Merge branch 'dev' into ganesh_dev
This commit is contained in:
commit
46fe1e84ce
|
@ -18,6 +18,11 @@ end_section "OpenFPGA.build"
|
|||
|
||||
start_section "OpenFPGA.TaskTun" "${GREEN}..Running_Regression..${NC}"
|
||||
cd -
|
||||
|
||||
###############################################
|
||||
# OpenFPGA with VPR7
|
||||
# TO BE DEPRECATED
|
||||
##############################################
|
||||
echo -e "Testing single-mode architectures";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py single_mode --debug --show_thread_logs
|
||||
#python3 openfpga_flow/scripts/run_fpga_task.py s298
|
||||
|
@ -37,4 +42,58 @@ python3 openfpga_flow/scripts/run_fpga_task.py explicit_verilog --debug --show_t
|
|||
echo -e "Testing Verilog generation with grid pin duplication ";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py duplicate_grid_pin --debug --show_thread_logs
|
||||
|
||||
###############################################
|
||||
# OpenFPGA Shell with VPR8
|
||||
# (Will replace all the old tests)
|
||||
##############################################
|
||||
echo -e "Testing OpenFPGA Shell";
|
||||
|
||||
echo -e "Testing Verilog generation with simple fracturable LUT6 ";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py openfpga_shell/frac_lut --debug --show_thread_logs
|
||||
|
||||
echo -e "Testing Verilog generation with VPR's untileable routing architecture ";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py openfpga_shell/untileable --debug --show_thread_logs
|
||||
|
||||
echo -e "Testing Verilog generation with hard adder chain in CLBs ";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py openfpga_shell/hard_adder --debug --show_thread_logs
|
||||
|
||||
echo -e "Testing Verilog generation with 16k block RAMs ";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py openfpga_shell/bram/dpram16k --debug --show_thread_logs
|
||||
|
||||
echo -e "Testing Verilog generation with 16k block RAMs spanning two columns ";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py openfpga_shell/bram/wide_dpram16k --debug --show_thread_logs
|
||||
|
||||
echo -e "Testing Verilog generation with different I/O capacities on each side of an FPGA ";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py openfpga_shell/io/multi_io_capacity --debug --show_thread_logs
|
||||
|
||||
echo -e "Testing Verilog generation with I/Os only on left and right sides of an FPGA ";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py openfpga_shell/io/reduced_io --debug --show_thread_logs
|
||||
|
||||
echo -e "Testing Verilog generation with adder chain across an FPGA";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py openfpga_shell/fabric_chain/adder_chain --debug --show_thread_logs
|
||||
|
||||
echo -e "Testing Verilog generation with shift register chain across an FPGA";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py openfpga_shell/fabric_chain/register_chain --debug --show_thread_logs
|
||||
|
||||
echo -e "Testing Verilog generation with scan chain across an FPGA";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py openfpga_shell/fabric_chain/scan_chain --debug --show_thread_logs
|
||||
|
||||
echo -e "Testing Verilog generation with routing mutliplexers implemented by tree structure";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py openfpga_shell/mux_design/tree_structure --debug --show_thread_logs
|
||||
|
||||
echo -e "Testing Verilog generation with routing mutliplexers implemented by standard cell MUX2";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py openfpga_shell/mux_design/stdcell_mux2 --debug --show_thread_logs
|
||||
|
||||
echo -e "Testing Verilog generation with behavioral description";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py openfpga_shell/behavioral_verilog --debug --show_thread_logs
|
||||
|
||||
echo -e "Testing implicit Verilog generation";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py openfpga_shell/implicit_verilog --debug --show_thread_logs
|
||||
|
||||
echo -e "Testing Verilog generation with flatten routing modules";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py openfpga_shell/flatten_routing --debug --show_thread_logs
|
||||
|
||||
echo -e "Testing Verilog generation with duplicated grid output pins";
|
||||
python3 openfpga_flow/scripts/run_fpga_task.py openfpga_shell/duplicated_grid_pin --debug --show_thread_logs
|
||||
|
||||
end_section "OpenFPGA.TaskTun"
|
||||
|
|
|
@ -311,9 +311,9 @@ void Shell<T>::run_script_mode(const char* script_file_name, T& context) {
|
|||
/* Remove the space at the end of the line
|
||||
* So that we can check easily if there is a continued line in the end
|
||||
*/
|
||||
cmd_part.erase(std::find_if(cmd_part.rbegin(), cmd_part.rend(), [](int ch) {
|
||||
return !std::isspace(ch);
|
||||
}).base(), cmd_part.end());
|
||||
StringToken cmd_part_tokenizer(cmd_part);
|
||||
cmd_part_tokenizer.rtrim(std::string(" "));
|
||||
cmd_part = cmd_part_tokenizer.data();
|
||||
|
||||
/* If the line ends with '\', this is a continued line, parse the next until it ends */
|
||||
if ('\\' == cmd_part.back()) {
|
||||
|
@ -334,9 +334,9 @@ void Shell<T>::run_script_mode(const char* script_file_name, T& context) {
|
|||
}
|
||||
|
||||
/* Remove the space at the beginning of the line */
|
||||
cmd_line.erase(cmd_line.begin(), std::find_if(cmd_line.begin(), cmd_line.end(), [](int ch) {
|
||||
return !std::isspace(ch);
|
||||
}));
|
||||
StringToken cmd_line_tokenizer(cmd_line);
|
||||
cmd_line_tokenizer.ltrim(std::string(" "));
|
||||
cmd_line = cmd_line_tokenizer.data();
|
||||
|
||||
/* Process the command only when the full command line in ended */
|
||||
if (!cmd_line.empty()) {
|
||||
|
|
|
@ -289,6 +289,7 @@ void build_primitive_block_module(ModuleManager& module_manager,
|
|||
/* Record memory-related information */
|
||||
module_manager.add_configurable_child(primitive_module, memory_module, memory_instance_id);
|
||||
}
|
||||
|
||||
/* Add all the nets to connect configuration ports from memory module to primitive modules
|
||||
* This is a one-shot addition that covers all the memory modules in this primitive module!
|
||||
*/
|
||||
|
|
|
@ -41,7 +41,9 @@ build_fabric_bitstream --verbose
|
|||
|
||||
# Write the Verilog netlist for FPGA fabric
|
||||
# - Enable the use of explicit port mapping in Verilog netlist
|
||||
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
|
||||
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC \
|
||||
--explicit_port_mapping --include_timing --include_signal_init \
|
||||
--support_icarus_simulator --print_user_defined_template --verbose
|
||||
|
||||
# Write the Verilog testbench for FPGA fabric
|
||||
# - We suggest the use of same output directory as fabric Verilog netlists
|
||||
|
|
|
@ -0,0 +1,61 @@
|
|||
# Run VPR for the 'and' design
|
||||
#--write_rr_graph example_rr_graph.xml
|
||||
vpr ${VPR_ARCH_FILE} ${VPR_TESTBENCH_BLIF} --clock_modeling route
|
||||
|
||||
# Read OpenFPGA architecture definition
|
||||
read_openfpga_arch -f ${OPENFPGA_ARCH_FILE}
|
||||
|
||||
# Annotate the OpenFPGA architecture to VPR data base
|
||||
# to debug use --verbose options
|
||||
link_openfpga_arch --activity_file ${ACTIVITY_FILE} --sort_gsb_chan_node_in_edges
|
||||
|
||||
# Check and correct any naming conflicts in the BLIF netlist
|
||||
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
|
||||
|
||||
# Apply fix-up to clustering nets based on routing results
|
||||
pb_pin_fixup --verbose
|
||||
|
||||
# Apply fix-up to Look-Up Table truth tables based on packing results
|
||||
lut_truth_table_fixup
|
||||
|
||||
# Build the module graph
|
||||
# - Enabled compression on routing architecture modules
|
||||
# - Enable pin duplication on grid modules
|
||||
build_fabric --compress_routing #--verbose
|
||||
|
||||
# Repack the netlist to physical pbs
|
||||
# This must be done before bitstream generator and testbench generation
|
||||
# Strongly recommend it is done after all the fix-up have been applied
|
||||
repack #--verbose
|
||||
|
||||
# Build the bitstream
|
||||
# - Output the fabric-independent bitstream to a file
|
||||
build_architecture_bitstream --verbose --file fabric_indepenent_bitstream.xml
|
||||
|
||||
# Build fabric-dependent bitstream
|
||||
build_fabric_bitstream --verbose
|
||||
|
||||
# Write the Verilog netlist for FPGA fabric
|
||||
# - Enable the use of explicit port mapping in Verilog netlist
|
||||
write_fabric_verilog --file ./SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
|
||||
|
||||
# Write the Verilog testbench for FPGA fabric
|
||||
# - We suggest the use of same output directory as fabric Verilog netlists
|
||||
# - Must specify the reference benchmark file if you want to output any testbenches
|
||||
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
|
||||
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
|
||||
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
|
||||
write_verilog_testbench --file ./SRC --reference_benchmark_file_path ${REFERENCE_VERILOG_TESTBENCH} --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini ./SimulationDeck/simulation_deck.ini
|
||||
|
||||
# Write the SDC files for PnR backend
|
||||
# - Turn on every options here
|
||||
write_pnr_sdc --file ./SDC
|
||||
|
||||
# Write the SDC to run timing analysis for a mapped FPGA fabric
|
||||
write_analysis_sdc --file ./SDC_analysis
|
||||
|
||||
# Finish and exit OpenFPGA
|
||||
exit
|
||||
|
||||
# Note :
|
||||
# To run verification at the end of the flow maintain source in ./SRC directory
|
|
@ -21,7 +21,7 @@ lut_truth_table_fixup
|
|||
# Build the module graph
|
||||
# - Enabled compression on routing architecture modules
|
||||
# - Enable pin duplication on grid modules
|
||||
build_fabric --compress_routing --duplicate_grid_pin #--verbose
|
||||
build_fabric --compress_routing #--verbose
|
||||
|
||||
# Repack the netlist to physical pbs
|
||||
# This must be done before bitstream generator and testbench generation
|
||||
|
|
|
@ -0,0 +1,61 @@
|
|||
# Run VPR for the 'and' design
|
||||
#--write_rr_graph example_rr_graph.xml
|
||||
vpr ${VPR_ARCH_FILE} ${VPR_TESTBENCH_BLIF} --clock_modeling route
|
||||
|
||||
# Read OpenFPGA architecture definition
|
||||
read_openfpga_arch -f ${OPENFPGA_ARCH_FILE}
|
||||
|
||||
# Annotate the OpenFPGA architecture to VPR data base
|
||||
# to debug use --verbose options
|
||||
link_openfpga_arch --activity_file ${ACTIVITY_FILE}
|
||||
|
||||
# Check and correct any naming conflicts in the BLIF netlist
|
||||
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
|
||||
|
||||
# Apply fix-up to clustering nets based on routing results
|
||||
pb_pin_fixup --verbose
|
||||
|
||||
# Apply fix-up to Look-Up Table truth tables based on packing results
|
||||
