="8"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut" mode_bits="01" physical_pb_type_name="frac_lut6" spice_model_sram_offset="0">
|
||||
<input name="in" num_pins="5" port_class="lut_in" physical_mode_pin="in[4:0]"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out" physical_mode_pin="lut5_out[0]"/>
|
||||
|
@ -1020,11 +1020,11 @@
|
|||
<direct name="direct5" input="lut3.out" output="ff[1].D">
|
||||
<pack_pattern name="ble2" in_port="lut3.out" out_port="ff[1].D"/>
|
||||
</direct>
|
||||
<complete name="direct6" input="ble5_3.clk" output="ff[1:0].clk"/>
|
||||
<complete name="direct6" input="ble5_3.clk" output="ff[1:0].clk"/>
|
||||
<mux name="mux1" input="ff[0].Q lut5.out" output="ble5_3.out[0]">
|
||||
<delay_constant max="25e-12" in_port="lut5.out" out_port="ble5_3.out[0]" />
|
||||
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="ble5_3.out[0]" />
|
||||
</mux>
|
||||
</mux>
|
||||
<mux name="mux2" input="ff[1].Q lut3.out" output="ble5_3.out[1]">
|
||||
<delay_constant max="25e-12" in_port="lut3.out" out_port="ble5_3.out[1]" />
|
||||
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="ble5_3.out[1]" />
|
||||
|
@ -1042,7 +1042,7 @@
|
|||
<input name="in" num_pins="1"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="ff" blif_model=".subckt shift" num_pb="2" class="flipflop" physical_pb_type_name="ff_phy">
|
||||
<input name="D" num_pins="1" port_class="D" physical_mode_pin="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q" physical_mode_pin="Q"/>
|
||||
|
@ -1054,11 +1054,11 @@
|
|||
<direct name="direct1" input="ble_shift.in" output="ff[0].D"/>
|
||||
<direct name="direct2" input="ff[0].Q" output="ff[1].D">
|
||||
<pack_pattern name="ble_shift" in_port="ff[0].Q" out_port="ff[1].D"/>
|
||||
</direct>
|
||||
<direct name="out1" input="ff[0].Q" output="ble_shift.out[0]"/>
|
||||
</direct>
|
||||
<direct name="out1" input="ff[0].Q" output="ble_shift.out[0]"/>
|
||||
<direct name="out2" input="ff[1].Q" output="ble_shift.out[1]"/>
|
||||
<direct name="direct_regout" input="ff[1].Q" output="ble_shift.regout"/>
|
||||
<complete name="direct3" input="ble_shift.clk" output="ff[1:0].clk"/>
|
||||
<complete name="direct3" input="ble_shift.clk" output="ff[1:0].clk"/>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
|
@ -1070,13 +1070,13 @@
|
|||
</mode> <!-- shift_register -->
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
|
||||
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
|
||||
The delays below come from Stratix IV. the delay through a connection block
|
||||
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
|
||||
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
|
||||
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
|
||||
delay within the crossbar is 95 ps.
|
||||
delay within the crossbar is 95 ps.
|
||||
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
|
||||
Since all our outputs LUT outputs go to a BLE output, and have a delay of
|
||||
Since all our outputs LUT outputs go to a BLE output, and have a delay of
|
||||
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
|
||||
to get the part that should be marked on the crossbar. -->
|
||||
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in" circuit_model_name="mux_2level">
|
||||
|
@ -1091,8 +1091,8 @@
|
|||
<pack_pattern name="chain" in_port="clb.cin" out_port="fle[0:0].cin"/>
|
||||
</complete>
|
||||
|
||||
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
|
||||
naive specification).
|
||||
-->
|
||||
|
@ -1131,7 +1131,7 @@
|
|||
<local_interconnect C_wire="2.5e-10"/>
|
||||
<mux_transistor_size mux_transistor_size="3"/>
|
||||
<FF_size FF_size="4"/>
|
||||
<LUT_transistor_size LUT_transistor_size="4"/>
|
||||
<LUT_transistor_size LUT_transistor_size="4"/>
|
||||
</power>
|
||||
<clocks>
|
||||
<clock buffer_size="auto" C_wire="2.5e-10"/>
|
||||
|
|
Loading…
Reference in New Issue