lut_truth_table_fixup
|
||||
|
||||
# Build the module graph
|
||||
# - Enabled compression on routing architecture modules
|
||||
# - Enable pin duplication on grid modules
|
||||
build_fabric #--verbose
|
||||
|
||||
# Repack the netlist to physical pbs
|
||||
# This must be done before bitstream generator and testbench generation
|
||||
# Strongly recommend it is done after all the fix-up have been applied
|
||||
repack #--verbose
|
||||
|
||||
# Build the bitstream
|
||||
# - Output the fabric-independent bitstream to a file
|
||||
build_architecture_bitstream --verbose --file fabric_indepenent_bitstream.xml
|
||||
|
||||
# Build fabric-dependent bitstream
|
||||
build_fabric_bitstream --verbose
|
||||
|
||||
# Write the Verilog netlist for FPGA fabric
|
||||
# - Enable the use of explicit port mapping in Verilog netlist
|
||||
write_fabric_verilog --file ./SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
|
||||
|
||||
# Write the Verilog testbench for FPGA fabric
|
||||
# - We suggest the use of same output directory as fabric Verilog netlists
|
||||
# - Must specify the reference benchmark file if you want to output any testbenches
|
||||
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
|
||||
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
|
||||
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
|
||||
write_verilog_testbench --file ./SRC --reference_benchmark_file_path ${REFERENCE_VERILOG_TESTBENCH} --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini ./SimulationDeck/simulation_deck.ini
|
||||
|
||||
# Write the SDC files for PnR backend
|
||||
# - Turn on every options here
|
||||
write_pnr_sdc --file ./SDC
|
||||
|
||||
# Write the SDC to run timing analysis for a mapped FPGA fabric
|
||||
write_analysis_sdc --file ./SDC_analysis
|
||||
|
||||
# Finish and exit OpenFPGA
|
||||
exit
|
||||
|
||||
# Note :
|
||||
# To run verification at the end of the flow maintain source in ./SRC directory
|
|
@ -0,0 +1,61 @@
|
|||
# Run VPR for the 'and' design
|
||||
#--write_rr_graph example_rr_graph.xml
|
||||
vpr ${VPR_ARCH_FILE} ${VPR_TESTBENCH_BLIF} --clock_modeling route
|
||||
|
||||
# Read OpenFPGA architecture definition
|
||||
read_openfpga_arch -f ${OPENFPGA_ARCH_FILE}
|
||||
|
||||
# Annotate the OpenFPGA architecture to VPR data base
|
||||
# to debug use --verbose options
|
||||
link_openfpga_arch --activity_file ${ACTIVITY_FILE} --sort_gsb_chan_node_in_edges
|
||||
|
||||
# Check and correct any naming conflicts in the BLIF netlist
|
||||
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
|
||||
|
||||
# Apply fix-up to clustering nets based on routing results
|
||||
pb_pin_fixup --verbose
|
||||
|
||||
# Apply fix-up to Look-Up Table truth tables based on packing results
|
||||
lut_truth_table_fixup
|
||||
|
||||
# Build the module graph
|
||||
# - Enabled compression on routing architecture modules
|
||||
# - Enable pin duplication on grid modules
|
||||
build_fabric --compress_routing --duplicate_grid_pin #--verbose
|
||||
|
||||
# Repack the netlist to physical pbs
|
||||
# This must be done before bitstream generator and testbench generation
|
||||
# Strongly recommend it is done after all the fix-up have been applied
|
||||
repack #--verbose
|
||||
|
||||
# Build the bitstream
|
||||
# - Output the fabric-independent bitstream to a file
|
||||
build_architecture_bitstream --verbose --file fabric_indepenent_bitstream.xml
|
||||
|
||||
# Build fabric-dependent bitstream
|
||||
build_fabric_bitstream --verbose
|
||||
|
||||
# Write the Verilog netlist for FPGA fabric
|
||||
# - Enable the use of explicit port mapping in Verilog netlist
|
||||
write_fabric_verilog --file ./SRC --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
|
||||
|
||||
# Write the Verilog testbench for FPGA fabric
|
||||
# - We suggest the use of same output directory as fabric Verilog netlists
|
||||
# - Must specify the reference benchmark file if you want to output any testbenches
|
||||
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
|
||||
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
|
||||
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
|
||||
write_verilog_testbench --file ./SRC --reference_benchmark_file_path ${REFERENCE_VERILOG_TESTBENCH} --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini ./SimulationDeck/simulation_deck.ini
|
||||
|
||||
# Write the SDC files for PnR backend
|
||||
# - Turn on every options here
|
||||
write_pnr_sdc --file ./SDC
|
||||
|
||||
# Write the SDC to run timing analysis for a mapped FPGA fabric
|
||||
write_analysis_sdc --file ./SDC_analysis
|
||||
|
||||
# Finish and exit OpenFPGA
|
||||
exit
|
||||
|
||||
# Note :
|
||||
# To run verification at the end of the flow maintain source in ./SRC directory
|
|
@ -0,0 +1,19 @@
|
|||
//-----------------------------------------------------
|
||||
// Design Name : AIB interface
|
||||
// File Name : aib.v
|
||||
// Function : A wrapper for AIB interface
|
||||
// Coder : Xifan Tang
|
||||
//-----------------------------------------------------
|
||||
|
||||
module aib (
|
||||
input tx_clk,
|
||||
input rx_clk,
|
||||
inout[0:79] pad,
|
||||
input[0:79] tx_data,
|
||||
output[0:79] rx_data);
|
||||
|
||||
// May add the logic function of a real AIB
|
||||
// Refer to the offical AIB github
|
||||
// https://github.com/intel/aib-phy-hardware
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,56 @@
|
|||
//-----------------------------------------------------
|
||||
// Design Name : dual_port_ram
|
||||
// File Name : dpram.v
|
||||
// Function : Dual port RAM 32x1024
|
||||
// Coder : Aurelien
|
||||
//-----------------------------------------------------
|
||||
|
||||
module dpram_512x32 (
|
||||
input clk,
|
||||
input wen,
|
||||
input ren,
|
||||
input[0:9] waddr,
|
||||
input[0:9] raddr,
|
||||
input[0:31] d_in,
|
||||
output[0:31] d_out );
|
||||
|
||||
dual_port_sram memory_0 (
|
||||
.wclk (clk),
|
||||
.wen (wen),
|
||||
.waddr (waddr),
|
||||
.data_in (d_in),
|
||||
.rclk (clk),
|
||||
.ren (ren),
|
||||
.raddr (raddr),
|
||||
.d_out (d_out) );
|
||||
|
||||
endmodule
|
||||
|
||||
module dual_port_sram (
|
||||
input wclk,
|
||||
input wen,
|
||||
input[0:9] waddr,
|
||||
input[0:31] data_in,
|
||||
input rclk,
|
||||
input ren,
|
||||
input[0:9] raddr,
|
||||
output[0:31] d_out );
|
||||
|
||||
reg[0:31] ram[0:1023];
|
||||
reg[0:31] internal;
|
||||
|
||||
assign d_out = internal;
|
||||
|
||||
always @(posedge wclk) begin
|
||||
if(wen) begin
|
||||
ram[waddr] <= data_in;
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge rclk) begin
|
||||
if(ren) begin
|
||||
internal <= ram[raddr];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
|
@ -33,6 +33,38 @@ assign Q = q_reg;
|
|||
|
||||
endmodule //End Of Module static_dff
|
||||
|
||||
module scan_chain_ff (
|
||||
/* Global ports go first */
|
||||
input set, // set input
|
||||
input reset, // Reset input
|
||||
input clk, // Clock Input
|
||||
input TESTEN, // Clock Input
|
||||
/* Local ports follow */
|
||||
input D, // Data Input
|
||||
input DI, // Scan Chain Data Input
|
||||
output Q // Q output
|
||||
);
|
||||
//------------Internal Variables--------
|
||||
reg q_reg;
|
||||
|
||||
//-------------Code Starts Here---------
|
||||
always @ ( posedge clk or posedge reset or posedge set)
|
||||
if (reset) begin
|
||||
q_reg <= 1'b0;
|
||||
end else if (set) begin
|
||||
q_reg <= 1'b1;
|
||||
end else if (TESTEN) begin
|
||||
q_reg <= DI;
|
||||
end else begin
|
||||
q_reg <= D;
|
||||
end
|
||||
|
||||
// Wire q_reg to Q
|
||||
assign Q = q_reg;
|
||||
|
||||
endmodule //End Of Module static_dff
|
||||
|
||||
|
||||
//-----------------------------------------------------
|
||||
// Design Name : scan_chain_dff
|
||||
// File Name : ff.v
|
||||
|
|
|
@ -161,7 +161,7 @@
|
|||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true">
|
||||
<!--auto_layout aspect_ratio="1.0"-->
|
||||
<fixed_layout name="4x4" width="6" height="6">
|
||||
<fixed_layout name="2x2" width="4" height="4">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
|
|
|
@ -195,7 +195,7 @@
|
|||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true" through_channel="false">
|
||||
<!--auto_layout aspect_ratio="1.0"-->
|
||||
<fixed_layout name="4x4" width="5" height="4">
|
||||
<fixed_layout name="3x2" width="5" height="4">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
|
|
|
@ -225,7 +225,7 @@
|
|||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true" through_channel="false">
|
||||
<!--auto_layout aspect_ratio="1.0"-->
|
||||
<fixed_layout name="4x4" width="7" height="6">
|
||||
<fixed_layout name="3x4" width="5" height="6">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="10"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
|
@ -235,7 +235,7 @@
|
|||
<col type="memory" startx="2" starty="1" repeatx="8" priority="20"/>
|
||||
<col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
|
||||
<!-- Single instance of an AIB interface -->
|
||||
<single type="aib" x="6" y="1" priority="20"/>
|
||||
<single type="aib" x="4" y="1" priority="20"/>
|
||||
</fixed_layout>
|
||||
<!-- /auto_layout -->
|
||||
</layout>
|
||||
|
|
|
@ -226,7 +226,7 @@
|
|||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true" through_channel="false">
|
||||
<!--auto_layout aspect_ratio="1.0"-->
|
||||
<fixed_layout name="4x4" width="5" height="4">
|
||||
<fixed_layout name="3x2" width="5" height="4">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<row type="io_top" starty="H-1" priority="100"/>
|
||||
<row type="io_bottom" starty="0" priority="100"/>
|
||||
|
|
|
@ -195,7 +195,7 @@
|
|||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true" through_channel="false">
|
||||
<!--auto_layout aspect_ratio="1.0"-->
|
||||
<fixed_layout name="4x4" width="7" height="6">
|
||||
<fixed_layout name="3x2" width="5" height="4">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="10"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
|
|
|
@ -0,0 +1,696 @@
|
|||
<!--
|
||||
Flagship Heterogeneous Architecture with Carry Chains for VTR 7.0.
|
||||
|
||||
- 40 nm technology
|
||||
- General purpose logic block:
|
||||
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with 8 total FLE inputs (2 inputs of which are shared by the 5-LUTs)
|
||||
with optionally registered outputs
|
||||
Each 5-LUT has an arithemtic mode that converts it to a single-bit adder with both inputs driven by 4-LUTs (both 4-LUTs share all 4 inputs)
|
||||
Carry chain links to vertically adjacent logic blocks
|
||||
- Memory size 32 Kbits, memory aspect ratios vary from a data width of 1 to data width of 64.
|
||||
Height = 6, found on every (8n+2)th column
|
||||
- Multiplier modes: one 36x36, two 18x18, each 18x18 can also operate as two 9x9.
|
||||
Height = 4, found on every (8n+6)th column
|
||||
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
|
||||
|
||||
Details on Modelling:
|
||||
|
||||
The electrical design of the architecture described here is NOT from an
|
||||
optimized, SPICED architecture. Instead, we attempt to create a reasonable
|
||||
architecture file by using an existing commercial FPGA to approximate the area,
|
||||
delay, and power of the underlying components. This is combined with a reasonable 40 nm
|
||||
model of wiring and circuit design for low-level routing components, where available.
|
||||
The resulting architecture has delays that roughly match a commercial 40 nm FPGA, but also
|
||||
has wiring electrical parameters that allow the wire lengths and switch patterns to be
|
||||
modified and you will still get reasonable delay results for the new architecture.
|
||||
The following describes, in detail, how we obtained the various electrical values for this
|
||||
architecture.
|
||||
|
||||
Rmin for nmos and pmos, routing buffer sizes, and I/O pad delays are from the ifar
|
||||
architecture created by Ian Kuon: K06 N10 45nm fc 0.15 area-delay optimized architecture.
|
||||
(n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml)
|
||||
This routing architecture was optimized for 45 nm, and we have scaled it linearly to 40 nm to
|
||||
match the overall target (a 40 nm FPGA).
|
||||
|
||||
We obtain delay numbers by measuring delays of routing, soft logic blocks,
|
||||
memories, and multipliers from test circuits on a Stratix IV GX device
|
||||
(EP4SGX230DF29C2X, i.e. fastest speed grade). For routing, we took the average delay of H4 and V4
|
||||
wires. Rmetal and Cmetal values for the routing wires were obtained from work done by Charles
|
||||
Chiasson. We use a 96 nm half-pitch (corresponding to mid-level metal stack 40 nm routing) and
|
||||
take the R and C data from the ITRS roadmap.
|
||||
|
||||
For the general purpose logic block, we assume that the area and delays of the Stratix IV
|
||||
crossbar is close enough to the crossbar modelled here.
|
||||
Stratix IV uses 52 inputs and 20 feedback lines, but only a half-populated crossbar, leading to
|
||||
36:1 multiplexers. We match these parameters in this architecture.
|
||||
|
||||
For LUTs, we include LUT
|
||||
delays measured from Stratix IV which is dependant on the input used (ie. some
|
||||
LUT inputs are faster than others). The CAD tools at the time of VTR 7 does
|
||||
not consider differences in LUT input delays.
|
||||
|
||||
Adder delays obtained as approximate values from a Stratix IV EP4SE230F29C3 device.
|
||||
Delay obtained by compiling a 256 bit adder (registered inputs and outputs,
|
||||
all pins except clock virtual) then measuring the delays in chip-planner,
|
||||
sumout delay = 0.271ns to 0.348 ns, intra-block carry delay = 0.011 ns,
|
||||
inter-block carry delay = 0.327 ns. Given this data, I will approximate
|
||||
sumout 0.3 ns, intra-block carry-delay = 0.01 ns, and
|
||||
inter-block carry-delay = 0.16 ns (since Altera inter-block carry delay has
|
||||
overhead that we don't have, I'll approximate the delay of a simpler chain at
|
||||
one half what they have. This is very rough, anything from 0.01ns to 0.327ns
|
||||
can be justified).
|
||||
|
||||
Logic block area numbers obtained by scaling overall tile area of a 65nm
|
||||
Stratix III device, (as given in Wong, Betz and Rose, FPGA 2011) to 40 nm, then subtracting out
|
||||
routing area at a channel width of 300. We use a channel width of 300 because it can route
|
||||
all the VTR 6.0 benchmark circuits with an approximately 20% safety margin, and is also close to the
|
||||
total channel width of Stratix IV. Hence this channel width is close to the commercial practice of
|
||||
choosing a width that provides high routability. The architecture can be routed at different channel
|
||||
widths, but we estimate the tile size and hence the physical length of routing wires assuming
|
||||
a channel width of 300.
|
||||
|
||||
Sanity checks employed:
|
||||
1. We confirmed the routing buffer delay is ~1/3rd of total routing delay at L = 4. This matches
|
||||
common electrical design.
|
||||
|
||||
|
||||
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
|
||||
-->
|
||||
<architecture>
|
||||
<!--
|
||||
ODIN II specific config begins
|
||||
Describes the types of user-specified netlist blocks (in blif, this corresponds to
|
||||
".model [type_of_block]") that this architecture supports.
|
||||
|
||||
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
|
||||
already special structures in blif (.names, .input, .output, and .latch)
|
||||
that describe them.
|
||||
-->
|
||||
<models>
|
||||
<model name="adder">
|
||||
<input_ports>
|
||||
<port name="a" combinational_sink_ports="sumout cout"/>
|
||||
<port name="b" combinational_sink_ports="sumout cout"/>
|
||||
<port name="cin" combinational_sink_ports="sumout cout"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="cout"/>
|
||||
<port name="sumout"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||
<model name="io">
|
||||
<input_ports>
|
||||
<port name="outpad"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="inpad"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||
<model name="frac_lut6">
|
||||
<input_ports>
|
||||
<port name="in"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="lut4_out"/>
|
||||
<port name="lut5_out"/>
|
||||
<port name="lut6_out"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
</models>
|
||||
<tiles>
|
||||
<tile name="io" capacity="8" area="0">
|
||||
<equivalent_sites>
|
||||
<site pb_type="io"/>
|
||||
</equivalent_sites>
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">io.outpad io.inpad</loc>
|
||||
<loc side="top">io.outpad io.inpad</loc>
|
||||
<loc side="right">io.outpad io.inpad</loc>
|
||||
<loc side="bottom">io.outpad io.inpad</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<tile name="clb" area="53894">
|
||||
<equivalent_sites>
|
||||
<site pb_type="clb"/>
|
||||
</equivalent_sites>
|
||||
<input name="I" num_pins="40" equivalent="full"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<input name="regin" num_pins="1"/>
|
||||
<output name="O" num_pins="20" equivalent="none"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
|
||||
<fc_override port_name="cin" fc_type="frac" fc_val="0"/>
|
||||
<fc_override port_name="cout" fc_type="frac" fc_val="0"/>
|
||||
<fc_override port_name="regin" fc_type="frac" fc_val="0"/>
|
||||
<fc_override port_name="regout" fc_type="frac" fc_val="0"/>
|
||||
</fc>
|
||||
<!-- Highly recommand to customize pin location when direct connection is used!!! -->
|
||||
<!--pinlocations pattern="spread"/-->
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">clb.clk</loc>
|
||||
<loc side="top">clb.cin clb.regin</loc>
|
||||
<loc side="right">clb.O[9:0] clb.I[19:0]</loc>
|
||||
<loc side="bottom">clb.cout clb.regout clb.O[19:10] clb.I[39:20]</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
</tiles>
|
||||
<!-- ODIN II specific config ends -->
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true">
|
||||
<!--auto_layout aspect_ratio="1.0"-->
|
||||
<fixed_layout name="2x2" width="4" height="4">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</fixed_layout>
|
||||
<!-- /auto_layout -->
|
||||
</layout>
|
||||
<device>
|
||||
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
|
||||
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
|
||||
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
|
||||
lined up with Stratix IV.
|
||||
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
|
||||
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
|
||||
by 2.5x when looking up in Jeff's tables.
|
||||
The delay values are lined up with Stratix IV, which has an architecture similar to this
|
||||
proposed FPGA, and which is also 40 nm
|
||||
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
|
||||
4x minimum drive strength buffer. -->
|
||||
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
|
||||
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
|
||||
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
|
||||
-->
|
||||
<area grid_logic_tile_area="0"/>
|
||||
<chan_width_distr>
|
||||
<x distr="uniform" peak="1.000000"/>
|
||||
<y distr="uniform" peak="1.000000"/>
|
||||
</chan_width_distr>
|
||||
<switch_block type="wilton" fs="3"/>
|
||||
<connection_block input_switch_name="ipin_cblock"/>
|
||||
</device>
|
||||
<switchlist>
|
||||
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
|
||||
book area formula. This means the mux transistors are about 5x minimum drive strength.
|
||||
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
|
||||
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
|
||||
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
|
||||
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||
2.5x when looking up in Jeff's tables.
|
||||
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
|
||||
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
|
||||
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
|
||||
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
|
||||
</switchlist>
|
||||
<segmentlist>
|
||||
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
|
||||
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
|
||||
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
|
||||
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||
<mux name="0"/>
|
||||
<sb type="pattern">1 1 1 1 1</sb>
|
||||
<cb type="pattern">1 1 1 1</cb>
|
||||
</segment>
|
||||
</segmentlist>
|
||||
<directlist>
|
||||
<direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_offset="-1" z_offset="0"/>
|
||||
<direct name="shift_register" from_pin="clb.regout" to_pin="clb.regin" x_offset="0" y_offset="-1" z_offset="0"/>
|
||||
</directlist>
|
||||
<complexblocklist>
|
||||
<!-- Define I/O pads begin -->
|
||||
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
|
||||
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
|
||||
<pb_type name="io">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
|
||||
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
|
||||
If you need to register the I/O, define clocks in the circuit models
|
||||
These clocks can be handled in back-end
|
||||
-->
|
||||
<!-- A mode denotes the physical implementation of an I/O
|
||||
This mode will be not packable but is mainly used for fabric verilog generation
|
||||
-->
|
||||
<mode name="physical" packable="false">
|
||||
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="iopad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
|
||||
</direct>
|
||||
<direct name="inpad" input="iopad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
|
||||
<!-- IOs can operate as either inputs or outputs.
|
||||
Delays below come from Ian Kuon. They are small, so they should be interpreted as
|
||||
the delays to and from registers in the I/O (and generally I/Os are registered
|
||||
today and that is when you timing analyze them.
|
||||
-->
|
||||
<mode name="inpad">
|
||||
<pb_type name="inpad" blif_model=".input" num_pb="1">
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="inpad" input="inpad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="outpad">
|
||||
<pb_type name="outpad" blif_model=".output" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="outpad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- IOs go on the periphery of the FPGA, for consistency,
|
||||
make it physically equivalent on all sides so that only one definition of I/Os is needed.
|
||||
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
|
||||
-->
|
||||
<!-- Place I/Os on the sides of the FPGA -->
|
||||
<power method="ignore"/>
|
||||
</pb_type>
|
||||
<!-- Define I/O pads ends -->
|
||||
<!-- Define general purpose logic block (CLB) begin -->
|
||||
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
|
||||
area is 60 L^2 yields a tile area of 84375 MWTAs.
|
||||
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
|
||||
This means that only 37% of our area is in the general routing, and 63% is inside the logic
|
||||
block. Note that the crossbar / local interconnect is considered part of the logic block
|
||||
area in this analysis. That is a lower proportion of of routing area than most academics
|
||||
assume, but note that the total routing area really includes the crossbar, which would push
|
||||
routing area up significantly, we estimate into the ~70% range.
|
||||
-->
|
||||
<pb_type name="clb">
|
||||
<input name="I" num_pins="40" equivalent="full"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<input name="regin" num_pins="1"/>
|
||||
<output name="O" num_pins="20" equivalent="none"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Describe fracturable logic element.
|
||||
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
|
||||
The outputs of the fracturable logic element can be optionally registered
|
||||
-->
|
||||
<pb_type name="fle" num_pb="10">
|
||||
<input name="in" num_pins="6"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<input name="regin" num_pins="1"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Physical mode definition begin (physical implementation of the fle) -->
|
||||
<mode name="physical" packable="false">
|
||||
<pb_type name="fabric" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<input name="regin" num_pins="1"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="frac_logic" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="lut4_out" num_pins="4"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<!-- Define LUT -->
|
||||
<pb_type name="frac_lut6" blif_model=".subckt frac_lut6" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="lut4_out" num_pins="4"/>
|
||||
<output name="lut5_out" num_pins="2"/>
|
||||
<output name="lut6_out" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="frac_logic.in" output="frac_lut6.in"/>
|
||||
<direct name="direct2" input="frac_lut6.lut4_out" output="frac_logic.lut4_out"/>
|
||||
<direct name="direct3" input="frac_lut6.lut5_out[1]" output="frac_logic.out[1]"/>
|
||||
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
|
||||
<mux name="mux1" input="frac_lut6.lut6_out frac_lut6.lut5_out[0]" output="frac_logic.out[0]"/>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<!-- Define flip-flop -->
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<!-- Define adders -->
|
||||
<pb_type name="adder" blif_model=".subckt adder" num_pb="2">
|
||||
<input name="a" num_pins="1"/>
|
||||
<input name="b" num_pins="1"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<output name="sumout" num_pins="1"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
|
||||
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
|
||||
<direct name="direct2" input="fabric.cin" output="adder[0:0].cin"/>
|
||||
<direct name="direct3" input="adder[0:0].cout" output="adder[1:1].cin"/>
|
||||
<direct name="direct4" input="adder[1:1].cout" output="fabric.cout"/>
|
||||
<direct name="direct5" input="frac_logic.lut4_out[0:0]" output="adder[0:0].a"/>
|
||||
<direct name="direct6" input="frac_logic.lut4_out[1:1]" output="adder[0:0].b"/>
|
||||
<direct name="direct7" input="frac_logic.lut4_out[2:2]" output="adder[1:1].a"/>
|
||||
<direct name="direct8" input="frac_logic.lut4_out[3:3]" output="adder[1:1].b"/>
|
||||
<complete name="complete1" input="fabric.clk" output="ff[1:0].clk"/>
|
||||
<mux name="mux1" input="adder[0].sumout frac_logic.out[0] fabric.regin" output="ff[0].D">
|
||||
<delay_constant max="25e-12" in_port="adder[0].sumout frac_logic.out[0] fabric.regin" out_port="ff[0].D"/>
|
||||
</mux>
|
||||
<mux name="mux2" input="adder[1].sumout frac_logic.out[1] ff[0].Q" output="ff[1].D">
|
||||
<delay_constant max="25e-12" in_port="adder[1].sumout frac_logic.out[1] ff[0].Q" out_port="ff[1].D"/>
|
||||
</mux>
|
||||
<mux name="mux3" input="adder[0].sumout ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
|
||||
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
|
||||
</mux>
|
||||
<mux name="mux4" input="adder[1].sumout ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
|
||||
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in" output="fabric.in"/>
|
||||
<direct name="direct2" input="fle.cin" output="fabric.cin"/>
|
||||
<direct name="direct3" input="fle.regin" output="fabric.regin"/>
|
||||
<direct name="direct4" input="fabric.out" output="fle.out"/>
|
||||
<direct name="direct5" input="fabric.cout" output="fle.cout"/>
|
||||
<direct name="direct6" input="fabric.regout" output="fle.regout"/>
|
||||
<direct name="direct7" input="fle.clk" output="fabric.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Physical mode definition end (physical implementation of the fle) -->
|
||||
<!-- BEGIN fle mode of dual lut5 -->
|
||||
<mode name="n2_lut5">
|
||||
<pb_type name="ble5" num_pb="2">
|
||||
<input name="in" num_pins="5"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Regular LUT mode -->
|
||||
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut">
|
||||
<input name="in" num_pins="5" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
398e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble5.in" output="lut5.in"/>
|
||||
<direct name="direct2" input="lut5.out" output="ff.D">
|
||||
<pack_pattern name="ble5" in_port="lut5.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble5.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut5.out" output="ble5.out">
|
||||
<delay_constant max="25e-12" in_port="lut5.out" out_port="ble5.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble5.out"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in[4:0]" output="ble5[0:0].in"/>
|
||||
<direct name="direct2" input="fle.in[4:0]" output="ble5[1:1].in"/>
|
||||
<complete name="direct3" input="fle.clk" output="ble5.clk"/>
|
||||
<direct name="direct4" input="ble5.out" output="fle.out"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- END fle mode of dual lut5 -->
|
||||
<!-- BEGIN arithmetic mode of dual lut4 + adders -->
|
||||
<mode name="arithmetic">
|
||||
<pb_type name="arithmetic" num_pb="2">
|
||||
<input name="in" num_pins="4"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Special dual-LUT mode that drives adder only -->
|
||||
<pb_type name="lut4" blif_model=".names" num_pb="2" class="lut">
|
||||
<input name="in" num_pins="4" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
|
||||
195e-12
|
||||
195e-12
|
||||
195e-12
|
||||
195e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
|
||||
<input name="a" num_pins="1"/>
|
||||
<input name="b" num_pins="1"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<output name="sumout" num_pins="1"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
|
||||
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
|
||||
</pb_type>
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="clock" input="arithmetic.clk" output="ff.clk"/>
|
||||
<direct name="lut_in1" input="arithmetic.in[3:0]" output="lut4[0:0].in[3:0]"/>
|
||||
<direct name="lut_in2" input="arithmetic.in[3:0]" output="lut4[1:1].in[3:0]"/>
|
||||
<direct name="lut_to_add1" input="lut4[0:0].out" output="adder.a">
|
||||
</direct>
|
||||
<direct name="lut_to_add2" input="lut4[1:1].out" output="adder.b">
|
||||
</direct>
|
||||
<direct name="add_to_ff" input="adder.sumout" output="ff.D">
|
||||
<pack_pattern name="chain" in_port="adder.sumout" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="carry_in" input="arithmetic.cin" output="adder.cin">
|
||||
<pack_pattern name="chain" in_port="arithmetic.cin" out_port="adder.cin"/>
|
||||
</direct>
|
||||
<direct name="carry_out" input="adder.cout" output="arithmetic.cout">
|
||||
<pack_pattern name="chain" in_port="adder.cout" out_port="arithmetic.cout"/>
|
||||
</direct>
|
||||
<mux name="sumout" input="ff.Q adder.sumout" output="arithmetic.out">
|
||||
<delay_constant max="25e-12" in_port="adder.sumout" out_port="arithmetic.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="arithmetic.out"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in[3:0]" output="arithmetic[0:0].in"/>
|
||||
<direct name="direct2" input="fle.in[3:0]" output="arithmetic[1:1].in"/>
|
||||
<direct name="carry_in" input="fle.cin" output="arithmetic[0:0].cin">
|
||||
<pack_pattern name="chain" in_port="fle.cin" out_port="arithmetic[0:0].cin"/>
|
||||
</direct>
|
||||
<direct name="carry_inter" input="arithmetic[0:0].cout" output="arithmetic[1:1].cin">
|
||||
<pack_pattern name="chain" in_port="arithmetic[0:0].cout" out_port="arithmetic[1:1].cin"/>
|
||||
</direct>
|
||||
<direct name="carry_out" input="arithmetic[1:1].cout" output="fle.cout">
|
||||
<pack_pattern name="chain" in_port="arithmetic.cout" out_port="fle.cout"/>
|
||||
</direct>
|
||||
<complete name="direct3" input="fle.clk" output="arithmetic.clk"/>
|
||||
<direct name="direct4" input="arithmetic.out" output="fle.out"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- n2_lut5 -->
|
||||
<mode name="n1_lut6">
|
||||
<pb_type name="ble6" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
|
||||
<input name="in" num_pins="6" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
398e-12
|
||||
397e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
|
||||
<direct name="direct2" input="lut6.out" output="ff.D">
|
||||
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
|
||||
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in[5:0]" output="ble6.in"/>
|
||||
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
|
||||
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Define n1_lut6 end -->
|
||||
<!-- Define shift register begin -->
|
||||
<mode name="shift_register">
|
||||
<pb_type name="shift_reg" num_pb="1">
|
||||
<input name="regin" num_pins="1"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="shift_reg.regin" output="ff[0].D"/>
|
||||
<direct name="direct2" input="ff[0].Q" output="ff[1].D"/>
|
||||
<direct name="direct3" input="ff[1].Q" output="shift_reg.regout"/>
|
||||
<complete name="complete1" input="shift_reg.clk" output="ff.clk"/>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.regin" output="shift_reg.regin"/>
|
||||
<direct name="direct2" input="shift_reg.regout" output="fle.regout"/>
|
||||
<direct name="direct3" input="fle.clk" output="shift_reg.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Define shift register end -->
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<!-- We use a 50% depop crossbar built using small full xbars to get sets of logically equivalent pins at inputs of CLB
|
||||
The delays below come from Stratix IV. the delay through a connection block
|
||||
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
|
||||
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
|
||||
delay within the crossbar is 95 ps.
|
||||
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
|
||||
Since all our outputs LUT outputs go to a BLE output, and have a delay of
|
||||
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
|
||||
to get the part that should be marked on the crossbar. -->
|
||||
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in">
|
||||
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in"/>
|
||||
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"/>
|
||||
</complete>
|
||||
|
||||
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
|
||||
</complete>
|
||||
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
|
||||
naive specification).
|
||||
-->
|
||||
<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>
|
||||
<direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/>
|
||||
<!-- Carry chain links -->
|
||||
<direct name="carry_in" input="clb.cin" output="fle[0:0].cin">
|
||||
<!-- Put all inter-block carry chain delay on this one edge -->
|
||||
<delay_constant max="0.16e-9" in_port="clb.cin" out_port="fle[0:0].cin"/>
|
||||
<pack_pattern name="chain" in_port="clb.cin" out_port="fle[0:0].cin"/>
|
||||
</direct>
|
||||
<direct name="carry_out" input="fle[9:9].cout" output="clb.cout">
|
||||
<pack_pattern name="chain" in_port="fle[9:9].cout" out_port="clb.cout"/>
|
||||
</direct>
|
||||
<direct name="carry_link" input="fle[8:0].cout" output="fle[9:1].cin">
|
||||
<pack_pattern name="chain" in_port="fle[8:0].cout" out_port="fle[9:1].cin"/>
|
||||
</direct>
|
||||
<!-- Shift register chain links -->
|
||||
<direct name="shift_register_in" input="clb.regin" output="fle[0:0].regin">
|
||||
<!-- Put all inter-block carry chain delay on this one edge -->
|
||||
<delay_constant max="0.16e-9" in_port="clb.regin" out_port="fle[0:0].regin"/>
|
||||
<pack_pattern name="chain" in_port="clb.regin" out_port="fle[0:0].regin"/>
|
||||
</direct>
|
||||
<direct name="shift_register_out" input="fle[9:9].regout" output="clb.regout">
|
||||
<pack_pattern name="chain" in_port="fle[9:9].regout" out_port="clb.regout"/>
|
||||
</direct>
|
||||
<direct name="shift_register_link" input="fle[8:0].regout" output="fle[9:1].regin">
|
||||
<pack_pattern name="chain" in_port="fle[8:0].regout" out_port="fle[9:1].regin"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<!-- Define general purpose logic block (CLB) ends -->
|
||||
</complexblocklist>
|
||||
</architecture>
|
|
@ -0,0 +1,734 @@
|
|||
<!--
|
||||
Flagship Heterogeneous Architecture with Carry Chains for VTR 7.0.
|
||||
|
||||
- 40 nm technology
|
||||
- General purpose logic block:
|
||||
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with 8 total FLE inputs (2 inputs of which are shared by the 5-LUTs)
|
||||
with optionally registered outputs
|
||||
Each 5-LUT has an arithemtic mode that converts it to a single-bit adder with both inputs driven by 4-LUTs (both 4-LUTs share all 4 inputs)
|
||||
Carry chain links to vertically adjacent logic blocks
|
||||
- Memory size 32 Kbits, memory aspect ratios vary from a data width of 1 to data width of 64.
|
||||
Height = 6, found on every (8n+2)th column
|
||||
- Multiplier modes: one 36x36, two 18x18, each 18x18 can also operate as two 9x9.
|
||||
Height = 4, found on every (8n+6)th column
|
||||
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
|
||||
|
||||
Details on Modelling:
|
||||
|
||||
The electrical design of the architecture described here is NOT from an
|
||||
optimized, SPICED architecture. Instead, we attempt to create a reasonable
|
||||
architecture file by using an existing commercial FPGA to approximate the area,
|
||||
delay, and power of the underlying components. This is combined with a reasonable 40 nm
|
||||
model of wiring and circuit design for low-level routing components, where available.
|
||||
The resulting architecture has delays that roughly match a commercial 40 nm FPGA, but also
|
||||
has wiring electrical parameters that allow the wire lengths and switch patterns to be
|
||||
modified and you will still get reasonable delay results for the new architecture.
|
||||
The following describes, in detail, how we obtained the various electrical values for this
|
||||
architecture.
|
||||
|
||||
Rmin for nmos and pmos, routing buffer sizes, and I/O pad delays are from the ifar
|
||||
architecture created by Ian Kuon: K06 N10 45nm fc 0.15 area-delay optimized architecture.
|
||||
(n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml)
|
||||
This routing architecture was optimized for 45 nm, and we have scaled it linearly to 40 nm to
|
||||
match the overall target (a 40 nm FPGA).
|
||||
|
||||
We obtain delay numbers by measuring delays of routing, soft logic blocks,
|
||||
memories, and multipliers from test circuits on a Stratix IV GX device
|
||||
(EP4SGX230DF29C2X, i.e. fastest speed grade). For routing, we took the average delay of H4 and V4
|
||||
wires. Rmetal and Cmetal values for the routing wires were obtained from work done by Charles
|
||||
Chiasson. We use a 96 nm half-pitch (corresponding to mid-level metal stack 40 nm routing) and
|
||||
take the R and C data from the ITRS roadmap.
|
||||
|
||||
For the general purpose logic block, we assume that the area and delays of the Stratix IV
|
||||
crossbar is close enough to the crossbar modelled here.
|
||||
Stratix IV uses 52 inputs and 20 feedback lines, but only a half-populated crossbar, leading to
|
||||
36:1 multiplexers. We match these parameters in this architecture.
|
||||
|
||||
For LUTs, we include LUT
|
||||
delays measured from Stratix IV which is dependant on the input used (ie. some
|
||||
LUT inputs are faster than others). The CAD tools at the time of VTR 7 does
|
||||
not consider differences in LUT input delays.
|
||||
|
||||
Adder delays obtained as approximate values from a Stratix IV EP4SE230F29C3 device.
|
||||
Delay obtained by compiling a 256 bit adder (registered inputs and outputs,
|
||||
all pins except clock virtual) then measuring the delays in chip-planner,
|
||||
sumout delay = 0.271ns to 0.348 ns, intra-block carry delay = 0.011 ns,
|
||||
inter-block carry delay = 0.327 ns. Given this data, I will approximate
|
||||
sumout 0.3 ns, intra-block carry-delay = 0.01 ns, and
|
||||
inter-block carry-delay = 0.16 ns (since Altera inter-block carry delay has
|
||||
overhead that we don't have, I'll approximate the delay of a simpler chain at
|
||||
one half what they have. This is very rough, anything from 0.01ns to 0.327ns
|
||||
can be justified).
|
||||
|
||||
Logic block area numbers obtained by scaling overall tile area of a 65nm
|
||||
Stratix III device, (as given in Wong, Betz and Rose, FPGA 2011) to 40 nm, then subtracting out
|
||||
routing area at a channel width of 300. We use a channel width of 300 because it can route
|
||||
all the VTR 6.0 benchmark circuits with an approximately 20% safety margin, and is also close to the
|
||||
total channel width of Stratix IV. Hence this channel width is close to the commercial practice of
|
||||
choosing a width that provides high routability. The architecture can be routed at different channel
|
||||
widths, but we estimate the tile size and hence the physical length of routing wires assuming
|
||||
a channel width of 300.
|
||||
|
||||
Sanity checks employed:
|
||||
1. We confirmed the routing buffer delay is ~1/3rd of total routing delay at L = 4. This matches
|
||||
common electrical design.
|
||||
|
||||
|
||||
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
|
||||
-->
|
||||
<architecture>
|
||||
<!--
|
||||
ODIN II specific config begins
|
||||
Describes the types of user-specified netlist blocks (in blif, this corresponds to
|
||||
".model [type_of_block]") that this architecture supports.
|
||||
|
||||
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
|
||||
already special structures in blif (.names, .input, .output, and .latch)
|
||||
that describe them.
|
||||
-->
|
||||
<models>
|
||||
<model name="adder">
|
||||
<input_ports>
|
||||
<port name="a" combinational_sink_ports="sumout cout"/>
|
||||
<port name="b" combinational_sink_ports="sumout cout"/>
|
||||
<port name="cin" combinational_sink_ports="sumout cout"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="cout"/>
|
||||
<port name="sumout"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||
<model name="io">
|
||||
<input_ports>
|
||||
<port name="outpad"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="inpad"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
<!-- A virtual model for fractruable LUT to be used in the physical mode of LUT -->
|
||||
<model name="frac_lut6">
|
||||
<input_ports>
|
||||
<port name="in"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="lut4_out"/>
|
||||
<port name="lut5_out"/>
|
||||
<port name="lut6_out"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
<!-- A virtual model for scan-chain flip-flop to be used in the physical mode of FF -->
|
||||
<model name="scff">
|
||||
<input_ports>
|
||||
<port name="D" clock="clk"/>
|
||||
<port name="DI" clock="clk"/>
|
||||
<port name="clk" is_clock="1"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="Q" clock="clk"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
</models>
|
||||
<tiles>
|
||||
<tile name="io" capacity="8" area="0">
|
||||
<equivalent_sites>
|
||||
<site pb_type="io"/>
|
||||
</equivalent_sites>
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">io.outpad io.inpad</loc>
|
||||
<loc side="top">io.outpad io.inpad</loc>
|
||||
<loc side="right">io.outpad io.inpad</loc>
|
||||
<loc side="bottom">io.outpad io.inpad</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<tile name="clb" area="53894">
|
||||
<equivalent_sites>
|
||||
<site pb_type="clb"/>
|
||||
</equivalent_sites>
|
||||
<input name="I" num_pins="40" equivalent="full"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<input name="regin" num_pins="1"/>
|
||||
<input name="scin" num_pins="1"/>
|
||||
<output name="O" num_pins="20" equivalent="none"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<output name="scout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
|
||||
<fc_override port_name="cin" fc_type="frac" fc_val="0"/>
|
||||
<fc_override port_name="cout" fc_type="frac" fc_val="0"/>
|
||||
<fc_override port_name="regin" fc_type="frac" fc_val="0"/>
|
||||
<fc_override port_name="regout" fc_type="frac" fc_val="0"/>
|
||||
<fc_override port_name="scin" fc_type="frac" fc_val="0"/>
|
||||
<fc_override port_name="scout" fc_type="frac" fc_val="0"/>
|
||||
</fc>
|
||||
<!-- Highly recommand to customize pin location when direct connection is used!!! -->
|
||||
<!--pinlocations pattern="spread"/-->
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">clb.clk</loc>
|
||||
<loc side="top">clb.cin clb.regin clb.scin</loc>
|
||||
<loc side="right">clb.O[9:0] clb.I[19:0]</loc>
|
||||
<loc side="bottom">clb.cout clb.regout clb.scout clb.O[19:10] clb.I[39:20]</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
</tiles>
|
||||
<!-- ODIN II specific config ends -->
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true">
|
||||
<!--auto_layout aspect_ratio="1.0"-->
|
||||
<fixed_layout name="2x2" width="4" height="4">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</fixed_layout>
|
||||
<!-- /auto_layout -->
|
||||
</layout>
|
||||
<device>
|
||||
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
|
||||
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
|
||||
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
|
||||
lined up with Stratix IV.
|
||||
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
|
||||
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
|
||||
by 2.5x when looking up in Jeff's tables.
|
||||
The delay values are lined up with Stratix IV, which has an architecture similar to this
|
||||
proposed FPGA, and which is also 40 nm
|
||||
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
|
||||
4x minimum drive strength buffer. -->
|
||||
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
|
||||
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
|
||||
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
|
||||
-->
|
||||
<area grid_logic_tile_area="0"/>
|
||||
<chan_width_distr>
|
||||
<x distr="uniform" peak="1.000000"/>
|
||||
<y distr="uniform" peak="1.000000"/>
|
||||
</chan_width_distr>
|
||||
<switch_block type="wilton" fs="3"/>
|
||||
<connection_block input_switch_name="ipin_cblock"/>
|
||||
</device>
|
||||
<switchlist>
|
||||
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
|
||||
book area formula. This means the mux transistors are about 5x minimum drive strength.
|
||||
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
|
||||
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
|
||||
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
|
||||
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||
2.5x when looking up in Jeff's tables.
|
||||
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
|
||||
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
|
||||
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
|
||||
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
|
||||
</switchlist>
|
||||
<segmentlist>
|
||||
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
|
||||
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
|
||||
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
|
||||
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||
<mux name="0"/>
|
||||
<sb type="pattern">1 1 1 1 1</sb>
|
||||
<cb type="pattern">1 1 1 1</cb>
|
||||
</segment>
|
||||
</segmentlist>
|
||||
<directlist>
|
||||
<direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_offset="-1" z_offset="0"/>
|
||||
<direct name="shift_register" from_pin="clb.regout" to_pin="clb.regin" x_offset="0" y_offset="-1" z_offset="0"/>
|
||||
<direct name="scan_chain" from_pin="clb.scout" to_pin="clb.scin" x_offset="0" y_offset="-1" z_offset="0"/>
|
||||
</directlist>
|
||||
<complexblocklist>
|
||||
<!-- Define I/O pads begin -->
|
||||
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
|
||||
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
|
||||
<pb_type name="io">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
|
||||
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
|
||||
If you need to register the I/O, define clocks in the circuit models
|
||||
These clocks can be handled in back-end
|
||||
-->
|
||||
<!-- A mode denotes the physical implementation of an I/O
|
||||
This mode will be not packable but is mainly used for fabric verilog generation
|
||||
-->
|
||||
<mode name="physical" packable="false">
|
||||
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="iopad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
|
||||
</direct>
|
||||
<direct name="inpad" input="iopad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
|
||||
<!-- IOs can operate as either inputs or outputs.
|
||||
Delays below come from Ian Kuon. They are small, so they should be interpreted as
|
||||
the delays to and from registers in the I/O (and generally I/Os are registered
|
||||
today and that is when you timing analyze them.
|
||||
-->
|
||||
<mode name="inpad">
|
||||
<pb_type name="inpad" blif_model=".input" num_pb="1">
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="inpad" input="inpad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="outpad">
|
||||
<pb_type name="outpad" blif_model=".output" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="outpad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- IOs go on the periphery of the FPGA, for consistency,
|
||||
make it physically equivalent on all sides so that only one definition of I/Os is needed.
|
||||
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
|
||||
-->
|
||||
<!-- Place I/Os on the sides of the FPGA -->
|
||||
<power method="ignore"/>
|
||||
</pb_type>
|
||||
<!-- Define I/O pads ends -->
|
||||
<!-- Define general purpose logic block (CLB) begin -->
|
||||
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
|
||||
area is 60 L^2 yields a tile area of 84375 MWTAs.
|
||||
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
|
||||
This means that only 37% of our area is in the general routing, and 63% is inside the logic
|
||||
block. Note that the crossbar / local interconnect is considered part of the logic block
|
||||
area in this analysis. That is a lower proportion of of routing area than most academics
|
||||
assume, but note that the total routing area really includes the crossbar, which would push
|
||||
routing area up significantly, we estimate into the ~70% range.
|
||||
-->
|
||||
<pb_type name="clb">
|
||||
<input name="I" num_pins="40" equivalent="full"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<input name="regin" num_pins="1"/>
|
||||
<input name="scin" num_pins="1"/>
|
||||
<output name="O" num_pins="20" equivalent="none"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<output name="scout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Describe fracturable logic element.
|
||||
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
|
||||
The outputs of the fracturable logic element can be optionally registered
|
||||
-->
|
||||
<pb_type name="fle" num_pb="10">
|
||||
<input name="in" num_pins="6"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<input name="regin" num_pins="1"/>
|
||||
<input name="scin" num_pins="1"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<output name="scout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Physical mode definition begin (physical implementation of the fle) -->
|
||||
<mode name="physical" packable="false">
|
||||
<pb_type name="fabric" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<input name="regin" num_pins="1"/>
|
||||
<input name="scin" num_pins="1"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<output name="scout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="frac_logic" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="lut4_out" num_pins="4"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<!-- Define LUT -->
|
||||
<pb_type name="frac_lut6" blif_model=".subckt frac_lut6" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="lut4_out" num_pins="4"/>
|
||||
<output name="lut5_out" num_pins="2"/>
|
||||
<output name="lut6_out" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="frac_logic.in" output="frac_lut6.in"/>
|
||||
<direct name="direct2" input="frac_lut6.lut4_out" output="frac_logic.lut4_out"/>
|
||||
<direct name="direct3" input="frac_lut6.lut5_out[1]" output="frac_logic.out[1]"/>
|
||||
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
|
||||
<mux name="mux1" input="frac_lut6.lut6_out frac_lut6.lut5_out[0]" output="frac_logic.out[0]"/>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<!-- Define flip-flop with scan-chain capability, DI is the scan-chain data input -->
|
||||
<pb_type name="ff" blif_model=".subckt scff" num_pb="2">
|
||||
<input name="D" num_pins="1"/>
|
||||
<input name="DI" num_pins="1"/>
|
||||
<output name="Q" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_setup value="66e-12" port="ff.DI" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<!-- Define adders -->
|
||||
<pb_type name="adder" blif_model=".subckt adder" num_pb="2">
|
||||
<input name="a" num_pins="1"/>
|
||||
<input name="b" num_pins="1"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<output name="sumout" num_pins="1"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
|
||||
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
|
||||
<direct name="direct2" input="fabric.cin" output="adder[0:0].cin"/>
|
||||
<direct name="direct3" input="adder[0:0].cout" output="adder[1:1].cin"/>
|
||||
<direct name="direct4" input="adder[1:1].cout" output="fabric.cout"/>
|
||||
<direct name="direct5" input="frac_logic.lut4_out[0:0]" output="adder[0:0].a"/>
|
||||
<direct name="direct6" input="frac_logic.lut4_out[1:1]" output="adder[0:0].b"/>
|
||||
<direct name="direct7" input="frac_logic.lut4_out[2:2]" output="adder[1:1].a"/>
|
||||
<direct name="direct8" input="frac_logic.lut4_out[3:3]" output="adder[1:1].b"/>
|
||||
<direct name="direct9" input="fabric.scin" output="ff[0].DI"/>
|
||||
<direct name="direct10" input="ff[0].Q" output="ff[1].DI"/>
|
||||
<direct name="direct11" input="ff[1].Q" output="fabric.scout"/>
|
||||
<complete name="complete1" input="fabric.clk" output="ff[1:0].clk"/>
|
||||
<mux name="mux1" input="adder[0].sumout frac_logic.out[0] fabric.regin" output="ff[0].D">
|
||||
<delay_constant max="25e-12" in_port="adder[0].sumout frac_logic.out[0] fabric.regin" out_port="ff[0].D"/>
|
||||
</mux>
|
||||
<mux name="mux2" input="adder[1].sumout frac_logic.out[1] ff[0].Q" output="ff[1].D">
|
||||
<delay_constant max="25e-12" in_port="adder[1].sumout frac_logic.out[1] ff[0].Q" out_port="ff[1].D"/>
|
||||
</mux>
|
||||
<mux name="mux3" input="adder[0].sumout ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
|
||||
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
|
||||
</mux>
|
||||
<mux name="mux4" input="adder[1].sumout ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
|
||||
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in" output="fabric.in"/>
|
||||
<direct name="direct2" input="fle.cin" output="fabric.cin"/>
|
||||
<direct name="direct3" input="fle.regin" output="fabric.regin"/>
|
||||
<direct name="direct4" input="fle.scin" output="fabric.scin"/>
|
||||
<direct name="direct5" input="fabric.out" output="fle.out"/>
|
||||
<direct name="direct6" input="fabric.cout" output="fle.cout"/>
|
||||
<direct name="direct7" input="fabric.regout" output="fle.regout"/>
|
||||
<direct name="direct8" input="fabric.scout" output="fle.scout"/>
|
||||
<direct name="direct9" input="fle.clk" output="fabric.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Physical mode definition end (physical implementation of the fle) -->
|
||||
<!-- BEGIN fle mode of dual lut5 -->
|
||||
<mode name="n2_lut5">
|
||||
<pb_type name="ble5" num_pb="2">
|
||||
<input name="in" num_pins="5"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Regular LUT mode -->
|
||||
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut">
|
||||
<input name="in" num_pins="5" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
398e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble5.in" output="lut5.in"/>
|
||||
<direct name="direct2" input="lut5.out" output="ff.D">
|
||||
<pack_pattern name="ble5" in_port="lut5.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble5.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut5.out" output="ble5.out">
|
||||
<delay_constant max="25e-12" in_port="lut5.out" out_port="ble5.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble5.out"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in[4:0]" output="ble5[0:0].in"/>
|
||||
<direct name="direct2" input="fle.in[4:0]" output="ble5[1:1].in"/>
|
||||
<complete name="direct3" input="fle.clk" output="ble5.clk"/>
|
||||
<direct name="direct4" input="ble5.out" output="fle.out"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- END fle mode of dual lut5 -->
|
||||
<!-- BEGIN arithmetic mode of dual lut4 + adders -->
|
||||
<mode name="arithmetic">
|
||||
<pb_type name="arithmetic" num_pb="2">
|
||||
<input name="in" num_pins="4"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Special dual-LUT mode that drives adder only -->
|
||||
<pb_type name="lut4" blif_model=".names" num_pb="2" class="lut">
|
||||
<input name="in" num_pins="4" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
|
||||
195e-12
|
||||
195e-12
|
||||
195e-12
|
||||
195e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
|
||||
<input name="a" num_pins="1"/>
|
||||
<input name="b" num_pins="1"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<output name="sumout" num_pins="1"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
|
||||
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
|
||||
</pb_type>
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="clock" input="arithmetic.clk" output="ff.clk"/>
|
||||
<direct name="lut_in1" input="arithmetic.in[3:0]" output="lut4[0:0].in[3:0]"/>
|
||||
<direct name="lut_in2" input="arithmetic.in[3:0]" output="lut4[1:1].in[3:0]"/>
|
||||
<direct name="lut_to_add1" input="lut4[0:0].out" output="adder.a">
|
||||
</direct>
|
||||
<direct name="lut_to_add2" input="lut4[1:1].out" output="adder.b">
|
||||
</direct>
|
||||
<direct name="add_to_ff" input="adder.sumout" output="ff.D">
|
||||
<pack_pattern name="chain" in_port="adder.sumout" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="carry_in" input="arithmetic.cin" output="adder.cin">
|
||||
<pack_pattern name="chain" in_port="arithmetic.cin" out_port="adder.cin"/>
|
||||
</direct>
|
||||
<direct name="carry_out" input="adder.cout" output="arithmetic.cout">
|
||||
<pack_pattern name="chain" in_port="adder.cout" out_port="arithmetic.cout"/>
|
||||
</direct>
|
||||
<mux name="sumout" input="ff.Q adder.sumout" output="arithmetic.out">
|
||||
<delay_constant max="25e-12" in_port="adder.sumout" out_port="arithmetic.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="arithmetic.out"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in[3:0]" output="arithmetic[0:0].in"/>
|
||||
<direct name="direct2" input="fle.in[3:0]" output="arithmetic[1:1].in"/>
|
||||
<direct name="carry_in" input="fle.cin" output="arithmetic[0:0].cin">
|
||||
<pack_pattern name="chain" in_port="fle.cin" out_port="arithmetic[0:0].cin"/>
|
||||
</direct>
|
||||
<direct name="carry_inter" input="arithmetic[0:0].cout" output="arithmetic[1:1].cin">
|
||||
<pack_pattern name="chain" in_port="arithmetic[0:0].cout" out_port="arithmetic[1:1].cin"/>
|
||||
</direct>
|
||||
<direct name="carry_out" input="arithmetic[1:1].cout" output="fle.cout">
|
||||
<pack_pattern name="chain" in_port="arithmetic.cout" out_port="fle.cout"/>
|
||||
</direct>
|
||||
<complete name="direct3" input="fle.clk" output="arithmetic.clk"/>
|
||||
<direct name="direct4" input="arithmetic.out" output="fle.out"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- n2_lut5 -->
|
||||
<mode name="n1_lut6">
|
||||
<pb_type name="ble6" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
|
||||
<input name="in" num_pins="6" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
398e-12
|
||||
397e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
|
||||
<direct name="direct2" input="lut6.out" output="ff.D">
|
||||
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
|
||||
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in[5:0]" output="ble6.in"/>
|
||||
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
|
||||
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Define n1_lut6 end -->
|
||||
<!-- Define shift register begin -->
|
||||
<mode name="shift_register">
|
||||
<pb_type name="shift_reg" num_pb="1">
|
||||
<input name="regin" num_pins="1"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="shift_reg.regin" output="ff[0].D"/>
|
||||
<direct name="direct2" input="ff[0].Q" output="ff[1].D"/>
|
||||
<direct name="direct3" input="ff[1].Q" output="shift_reg.regout"/>
|
||||
<complete name="complete1" input="shift_reg.clk" output="ff.clk"/>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.regin" output="shift_reg.regin"/>
|
||||
<direct name="direct2" input="shift_reg.regout" output="fle.regout"/>
|
||||
<direct name="direct3" input="fle.clk" output="shift_reg.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Define shift register end -->
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<!-- We use a 50% depop crossbar built using small full xbars to get sets of logically equivalent pins at inputs of CLB
|
||||
The delays below come from Stratix IV. the delay through a connection block
|
||||
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
|
||||
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
|
||||
delay within the crossbar is 95 ps.
|
||||
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
|
||||
Since all our outputs LUT outputs go to a BLE output, and have a delay of
|
||||
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
|
||||
to get the part that should be marked on the crossbar. -->
|
||||
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in">
|
||||
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in"/>
|
||||
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"/>
|
||||
</complete>
|
||||
|
||||
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
|
||||
</complete>
|
||||
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
|
||||
naive specification).
|
||||
-->
|
||||
<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>
|
||||
<direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/>
|
||||
<!-- Carry chain links -->
|
||||
<direct name="carry_in" input="clb.cin" output="fle[0:0].cin">
|
||||
<!-- Put all inter-block carry chain delay on this one edge -->
|
||||
<delay_constant max="0.16e-9" in_port="clb.cin" out_port="fle[0:0].cin"/>
|
||||
<pack_pattern name="chain" in_port="clb.cin" out_port="fle[0:0].cin"/>
|
||||
</direct>
|
||||
<direct name="carry_out" input="fle[9:9].cout" output="clb.cout">
|
||||
<pack_pattern name="chain" in_port="fle[9:9].cout" out_port="clb.cout"/>
|
||||
</direct>
|
||||
<direct name="carry_link" input="fle[8:0].cout" output="fle[9:1].cin">
|
||||
<pack_pattern name="chain" in_port="fle[8:0].cout" out_port="fle[9:1].cin"/>
|
||||
</direct>
|
||||
<!-- Shift register chain links -->
|
||||
<direct name="shift_register_in" input="clb.regin" output="fle[0:0].regin">
|
||||
<!-- Put all inter-block carry chain delay on this one edge -->
|
||||
<delay_constant max="0.16e-9" in_port="clb.regin" out_port="fle[0:0].regin"/>
|
||||
<pack_pattern name="chain" in_port="clb.regin" out_port="fle[0:0].regin"/>
|
||||
</direct>
|
||||
<direct name="shift_register_out" input="fle[9:9].regout" output="clb.regout">
|
||||
<pack_pattern name="chain" in_port="fle[9:9].regout" out_port="clb.regout"/>
|
||||
</direct>
|
||||
<direct name="shift_register_link" input="fle[8:0].regout" output="fle[9:1].regin">
|
||||
<pack_pattern name="chain" in_port="fle[8:0].regout" out_port="fle[9:1].regin"/>
|
||||
</direct>
|
||||
<!-- Scan chain links -->
|
||||
<direct name="scan_chain_in" input="clb.scin" output="fle[0:0].scin">
|
||||
<!-- Put all inter-block carry chain delay on this one edge -->
|
||||
<delay_constant max="0.16e-9" in_port="clb.scin" out_port="fle[0:0].scin"/>
|
||||
</direct>
|
||||
<direct name="scan_chain_out" input="fle[9:9].scout" output="clb.scout">
|
||||
</direct>
|
||||
<direct name="scan_chain_link" input="fle[8:0].scout" output="fle[9:1].scin">
|
||||
</direct>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<!-- Define general purpose logic block (CLB) ends -->
|
||||
</complexblocklist>
|
||||
</architecture>
|
|
@ -189,7 +189,7 @@
|
|||
<port type="output" prefix="sumout" size="1"/>
|
||||
<port type="output" prefix="cout" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="hard_logic" name="dpram_512x32" prefix="dpram_512x32" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dpram.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dpsram.v">
|
||||
<circuit_model type="hard_logic" name="dpram_512x32" prefix="dpram_512x32" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dpram.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dpram16k.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
|
|
|
@ -189,7 +189,7 @@
|
|||
<port type="output" prefix="sumout" size="1"/>
|
||||
<port type="output" prefix="cout" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="hard_logic" name="dpram_512x32" prefix="dpram_512x32" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dpram.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dpsram.v">
|
||||
<circuit_model type="hard_logic" name="dpram_512x32" prefix="dpram_512x32" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/dpram.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/dpram16k.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
|
|
|
@ -137,7 +137,7 @@
|
|||
This is flip-flop with scan-chain feature.
|
||||
When the TESTEN is enabled, the data will be propagated form DI instead of D
|
||||
-->
|
||||
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
|
||||
<circuit_model type="ff" name="scan_chain_ff" prefix="scan_chain_ff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
|
@ -228,7 +228,7 @@
|
|||
</pb_type>
|
||||
<pb_type name="clb.fle" physical_mode_name="physical"/>
|
||||
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut6" circuit_model_name="frac_lut6" mode_bits="11"/>
|
||||
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="static_dff"/>
|
||||
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="scan_chain_ff"/>
|
||||
<pb_type name="clb.fle[physical].fabric.adder" circuit_model_name="adder"/>
|
||||
<!-- Binding operating pb_type to physical pb_type -->
|
||||
<!-- Binding operating pb_types in mode 'n2_lut5' -->
|
||||
|
|
|
@ -0,0 +1,260 @@
|
|||
<!-- Architecture annotation for OpenFPGA framework
|
||||
This annotation supports the k6_N10_40nm.xml
|
||||
- General purpose logic block
|
||||
- K = 6, N = 10, I = 40
|
||||
- Single mode
|
||||
- Routing architecture
|
||||
- L = 4, fc_in = 0.15, fc_out = 0.1
|
||||
-->
|
||||
<openfpga_architecture>
|
||||
<technology_library>
|
||||
<device_library>
|
||||
<device_model name="logic" type="transistor">
|
||||
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
|
||||
<design vdd="0.9" pn_ratio="2"/>
|
||||
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
|
||||
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
|
||||
</device_model>
|
||||
<device_model name="io" type="transistor">
|
||||
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
|
||||
<design vdd="2.5" pn_ratio="3"/>
|
||||
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
|
||||
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
|
||||
</device_model>
|
||||
</device_library>
|
||||
<variation_library>
|
||||
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
|
||||
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
|
||||
</variation_library>
|
||||
</technology_library>
|
||||
<circuit_library>
|
||||
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
|
||||
<design_technology type="cmos" topology="inverter" size="1"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
|
||||
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
|
||||
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="gate" name="OR2" prefix="OR2" is_default="true">
|
||||
<design_technology type="cmos" topology="OR"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="false"/>
|
||||
<port type="input" prefix="a" size="1"/>
|
||||
<port type="input" prefix="b" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<delay_matrix type="rise" in_port="a b" out_port="out">
|
||||
10e-12 5e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="a b" out_port="out">
|
||||
10e-12 5e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
|
||||
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="false"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="input" prefix="sel" size="1"/>
|
||||
<port type="input" prefix="selb" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
|
||||
10e-12 5e-12 5e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
|
||||
10e-12 5e-12 5e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="false"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
|
||||
</circuit_model>
|
||||
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="false"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
|
||||
</circuit_model>
|
||||
<circuit_model type="mux" name="mux_2level" prefix="mux_2level">
|
||||
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<pass_gate_logic circuit_model_name="TGATE"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="mux" name="mux_2level_tapbuf" prefix="mux_2level_tapbuf">
|
||||
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input="true" const_input_val="1"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
|
||||
<pass_gate_logic circuit_model_name="TGATE"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" is_default="true">
|
||||
<design_technology type="cmos" structure="one_level" add_const_input="true" const_input_val="1"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
|
||||
<pass_gate_logic circuit_model_name="TGATE"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="1"/>
|
||||
</circuit_model>
|
||||
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
|
||||
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="input" prefix="D" size="1"/>
|
||||
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true"/>
|
||||
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset="true"/>
|
||||
<port type="output" prefix="Q" size="1"/>
|
||||
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
|
||||
</circuit_model>
|
||||
<circuit_model type="lut" name="frac_lut6" prefix="frac_lut6">
|
||||
<design_technology type="cmos" fracturable_lut="true"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
|
||||
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
|
||||
<lut_intermediate_buffer exist="true" circuit_model_name="buf4" location_map="-1-1-"/>
|
||||
<pass_gate_logic circuit_model_name="TGATE"/>
|
||||
<port type="input" prefix="in" size="6" tri_state_map="-----1" circuit_model_name="OR2"/>
|
||||
<port type="output" prefix="lut5_out" size="2" lut_frac_level="5" lut_output_mask="0,1"/>
|
||||
<port type="output" prefix="lut6_out" size="1" lut_output_mask="0"/>
|
||||
<port type="sram" prefix="sram" size="64"/>
|
||||
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
|
||||
</circuit_model>
|
||||
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
|
||||
<circuit_model type="ccff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/ff.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_val="0" is_reset="true" is_prog="true"/>
|
||||
<port type="input" prefix="D" size="1"/>
|
||||
<port type="output" prefix="Q" size="1"/>
|
||||
<port type="output" prefix="Qb" size="1"/>
|
||||
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_val="0" is_prog="true"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/io.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
|
||||
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_compact" default_val="1"/>
|
||||
<port type="input" prefix="outpad" size="1"/>
|
||||
<port type="output" prefix="inpad" size="1"/>
|
||||
</circuit_model>
|
||||
</circuit_library>
|
||||
<configuration_protocol>
|
||||
<organization type="scan_chain" circuit_model_name="sc_dff_compact"/>
|
||||
</configuration_protocol>
|
||||
<connection_block>
|
||||
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>
|
||||
</connection_block>
|
||||
<switch_block>
|
||||
<switch name="0" circuit_model_name="mux_2level_tapbuf"/>
|
||||
</switch_block>
|
||||
<routing_segment>
|
||||
<segment name="L4" circuit_model_name="chan_segment"/>
|
||||
</routing_segment>
|
||||
<pb_type_annotations>
|
||||
<!-- physical pb_type binding in complex block IO -->
|
||||
<pb_type name="io" physical_mode_name="physical" idle_mode_name="inpad"/>
|
||||
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
|
||||
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/>
|
||||
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits="0"/>
|
||||
<!-- End physical pb_type binding in complex block IO -->
|
||||
|
||||
<!-- physical pb_type binding in complex block CLB -->
|
||||
<!-- physical mode will be the default mode if not specified -->
|
||||
<pb_type name="clb">
|
||||
<!-- Binding interconnect to circuit models as their physical implementation, if not defined, we use the default model -->
|
||||
<interconnect name="crossbar" circuit_model_name="mux_2level"/>
|
||||
</pb_type>
|
||||
<pb_type name="clb.fle" physical_mode_name="physical"/>
|
||||
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut6" circuit_model_name="frac_lut6" mode_bits="0"/>
|
||||
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="static_dff"/>
|
||||
<!-- Binding operating pb_type to physical pb_type -->
|
||||
<pb_type name="clb.fle[n2_lut5].lut5inter.ble5.lut5" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="1" physical_pb_type_index_factor="0.5">
|
||||
<!-- Binding the lut5 to the first 5 inputs of fracturable lut6 -->
|
||||
<port name="in" physical_mode_port="in[0:4]"/>
|
||||
<port name="out" physical_mode_port="lut5_out[0:0]" physical_mode_pin_rotate_offset="1"/>
|
||||
</pb_type>
|
||||
<pb_type name="clb.fle[n2_lut5].lut5inter.ble5.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
|
||||
<pb_type name="clb.fle[n1_lut6].ble6.lut6" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut6" mode_bits="0">
|
||||
<!-- Binding the lut6 to the first 6 inputs of fracturable lut6 -->
|
||||
<port name="in" physical_mode_port="in[0:5]"/>
|
||||
<port name="out" physical_mode_port="lut6_out"/>
|
||||
</pb_type>
|
||||
<pb_type name="clb.fle[n1_lut6].ble6.ff" physical_pb_type_name="clb.fle[physical].fabric.ff" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0"/>
|
||||
<!-- End physical pb_type binding in complex block IO -->
|
||||
</pb_type_annotations>
|
||||
</openfpga_architecture>
|
||||
<openfpga_simulation_setting>
|
||||
<clock_setting>
|
||||
<!--operating frequency="auto" num_cycles="auto" slack="0.2"/-->
|
||||
<operating frequency="200e6" num_cycles="auto" slack="0.2"/>
|
||||
<programming frequency="10e6"/>
|
||||
</clock_setting>
|
||||
<simulator_option>
|
||||
<operating_condition temperature="25"/>
|
||||
<output_log verbose="false" captab="false"/>
|
||||
<accuracy type="abs" value="1e-13"/>
|
||||
<runtime fast_simulation="true"/>
|
||||
</simulator_option>
|
||||
<monte_carlo num_simulation_points="2"/>
|
||||
<measurement_setting>
|
||||
<slew>
|
||||
<rise upper_thres_pct="0.95" lower_thres_pct="0.05"/>
|
||||
<fall upper_thres_pct="0.05" lower_thres_pct="0.95"/>
|
||||
</slew>
|
||||
<delay>
|
||||
<rise input_thres_pct="0.5" output_thres_pct="0.5"/>
|
||||
<fall input_thres_pct="0.5" output_thres_pct="0.5"/>
|
||||
</delay>
|
||||
</measurement_setting>
|
||||
<stimulus>
|
||||
<clock>
|
||||
<rise slew_type="abs" slew_time="20e-12" />
|
||||
<fall slew_type="abs" slew_time="20e-12" />
|
||||
</clock>
|
||||
<input>
|
||||
<rise slew_type="abs" slew_time="25e-12" />
|
||||
<fall slew_type="abs" slew_time="25e-12" />
|
||||
</input>
|
||||
</stimulus>
|
||||
</openfpga_simulation_setting>
|
|
@ -82,13 +82,13 @@
|
|||
If your standard cell provider does not offer the exact truth table,
|
||||
you can simply swap the inputs as shown in the example below
|
||||
-->
|
||||
<circuit_model type="gate" name="stdcell_mux2" prefix="stdcell_mux2" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/sc_mux2.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/sc_mux2.v">
|
||||
<circuit_model type="gate" name="MUX2" prefix="MUX2" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/SpiceNetlists/mux2.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/VerilogNetlists/mux2.v">
|
||||
<design_technology type="cmos" topology="MUX2"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="false"/>
|
||||
<port type="input" prefix="in0" lib_name="B" size="1"/>
|
||||
<port type="input" prefix="in1" lib_name="A" size="1"/>
|
||||
<port type="input" prefix="sel" lib_name="S" size="1"/>
|
||||
<port type="input" prefix="sel" lib_name="S0" size="1"/>
|
||||
<port type="output" prefix="out" lib_name="Y" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
|
||||
|
@ -111,7 +111,7 @@
|
|||
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<pass_gate_logic circuit_model_name="stdcell_mux2"/>
|
||||
<pass_gate_logic circuit_model_name="MUX2"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="1"/>
|
||||
|
@ -120,7 +120,7 @@
|
|||
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
|
||||
<pass_gate_logic circuit_model_name="stdcell_mux2"/>
|
||||
<pass_gate_logic circuit_model_name="MUX2"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="1"/>
|
||||
|
@ -143,7 +143,7 @@
|
|||
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
|
||||
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
|
||||
<lut_intermediate_buffer exist="true" circuit_model_name="buf4" location_map="-1-1-"/>
|
||||
<pass_gate_logic circuit_model_name="stdcell_mux2"/>
|
||||
<pass_gate_logic circuit_model_name="MUX2"/>
|
||||
<port type="input" prefix="in" size="6" tri_state_map="-----1" circuit_model_name="OR2"/>
|
||||
<port type="output" prefix="lut5_out" size="2" lut_frac_level="5" lut_output_mask="0,1"/>
|
||||
<port type="output" prefix="lut6_out" size="1" lut_output_mask="0"/>
|
||||
|
|
|
@ -0,0 +1,34 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/example_script.openfpga
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=vpr_blif
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_behavioral_40nm_openfpga.xml
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/arch/vpr_only_templates/k6_frac_N10_tileable_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.blif
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = top
|
||||
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.act
|
||||
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.v
|
||||
bench0_chan_width = 300
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -0,0 +1,34 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/example_script.openfpga
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=vpr_blif
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_adder_chain_mem16K_40nm_openfpga.xml
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/arch/vpr_only_templates/k6_frac_N10_tileable_adder_chain_mem16K_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.blif
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = top
|
||||
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.act
|
||||
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.v
|
||||
bench0_chan_width = 300
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -0,0 +1,35 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/example_script.openfpga
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=vpr_blif
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_adder_chain_mem16K_40nm_openfpga.xml
|
||||
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/arch/vpr_only_templates/k6_frac_N10_tileable_adder_chain_wide_mem16K_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.blif
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = top
|
||||
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.act
|
||||
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.v
|
||||
bench0_chan_width = 300
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -0,0 +1,34 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/duplicated_grid_pin_example_script.openfpga
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=vpr_blif
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_40nm_openfpga.xml
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/arch/vpr_only_templates/k6_frac_N10_tileable_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.blif
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = top
|
||||
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.act
|
||||
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.v
|
||||
bench0_chan_width = 300
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -0,0 +1,34 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/example_script.openfpga
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=vpr_blif
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_adder_column_chain_40nm_openfpga.xml
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/arch/vpr_only_templates/k6_frac_N10_tileable_adder_chain_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.blif
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = top
|
||||
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.act
|
||||
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.v
|
||||
bench0_chan_width = 300
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -0,0 +1,34 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/example_script.openfpga
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=vpr_blif
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_adder_register_chain_40nm_openfpga.xml
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/arch/vpr_only_templates/k6_frac_N10_tileable_adder_register_chain_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.blif
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = top
|
||||
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.act
|
||||
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.v
|
||||
bench0_chan_width = 300
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -0,0 +1,34 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/example_script.openfpga
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=vpr_blif
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_adder_register_scan_chain_40nm_openfpga.xml
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/arch/vpr_only_templates/k6_frac_N10_tileable_adder_register_scan_chain_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.blif
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = top
|
||||
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.act
|
||||
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.v
|
||||
bench0_chan_width = 300
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -0,0 +1,34 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/flatten_routing_example_script.openfpga
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=vpr_blif
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_40nm_openfpga.xml
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/arch/vpr_only_templates/k6_frac_N10_tileable_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.blif
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = top
|
||||
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.act
|
||||
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.v
|
||||
bench0_chan_width = 300
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -0,0 +1,34 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/example_script.openfpga
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=vpr_blif
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_40nm_openfpga.xml
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/arch/vpr_only_templates/k6_frac_N10_tileable_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.blif
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = top
|
||||
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.act
|
||||
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.v
|
||||
bench0_chan_width = 300
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -0,0 +1,34 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/example_script.openfpga
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=vpr_blif
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_adder_chain_40nm_openfpga.xml
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/arch/vpr_only_templates/k6_frac_N10_tileable_adder_chain_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.blif
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = top
|
||||
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.act
|
||||
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.v
|
||||
bench0_chan_width = 300
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -0,0 +1,34 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/implicit_verilog_example_script.openfpga
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=vpr_blif
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_40nm_openfpga.xml
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/arch/vpr_only_templates/k6_frac_N10_tileable_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.blif
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = top
|
||||
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.act
|
||||
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.v
|
||||
bench0_chan_width = 300
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -0,0 +1,45 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/example_script.openfpga
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=vpr_blif
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_adder_chain_mem16K_aib_40nm_openfpga.xml
|
||||
|
||||
#####################################
|
||||
# Debugging status
|
||||
# Fail in the following cases
|
||||
# - tileable routing is used
|
||||
# - vpr routing is used
|
||||
# - compressed routing is enabled/disabled
|
||||
# - duplicated pin is enabled/disabled
|
||||
#
|
||||
# Therefore, this could be a bug in the VPR
|
||||
####################################
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/arch/vpr_only_templates/k6_frac_N10_tileable_adder_chain_mem16K_aib_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.blif
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = top
|
||||
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.act
|
||||
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.v
|
||||
bench0_chan_width = 300
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -0,0 +1,34 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/example_script.openfpga
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=vpr_blif
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_adder_chain_mem16K_40nm_openfpga.xml
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/arch/vpr_only_templates/k6_frac_N10_tileable_adder_chain_mem16K_multi_io_capacity_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.blif
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = top
|
||||
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.act
|
||||
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.v
|
||||
bench0_chan_width = 300
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -0,0 +1,34 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/example_script.openfpga
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=vpr_blif
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_adder_chain_mem16K_40nm_openfpga.xml
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/arch/vpr_only_templates/k6_frac_N10_tileable_adder_chain_mem16K_reduced_io_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.blif
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = top
|
||||
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.act
|
||||
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.v
|
||||
bench0_chan_width = 300
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -0,0 +1,34 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/example_script.openfpga
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=vpr_blif
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_stdcell_mux_40nm_openfpga.xml
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/arch/vpr_only_templates/k6_frac_N10_tileable_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.blif
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = top
|
||||
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.act
|
||||
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.v
|
||||
bench0_chan_width = 300
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -0,0 +1,34 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/example_script.openfpga
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=vpr_blif
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_tree_mux_40nm_openfpga.xml
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/arch/vpr_only_templates/k6_frac_N10_tileable_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.blif
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = top
|
||||
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.act
|
||||
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.v
|
||||
bench0_chan_width = 300
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -0,0 +1,34 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/OpenFPGAShellScripts/example_script.openfpga
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 20*60
|
||||
fpga_flow=vpr_blif
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_40nm_openfpga.xml
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/arch/vpr_only_templates/k6_frac_N10_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.blif
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = top
|
||||
bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.act
|
||||
bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and.v
|
||||
bench0_chan_width = 300
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
end_flow_with_test=
|
||||
vpr_fpga_verilog_formal_verification_top_netlist=
|
|
@ -292,7 +292,7 @@ void build_primitive_block_module(ModuleManager& module_manager,
|
|||
/* Add all the nets to connect configuration ports from memory module to primitive modules
|
||||
* This is a one-shot addition that covers all the memory modules in this primitive module!
|
||||
*/
|
||||
if (false == memory_modules.empty()) {
|
||||
if (0 < module_manager.configurable_children(primitive_module).size()) {
|
||||
add_module_nets_memory_config_bus(module_manager, primitive_module,
|
||||
sram_orgz_type, circuit_lib.design_tech_type(sram_model));
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue