Merge branch 'master' into hetergeneous_arch
This commit is contained in:
commit
44d97ead86
|
@ -2763,7 +2763,7 @@ module top_ram (
|
|||
assign q = sub_wire0 | dummy;
|
||||
wire[32-1:0] dummy;
|
||||
assign dummy = junk_output & 32'b0;
|
||||
dual_port_ram inst2(
|
||||
dual_port_ram_4096x32 inst2(
|
||||
.clk (clk),
|
||||
.we1(wren),
|
||||
.we2(1'b0),
|
||||
|
@ -3290,7 +3290,7 @@ begin // : STATUS_COUNTER
|
|||
else if ((wrreq) && (!rdreq) && (status_cnt != 64 ))
|
||||
status_cnt <= status_cnt + 1'b1;
|
||||
end
|
||||
dual_port_ram ram_addr(
|
||||
dual_port_ram_rfifo ram_addr(
|
||||
.we1 (wrreq) , // write enable
|
||||
.we2 (rdreq) , // Read enable
|
||||
.addr1 (wr_pointer) , // address_0 input
|
||||
|
@ -3399,7 +3399,7 @@ begin // : STATUS_COUNTER
|
|||
status_cnt <= status_cnt + 1'b1;
|
||||
end
|
||||
assign usedw = status_cnt[`wFIFOSIZEWIDTH-1:0];
|
||||
dual_port_ram ram_addr(
|
||||
dual_port_ram_wfifo ram_addr(
|
||||
.we1 (wrreq) , // write enable
|
||||
.we2 (rdreq) , // Read enable
|
||||
.addr1 (wr_pointer) , // address_0 input
|
||||
|
@ -3473,7 +3473,7 @@ begin // : STATUS_COUNTER
|
|||
else if ((wrreq) && (!rdreq) && (status_cnt != 5'b10000))
|
||||
status_cnt <= status_cnt + 1;
|
||||
end
|
||||
dual_port_ram ram_addr(
|
||||
dual_port_ram_afifo ram_addr(
|
||||
.we1 (wrreq) , // write enable
|
||||
.we2 (rdreq) , // Read enable
|
||||
.addr1 (wr_pointer) , // address_0 input
|
||||
|
@ -3543,7 +3543,7 @@ begin // : STATUS_COUNTER
|
|||
else if ((wrreq) && (!rdreq) && (status_cnt != 16 ))
|
||||
status_cnt <= status_cnt + 1'b1;
|
||||
end
|
||||
dual_port_ram ram_addr(
|
||||
dual_port_ram_mfifo ram_addr(
|
||||
.we1 (wrreq) , // write enable
|
||||
.we2 (rdreq) , // Read enable
|
||||
.addr1 (wr_pointer) , // address_0 input
|
||||
|
@ -5431,3 +5431,279 @@ module assemble(roundprod, special, y, sign, specialsign,
|
|||
rounded[`WIDTH-2:0]);
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [`rRAMSIZEWIDTH - 1 : 0] addr1,
|
||||
input [`RAMWIDTH - 1 : 0] data1,
|
||||
output [`RAMWIDTH - 1 : 0] out1,
|
||||
input [`rRAMSIZEWIDTH - 1 : 0] addr2,
|
||||
input [`RAMWIDTH - 1 : 0] data2,
|
||||
output [`RAMWIDTH - 1 : 0] out2
|
||||
);
|
||||
reg [`RAMWIDTH - 1 : 0] ram[2**`rRAMSIZEWIDTH - 1 : 0];
|
||||
reg [`RAMWIDTH - 1 : 0] data_out1;
|
||||
reg [`RAMWIDTH - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM 4096x32
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram_4096x32 (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [12 - 1 : 0] addr1,
|
||||
input [32 - 1 : 0] data1,
|
||||
output [32 - 1 : 0] out1,
|
||||
input [12 - 1 : 0] addr2,
|
||||
input [32 - 1 : 0] data2,
|
||||
output [32 - 1 : 0] out2
|
||||
);
|
||||
reg [32 - 1 : 0] ram[2**12 - 1 : 0];
|
||||
reg [32 - 1 : 0] data_out1;
|
||||
reg [32 - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM rFIFO
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram_rfifo (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [`rFIFOSIZEWIDTH - 1 : 0] addr1,
|
||||
input [`rFIFOINPUTWIDTH - 1 : 0] data1,
|
||||
output [`rFIFOINPUTWIDTH - 1 : 0] out1,
|
||||
input [`rFIFOSIZEWIDTH - 1 : 0] addr2,
|
||||
input [`rFIFOINPUTWIDTH - 1 : 0] data2,
|
||||
output [`rFIFOINPUTWIDTH - 1 : 0] out2
|
||||
);
|
||||
reg [`rFIFOINPUTWIDTH - 1 : 0] ram[2**`rFIFOSIZEWIDTH - 1 : 0];
|
||||
reg [`rFIFOINPUTWIDTH - 1 : 0] data_out1;
|
||||
reg [`rFIFOINPUTWIDTH - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM wFIFO
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram_wfifo (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [`wFIFOSIZEWIDTH - 1 : 0] addr1,
|
||||
input [`wFIFOINPUTWIDTH - 1 : 0] data1,
|
||||
output [`wFIFOINPUTWIDTH - 1 : 0] out1,
|
||||
input [`wFIFOSIZEWIDTH - 1 : 0] addr2,
|
||||
input [`wFIFOINPUTWIDTH - 1 : 0] data2,
|
||||
output [`wFIFOINPUTWIDTH - 1 : 0] out2
|
||||
);
|
||||
reg [`wFIFOINPUTWIDTH - 1 : 0] ram[2**`wFIFOSIZEWIDTH - 1 : 0];
|
||||
reg [`wFIFOINPUTWIDTH - 1 : 0] data_out1;
|
||||
reg [`wFIFOINPUTWIDTH - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM wFIFO
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram_afifo (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [`aFIFOSIZEWIDTH - 1 : 0] addr1,
|
||||
input [`aFIFOWIDTH - 1 : 0] data1,
|
||||
output [`aFIFOWIDTH - 1 : 0] out1,
|
||||
input [`aFIFOSIZEWIDTH - 1 : 0] addr2,
|
||||
input [`aFIFOWIDTH - 1 : 0] data2,
|
||||
output [`aFIFOWIDTH - 1 : 0] out2
|
||||
);
|
||||
reg [`aFIFOWIDTH - 1 : 0] ram[2**`aFIFOSIZEWIDTH - 1 : 0];
|
||||
reg [`aFIFOWIDTH - 1 : 0] data_out1;
|
||||
reg [`aFIFOWIDTH - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM mFIFO
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram_mfifo (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [`mFIFOSIZEWIDTH - 1 : 0] addr1,
|
||||
input [`mFIFOWIDTH - 1 : 0] data1,
|
||||
output [`mFIFOWIDTH - 1 : 0] out1,
|
||||
input [`mFIFOSIZEWIDTH - 1 : 0] addr2,
|
||||
input [`mFIFOWIDTH - 1 : 0] data2,
|
||||
output [`mFIFOWIDTH - 1 : 0] out2
|
||||
);
|
||||
reg [`mFIFOWIDTH - 1 : 0] ram[2**`mFIFOSIZEWIDTH - 1 : 0];
|
||||
reg [`mFIFOWIDTH - 1 : 0] data_out1;
|
||||
reg [`mFIFOWIDTH - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
|
|
@ -2403,7 +2403,7 @@ module top_ram (
|
|||
assign q = sub_wire0 | dummy;
|
||||
wire[32-1:0] dummy;
|
||||
assign dummy = junk_output & 32'b0;
|
||||
dual_port_ram inst2(
|
||||
dual_port_ram_256x32 inst2(
|
||||
.clk (clk),
|
||||
.we1(wren),
|
||||
.we2(1'b0),
|
||||
|
@ -2882,7 +2882,7 @@ begin // : STATUS_COUNTER
|
|||
else if ((wrreq) && (!rdreq) && (status_cnt != 64 ))
|
||||
status_cnt <= status_cnt + 1'b1;
|
||||
end
|
||||
dual_port_ram ram_addr(
|
||||
dual_port_ram_rfifo ram_addr(
|
||||
.we1 (wrreq) , // write enable
|
||||
.we2 (rdreq) , // Read enable
|
||||
.addr1 (wr_pointer) , // address_0 input
|
||||
|
@ -2967,7 +2967,7 @@ begin // : STATUS_COUNTER
|
|||
status_cnt <= status_cnt + 1'b1;
|
||||
end
|
||||
assign usedw = status_cnt[`wFIFOSIZEWIDTH-1:0];
|
||||
dual_port_ram ram_addr(
|
||||
dual_port_ram_wfifo ram_addr(
|
||||
.we1 (wrreq) , // write enable
|
||||
.we2 (rdreq) , // Read enable
|
||||
.addr1 (wr_pointer) , // address_0 input
|
||||
|
@ -3041,7 +3041,7 @@ begin // : STATUS_COUNTER
|
|||
else if ((wrreq) && (!rdreq) && (status_cnt != 5'b10000))
|
||||
status_cnt <= status_cnt + 1;
|
||||
end
|
||||
dual_port_ram ram_addr(
|
||||
dual_port_ram_afifo ram_addr(
|
||||
.we1 (wrreq) , // write enable
|
||||
.we2 (rdreq) , // Read enable
|
||||
.addr1 (wr_pointer) , // address_0 input
|
||||
|
@ -3111,7 +3111,7 @@ begin // : STATUS_COUNTER
|
|||
else if ((wrreq) && (!rdreq) && (status_cnt != 16 ))
|
||||
status_cnt <= status_cnt + 1'b1;
|
||||
end
|
||||
dual_port_ram ram_addr(
|
||||
dual_port_ram_mfifo ram_addr(
|
||||
.we1 (wrreq) , // write enable
|
||||
.we2 (rdreq) , // Read enable
|
||||
.addr1 (wr_pointer) , // address_0 input
|
||||
|
@ -4999,3 +4999,279 @@ module assemble(roundprod, special, y, sign, specialsign,
|
|||
rounded[`WIDTH-2:0]);
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [`rRAMSIZEWIDTH - 1 : 0] addr1,
|
||||
input [`RAMWIDTH - 1 : 0] data1,
|
||||
output [`RAMWIDTH - 1 : 0] out1,
|
||||
input [`rRAMSIZEWIDTH - 1 : 0] addr2,
|
||||
input [`RAMWIDTH - 1 : 0] data2,
|
||||
output [`RAMWIDTH - 1 : 0] out2
|
||||
);
|
||||
reg [`RAMWIDTH - 1 : 0] ram[2**`rRAMSIZEWIDTH - 1 : 0];
|
||||
reg [`RAMWIDTH - 1 : 0] data_out1;
|
||||
reg [`RAMWIDTH - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM 256x32
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram_256x32 (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [8 - 1 : 0] addr1,
|
||||
input [32 - 1 : 0] data1,
|
||||
output [32 - 1 : 0] out1,
|
||||
input [8- 1 : 0] addr2,
|
||||
input [32 - 1 : 0] data2,
|
||||
output [32 - 1 : 0] out2
|
||||
);
|
||||
reg [32 - 1 : 0] ram[2**8 - 1 : 0];
|
||||
reg [32 - 1 : 0] data_out1;
|
||||
reg [32 - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM rFIFO
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram_rfifo (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [`rFIFOSIZEWIDTH - 1 : 0] addr1,
|
||||
input [`rFIFOINPUTWIDTH - 1 : 0] data1,
|
||||
output [`rFIFOINPUTWIDTH - 1 : 0] out1,
|
||||
input [`rFIFOSIZEWIDTH - 1 : 0] addr2,
|
||||
input [`rFIFOINPUTWIDTH - 1 : 0] data2,
|
||||
output [`rFIFOINPUTWIDTH - 1 : 0] out2
|
||||
);
|
||||
reg [`rFIFOINPUTWIDTH - 1 : 0] ram[2**`rFIFOSIZEWIDTH - 1 : 0];
|
||||
reg [`rFIFOINPUTWIDTH - 1 : 0] data_out1;
|
||||
reg [`rFIFOINPUTWIDTH - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM wFIFO
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram_wfifo (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [`wFIFOSIZEWIDTH - 1 : 0] addr1,
|
||||
input [`wFIFOINPUTWIDTH - 1 : 0] data1,
|
||||
output [`wFIFOINPUTWIDTH - 1 : 0] out1,
|
||||
input [`wFIFOSIZEWIDTH - 1 : 0] addr2,
|
||||
input [`wFIFOINPUTWIDTH - 1 : 0] data2,
|
||||
output [`wFIFOINPUTWIDTH - 1 : 0] out2
|
||||
);
|
||||
reg [`wFIFOINPUTWIDTH - 1 : 0] ram[2**`wFIFOSIZEWIDTH - 1 : 0];
|
||||
reg [`wFIFOINPUTWIDTH - 1 : 0] data_out1;
|
||||
reg [`wFIFOINPUTWIDTH - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM wFIFO
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram_afifo (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [`aFIFOSIZEWIDTH - 1 : 0] addr1,
|
||||
input [`aFIFOWIDTH - 1 : 0] data1,
|
||||
output [`aFIFOWIDTH - 1 : 0] out1,
|
||||
input [`aFIFOSIZEWIDTH - 1 : 0] addr2,
|
||||
input [`aFIFOWIDTH - 1 : 0] data2,
|
||||
output [`aFIFOWIDTH - 1 : 0] out2
|
||||
);
|
||||
reg [`aFIFOWIDTH - 1 : 0] ram[2**`aFIFOSIZEWIDTH - 1 : 0];
|
||||
reg [`aFIFOWIDTH - 1 : 0] data_out1;
|
||||
reg [`aFIFOWIDTH - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM mFIFO
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram_mfifo (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [`mFIFOSIZEWIDTH - 1 : 0] addr1,
|
||||
input [`mFIFOWIDTH - 1 : 0] data1,
|
||||
output [`mFIFOWIDTH - 1 : 0] out1,
|
||||
input [`mFIFOSIZEWIDTH - 1 : 0] addr2,
|
||||
input [`mFIFOWIDTH - 1 : 0] data2,
|
||||
output [`mFIFOWIDTH - 1 : 0] out2
|
||||
);
|
||||
reg [`mFIFOWIDTH - 1 : 0] ram[2**`mFIFOSIZEWIDTH - 1 : 0];
|
||||
reg [`mFIFOWIDTH - 1 : 0] data_out1;
|
||||
reg [`mFIFOWIDTH - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
|
|
@ -1656,7 +1656,33 @@ single_port_ram new_ram(
|
|||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A single-port 1024x32bit RAM
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module single_port_ram (
|
||||
input clk,
|
||||
input we,
|
||||
input [9:0] addr,
|
||||
input [31:0] data,
|
||||
output [31:0] out );
|
||||
|
||||
reg [31:0] ram[1023:0];
|
||||
reg [31:0] internal;
|
||||
|
||||
assign out = internal;
|
||||
|
||||
always @(posedge clk) begin
|
||||
if(wen) begin
|
||||
ram[addr] <= data;
|
||||
end
|
||||
|
||||
if(ren) begin
|
||||
internal <= ram[addr];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -1749,9 +1749,10 @@ wire [31:0] dont_care_out;
|
|||
|
||||
assign const_zero = 1'b0;
|
||||
assign const_zero_data = 32'b00000000000000000000000000000000;
|
||||
assign dont_care_out = 32'b00000000000000000000000000000000;
|
||||
//Comment out for don't care outputs
|
||||
//assign dont_care_out = 32'b00000000000000000000000000000000;
|
||||
|
||||
dual_port_ram dpram1(
|
||||
dual_port_ram_8192x32 dpram1(
|
||||
.clk (clk),
|
||||
.we1(wren),
|
||||
.we2(const_zero),
|
||||
|
@ -1784,9 +1785,10 @@ wire [31:0] dont_care_out;
|
|||
|
||||
assign const_zero = 1'b0;
|
||||
assign const_zero_data = 32'b00000000000000000000000000000000;
|
||||
assign dont_care_out = 32'b00000000000000000000000000000000;
|
||||
//Comment out for don't care outputs
|
||||
//assign dont_care_out = 32'b00000000000000000000000000000000;
|
||||
|
||||
dual_port_ram dpram1(
|
||||
dual_port_ram_8192x32 dpram1(
|
||||
.clk (clk),
|
||||
.we1(wren),
|
||||
.we2(const_zero),
|
||||
|
@ -1819,9 +1821,10 @@ wire [31:0] dont_care_out;
|
|||
|
||||
assign const_zero = 1'b0;
|
||||
assign const_zero_data = 32'b00000000000000000000000000000000;
|
||||
assign dont_care_out = 32'b00000000000000000000000000000000;
|
||||
//Comment out for don't care outputs
|
||||
//assign dont_care_out = 32'b00000000000000000000000000000000;
|
||||
|
||||
dual_port_ram dpram1(
|
||||
dual_port_ram_8192x32 dpram1(
|
||||
.clk (clk),
|
||||
.we1(wren),
|
||||
.we2(const_zero),
|
||||
|
@ -1854,9 +1857,10 @@ wire [31:0] dont_care_out;
|
|||
|
||||
assign const_zero = 1'b0;
|
||||
assign const_zero_data = 32'b00000000000000000000000000000000;
|
||||
assign dont_care_out = 32'b00000000000000000000000000000000;
|
||||
//Comment out for don't care outputs
|
||||
//assign dont_care_out = 32'b00000000000000000000000000000000;
|
||||
|
||||
dual_port_ram dpram1(
|
||||
dual_port_ram_8192x32 dpram1(
|
||||
.clk (clk),
|
||||
.we1(wren),
|
||||
.we2(const_zero),
|
||||
|
@ -1888,9 +1892,10 @@ wire [35:0] dont_care_out;
|
|||
|
||||
assign const_zero = 1'b0;
|
||||
assign const_zero_data = 36'b000000000000000000000000000000000000;
|
||||
assign dont_care_out = 36'b000000000000000000000000000000000000;
|
||||
//Comment out for don't care outputs
|
||||
//assign dont_care_out = 36'b000000000000000000000000000000000000;
|
||||
|
||||
dual_port_ram dpram1(
|
||||
dual_port_ram_65536x36 dpram1(
|
||||
.clk (clk),
|
||||
.we1(wren),
|
||||
.we2(const_zero),
|
||||
|
@ -1922,9 +1927,10 @@ wire [17:0] dont_care_out;
|
|||
|
||||
assign const_zero = 1'b0;
|
||||
assign const_zero_data = 18'b000000000000000000;
|
||||
assign dont_care_out = 18'b000000000000000000;
|
||||
//Comment out for don't care outputs
|
||||
//assign dont_care_out = 18'b000000000000000000;
|
||||
|
||||
dual_port_ram dpram1(
|
||||
dual_port_ram_65536x18 dpram1(
|
||||
.clk (clk),
|
||||
.we1(wren),
|
||||
.we2(const_zero),
|
||||
|
@ -1956,9 +1962,10 @@ wire [7:0] dont_care_out;
|
|||
|
||||
assign const_zero = 1'b0;
|
||||
assign const_zero_data = 8'b00000000;
|
||||
assign dont_care_out = 8'b00000000;
|
||||
//Comment out for don't care outputs
|
||||
//assign dont_care_out = 8'b00000000;
|
||||
|
||||
dual_port_ram dpram1(
|
||||
dual_port_ram_65536x8 dpram1(
|
||||
.clk (clk),
|
||||
.we1(wren),
|
||||
.we2(const_zero),
|
||||
|
@ -18279,8 +18286,8 @@ output [31:0] cosp;
|
|||
//Instantiate a single port ram for odin
|
||||
wire [31:0]blank;
|
||||
assign blank = 32'b000000000000000000000000000000;
|
||||
single_port_ram sinp_replace(.clk (clock), .addr (pindex), .data (blank), .we (1'b0), .out (sinp));
|
||||
single_port_ram cosp_replace(.clk (clock), .addr (pindex), .data (blank), .we (1'b0), .out (cosp));
|
||||
single_port_ram_1024x32 sinp_replace(.clk (clock), .addr (pindex), .data (blank), .we (1'b0), .out (sinp));
|
||||
single_port_ram_1024x32 cosp_replace(.clk (clock), .addr (pindex), .data (blank), .we (1'b0), .out (cosp));
|
||||
|
||||
|
||||
endmodule
|
||||
|
@ -24774,4 +24781,242 @@ module Sqrt_64b (clk, num_, res);
|
|||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM 8192x32
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram_8192x32 (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [13 - 1 : 0] addr1,
|
||||
input [32 - 1 : 0] data1,
|
||||
output [32 - 1 : 0] out1,
|
||||
input [13 - 1 : 0] addr2,
|
||||
input [32 - 1 : 0] data2,
|
||||
output [32 - 1 : 0] out2
|
||||
);
|
||||
reg [32 - 1 : 0] ram[2**13 - 1 : 0];
|
||||
reg [32 - 1 : 0] data_out1;
|
||||
reg [32 - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM 65536x36
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram_65536x36 (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [16 - 1 : 0] addr1,
|
||||
input [36 - 1 : 0] data1,
|
||||
output [36 - 1 : 0] out1,
|
||||
input [16 - 1 : 0] addr2,
|
||||
input [36 - 1 : 0] data2,
|
||||
output [36 - 1 : 0] out2
|
||||
);
|
||||
reg [36 - 1 : 0] ram[2**16 - 1 : 0];
|
||||
reg [36 - 1 : 0] data_out1;
|
||||
reg [36 - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM 65536x18
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram_65536x18 (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [16 - 1 : 0] addr1,
|
||||
input [18 - 1 : 0] data1,
|
||||
output [18 - 1 : 0] out1,
|
||||
input [16 - 1 : 0] addr2,
|
||||
input [18 - 1 : 0] data2,
|
||||
output [18 - 1 : 0] out2
|
||||
);
|
||||
reg [18 - 1 : 0] ram[2**16 - 1 : 0];
|
||||
reg [18 - 1 : 0] data_out1;
|
||||
reg [18 - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM 65536x8
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram_65536x8 (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [16 - 1 : 0] addr1,
|
||||
input [8 - 1 : 0] data1,
|
||||
output [8 - 1 : 0] out1,
|
||||
input [16 - 1 : 0] addr2,
|
||||
input [8 - 1 : 0] data2,
|
||||
output [8 - 1 : 0] out2
|
||||
);
|
||||
reg [8 - 1 : 0] ram[2**16 - 1 : 0];
|
||||
reg [8 - 1 : 0] data_out1;
|
||||
reg [8 - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A single-port RAM
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module single_port_ram (
|
||||
input clk,
|
||||
input we,
|
||||
input [`MANTISSA_PRECISION - 1 : 0] addr,
|
||||
input [31:0] data,
|
||||
output [31:0] out );
|
||||
|
||||
reg [31:0] ram[2**`MANTISSA_PRECISION - 1 : 0];
|
||||
reg [31:0] internal;
|
||||
|
||||
assign out = internal;
|
||||
|
||||
always @(posedge clk) begin
|
||||
if(wen) begin
|
||||
ram[addr] <= data;
|
||||
end
|
||||
|
||||
if(ren) begin
|
||||
internal <= ram[addr];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A single-port 1024x32bit RAM
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module single_port_ram_1024x32 (
|
||||
input clk,
|
||||
input we,
|
||||
input [9:0] addr,
|
||||
input [31:0] data,
|
||||
output [31:0] out );
|
||||
|
||||
reg [31:0] ram[1023:0];
|
||||
reg [31:0] internal;
|
||||
|
||||
assign out = internal;
|
||||
|
||||
always @(posedge clk) begin
|
||||
if(wen) begin
|
||||
ram[addr] <= data;
|
||||
end
|
||||
|
||||
if(ren) begin
|
||||
internal <= ram[addr];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
|
|
@ -1503,7 +1503,7 @@ module mkDelayWorker32B(wciS0_Clk,
|
|||
wire [255:0] dp_out_not_used1;
|
||||
wire [255:0] dp_out_not_used2;
|
||||
|
||||
dual_port_ram dpram1 (
|
||||
dual_port_ram_1024x256 dpram1 (
|
||||
.clk(wciS0_Clk),
|
||||
.addr1(mesgRF_memory__ADDRA),
|
||||
.addr2(mesgRF_memory__ADDRB),
|
||||
|
@ -1521,7 +1521,7 @@ wire [255:0] dp_out_not_used2;
|
|||
// .DATA_WIDTH(32'b1056),
|
||||
// .MEMSIZE(11'b1024)) mesgWF_memory(
|
||||
|
||||
dual_port_ram dpram2 (
|
||||
dual_port_ram_1024x256 dpram2 (
|
||||
.clk(wciS0_Clk),
|
||||
.addr1(mesgWF_memory__ADDRA),
|
||||
.addr2(mesgWF_memory__ADDRB),
|
||||
|
@ -4083,17 +4083,17 @@ input [`dwa-1:0] din;
|
|||
input we;
|
||||
output [`dwa-1:0] dout;
|
||||
input re;
|
||||
output full, full_r;
|
||||
output empty, empty_r;
|
||||
output full_n, full_n_r;
|
||||
output empty_n, empty_n_r;
|
||||
output [1:0] level;
|
||||
output full_r;
|
||||
output empty_r;
|
||||
output full_n_r;
|
||||
output empty_n_r;
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Local Wires
|
||||
//
|
||||
|
||||
wire [1:0] level;
|
||||
reg [`awa-1:0] wp;
|
||||
wire [`awa-1:0] wp_pl1;
|
||||
wire [`awa-1:0] wp_pl2;
|
||||
|
@ -4120,7 +4120,7 @@ reg full_n_r, empty_n_r;
|
|||
// manually assign
|
||||
assign junk_in = 32'b00000000000000000000000000000000;
|
||||
|
||||
dual_port_ram ram1(
|
||||
dual_port_ram_16x32 ram1(
|
||||
.clk( clk ),
|
||||
.addr1( rp ),
|
||||
.addr2( wp ),
|
||||
|
@ -4468,17 +4468,17 @@ input [`dwa-1:0] din;
|
|||
input we;
|
||||
output [`dwa-1:0] dout;
|
||||
input re;
|
||||
output full, full_r;
|
||||
output empty, empty_r;
|
||||
output full_n, full_n_r;
|
||||
output empty_n, empty_n_r;
|
||||
output [1:0] level;
|
||||
output full_r;
|
||||
output empty_r;
|
||||
output full_n_r;
|
||||
output empty_n_r;
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Local Wires
|
||||
//
|
||||
|
||||
wire [1:0] level;
|
||||
reg [`awa-1:0] wp;
|
||||
wire [`awa-1:0] wp_pl1;
|
||||
wire [`awa-1:0] wp_pl2;
|
||||
|
@ -4505,7 +4505,7 @@ reg full_n_r, empty_n_r;
|
|||
// manually assign
|
||||
assign junk_in = 32'b00000000000000000000000000000000;
|
||||
|
||||
dual_port_ram ram1(
|
||||
dual_port_ram_16x32 ram1(
|
||||
.clk( clk ),
|
||||
.addr1( rp ),
|
||||
.addr2( wp ),
|
||||
|
@ -4857,17 +4857,17 @@ input [`dwc-1:0] din;
|
|||
input we;
|
||||
output [`dwc-1:0] dout;
|
||||
input re;
|
||||
output full, full_r;
|
||||
output empty, empty_r;
|
||||
output full_n, full_n_r;
|
||||
output empty_n, empty_n_r;
|
||||
output [1:0] level;
|
||||
output full_r;
|
||||
output empty_r;
|
||||
output full_n_r;
|
||||
output empty_n_r;
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Local Wires
|
||||
//
|
||||
|
||||
wire [1:0] level;
|
||||
reg [`awa-1:0] wp;
|
||||
wire [`awa-1:0] wp_pl1;
|
||||
wire [`awa-1:0] wp_pl2;
|
||||
|
@ -4894,7 +4894,7 @@ reg full_n_r, empty_n_r;
|
|||
// manually assign
|
||||
assign junk_in = 128'b00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000;
|
||||
|
||||
dual_port_ram ram1(
|
||||
dual_port_ram_16x128 ram1(
|
||||
.clk( clk ),
|
||||
.addr1( rp ),
|
||||
.addr2( wp ),
|
||||
|
@ -5246,17 +5246,17 @@ input [`dwd-1:0] din;
|
|||
input we;
|
||||
output [`dwd-1:0] dout;
|
||||
input re;
|
||||
output full, full_r;
|
||||
output empty, empty_r;
|
||||
output full_n, full_n_r;
|
||||
output empty_n, empty_n_r;
|
||||
output [1:0] level;
|
||||
output full_r;
|
||||
output empty_r;
|
||||
output full_n_r;
|
||||
output empty_n_r;
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Local Wires
|
||||
//
|
||||
|
||||
wire [1:0] level;
|
||||
reg [`awa-1:0] wp;
|
||||
wire [`awa-1:0] wp_pl1;
|
||||
wire [`awa-1:0] wp_pl2;
|
||||
|
@ -5283,7 +5283,7 @@ reg full_n_r, empty_n_r;
|
|||
// manually assign
|
||||
assign junk_in = 128'b00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000;
|
||||
|
||||
dual_port_ram ram1(
|
||||
dual_port_ram_16x128 ram1(
|
||||
.clk( clk ),
|
||||
.addr1( rp ),
|
||||
.addr2( wp ),
|
||||
|
@ -5636,17 +5636,17 @@ input [`dwc-1:0] din;
|
|||
input we;
|
||||
output [`dwc-1:0] dout;
|
||||
input re;
|
||||
output full, full_r;
|
||||
output empty, empty_r;
|
||||
output full_n, full_n_r;
|
||||
output empty_n, empty_n_r;
|
||||
output [1:0] level;
|
||||
output full_r;
|
||||
output empty_r;
|
||||
output full_n_r;
|
||||
output empty_n_r;
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Local Wires
|
||||
//
|
||||
|
||||
wire [1:0] level;
|
||||
reg [`awc-1:0] wp;
|
||||
wire [`awc-1:0] wp_pl1;
|
||||
wire [`awc-1:0] wp_pl2;
|
||||
|
@ -5673,7 +5673,7 @@ reg full_n_r, empty_n_r;
|
|||
// manually assign
|
||||
assign junk_in = 60'b000000000000000000000000000000000000000000000000000000000000;
|
||||
|
||||
dual_port_ram ram1(
|
||||
dual_port_ram_8x60 ram1(
|
||||
.clk( clk ),
|
||||
.addr1( rp ),
|
||||
.addr2( wp ),
|
||||
|
@ -6023,17 +6023,17 @@ input [`dwf-1:0] din;
|
|||
input we;
|
||||
output [`dwf-1:0] dout;
|
||||
input re;
|
||||
output full, full_r;
|
||||
output empty, empty_r;
|
||||
output full_n, full_n_r;
|
||||
output empty_n, empty_n_r;
|
||||
output [1:0] level;
|
||||
output full_r;
|
||||
output empty_r;
|
||||
output full_n_r;
|
||||
output empty_n_r;
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Local Wires
|
||||
//
|
||||
|
||||
wire [1:0] level;
|
||||
reg [`awf-1:0] wp;
|
||||
wire [`awf-1:0] wp_pl1;
|
||||
wire [`awf-1:0] wp_pl2;
|
||||
|
@ -6060,7 +6060,7 @@ reg full_n_r, empty_n_r;
|
|||
// manually assign
|
||||
assign junk_in = 313'b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000;
|
||||
|
||||
dual_port_ram ram1(
|
||||
dual_port_ram_8x313 ram1(
|
||||
.clk( clk ),
|
||||
.addr1( rp ),
|
||||
.addr2( wp ),
|
||||
|
@ -6413,17 +6413,17 @@ input [`dwx-1:0] din;
|
|||
input we;
|
||||
output [`dwx-1:0] dout;
|
||||
input re;
|
||||
output full, full_r;
|
||||
output empty, empty_r;
|
||||
output full_n, full_n_r;
|
||||
output empty_n, empty_n_r;
|
||||
output [1:0] level;
|
||||
output full_r;
|
||||
output empty_r;
|
||||
output full_n_r;
|
||||
output empty_n_r;
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Local Wires
|
||||
//
|
||||
|
||||
wire [1:0] level;
|
||||
reg [`awx-1:0] wp;
|
||||
wire [`awx-1:0] wp_pl1;
|
||||
wire [`awx-1:0] wp_pl2;
|
||||
|
@ -6450,7 +6450,7 @@ reg full_n_r, empty_n_r;
|
|||
// manually assign
|
||||
assign junk_in = 131'b00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000;
|
||||
|
||||
dual_port_ram ram1(
|
||||
dual_port_ram_4x131 ram1(
|
||||
.clk( clk ),
|
||||
.addr1( rp ),
|
||||
.addr2( wp ),
|
||||
|
@ -6580,3 +6580,279 @@ always @(posedge clk )
|
|||
if(re & (cnt <= (`max_size-`n+1)) & !we) full_n_r <= 1'b0;
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM 1024x256
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram_1024x256 (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [10 - 1 : 0] addr1,
|
||||
input [256 - 1 : 0] data1,
|
||||
output [256 - 1 : 0] out1,
|
||||
input [10 - 1 : 0] addr2,
|
||||
input [256 - 1 : 0] data2,
|
||||
output [256 - 1 : 0] out2
|
||||
);
|
||||
reg [256 - 1 : 0] ram[2**10 - 1 : 0];
|
||||
reg [256 - 1 : 0] data_out1;
|
||||
reg [256 - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM 16x32
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram_16x32 (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [4 - 1 : 0] addr1,
|
||||
input [32 - 1 : 0] data1,
|
||||
output [32 - 1 : 0] out1,
|
||||
input [4 - 1 : 0] addr2,
|
||||
input [32 - 1 : 0] data2,
|
||||
output [32 - 1 : 0] out2
|
||||
);
|
||||
reg [32 - 1 : 0] ram[2**4 - 1 : 0];
|
||||
reg [32 - 1 : 0] data_out1;
|
||||
reg [32 - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM 16x128
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram_16x128 (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [4 - 1 : 0] addr1,
|
||||
input [128 - 1 : 0] data1,
|
||||
output [128 - 1 : 0] out1,
|
||||
input [4 - 1 : 0] addr2,
|
||||
input [128 - 1 : 0] data2,
|
||||
output [128 - 1 : 0] out2
|
||||
);
|
||||
reg [128 - 1 : 0] ram[2**4 - 1 : 0];
|
||||
reg [128 - 1 : 0] data_out1;
|
||||
reg [128 - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM 8x60
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram_8x60 (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [3 - 1 : 0] addr1,
|
||||
input [60 - 1 : 0] data1,
|
||||
output [60 - 1 : 0] out1,
|
||||
input [3 - 1 : 0] addr2,
|
||||
input [60 - 1 : 0] data2,
|
||||
output [60 - 1 : 0] out2
|
||||
);
|
||||
reg [60 - 1 : 0] ram[2**3 - 1 : 0];
|
||||
reg [60 - 1 : 0] data_out1;
|
||||
reg [60 - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM 8x313
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram_8x313 (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [3 - 1 : 0] addr1,
|
||||
input [313 - 1 : 0] data1,
|
||||
output [313 - 1 : 0] out1,
|
||||
input [3 - 1 : 0] addr2,
|
||||
input [313 - 1 : 0] data2,
|
||||
output [313 - 1 : 0] out2
|
||||
);
|
||||
reg [313 - 1 : 0] ram[2**3 - 1 : 0];
|
||||
reg [313 - 1 : 0] data_out1;
|
||||
reg [313 - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM 4x131
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram_4x131 (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [2 - 1 : 0] addr1,
|
||||
input [131 - 1 : 0] data1,
|
||||
output [131 - 1 : 0] out1,
|
||||
input [2 - 1 : 0] addr2,
|
||||
input [131 - 1 : 0] data2,
|
||||
output [131 - 1 : 0] out2
|
||||
);
|
||||
reg [131 - 1 : 0] ram[2**2 - 1 : 0];
|
||||
reg [131 - 1 : 0] data_out1;
|
||||
reg [131 - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
|
|
@ -516,16 +516,16 @@ input [`dw-1:0] din;
|
|||
input we;
|
||||
output [`dw-1:0] dout;
|
||||
input re;
|
||||
output full, full_r;
|
||||
output empty, empty_r;
|
||||
output full_n, full_n_r;
|
||||
output empty_n, empty_n_r;
|
||||
output [1:0] level;
|
||||
output full_r;
|
||||
output empty_r;
|
||||
output full_n_r;
|
||||
output empty_n_r;
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Local Wires
|
||||
//
|
||||
wire [1:0] level;
|
||||
|
||||
reg [`aw-1:0] wp;
|
||||
wire [`aw-1:0] wp_pl1;
|
||||
|
@ -913,17 +913,16 @@ input [`dw-1:0] din;
|
|||
input we;
|
||||
output [`dw-1:0] dout;
|
||||
input re;
|
||||
output full, full_r;
|
||||
output empty, empty_r;
|
||||
output full_n, full_n_r;
|
||||
output empty_n, empty_n_r;
|
||||
output [1:0] level;
|
||||
output full_r;
|
||||
output empty_r;
|
||||
output full_n_r;
|
||||
output empty_n_r;
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Local Wires
|
||||
//
|
||||
|
||||
wire [1:0] level;
|
||||
reg [`aw-1:0] wp;
|
||||
wire [`aw-1:0] wp_pl1;
|
||||
wire [`aw-1:0] wp_pl2;
|
||||
|
@ -1311,17 +1310,17 @@ input [`dw-1:0] din;
|
|||
input we;
|
||||
output [`dw-1:0] dout;
|
||||
input re;
|
||||
output full, full_r;
|
||||
output empty, empty_r;
|
||||
output full_n, full_n_r;
|
||||
output empty_n, empty_n_r;
|
||||
output [1:0] level;
|
||||
output full_r;
|
||||
output empty_r;
|
||||
output full_n_r;
|
||||
output empty_n_r;
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Local Wires
|
||||
//
|
||||
|
||||
wire [1:0] level;
|
||||
reg [`aw-1:0] wp;
|
||||
wire [`aw-1:0] wp_pl1;
|
||||
wire [`aw-1:0] wp_pl2;
|
||||
|
@ -1491,4 +1490,49 @@ begin
|
|||
end
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [`aw - 1 : 0] addr1,
|
||||
input [`dw - 1 : 0] data1,
|
||||
output [`dw - 1 : 0] out1,
|
||||
input [`aw - 1 : 0] addr2,
|
||||
input [`dw - 1 : 0] data2,
|
||||
output [`dw - 1 : 0] out2
|
||||
);
|
||||
|
||||
reg [`dw - 1 : 0] ram[2**`aw - 1 : 0];
|
||||
reg [`dw - 1 : 0] data_out1;
|
||||
reg [`dw - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
|
|
@ -3409,17 +3409,17 @@ input [`dwa-1:0] din;
|
|||
input we;
|
||||
output [`dwa-1:0] dout;
|
||||
input re;
|
||||
output full, full_r;
|
||||
output empty, empty_r;
|
||||
output full_n, full_n_r;
|
||||
output empty_n, empty_n_r;
|
||||
output [1:0] level;
|
||||
output full_r;
|
||||
output empty_r;
|
||||
output full_n_r;
|
||||
output empty_n_r;
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Local Wires
|
||||
//
|
||||
|
||||
wire [1:0] level;
|
||||
reg [`awa-1:0] wp;
|
||||
wire [`awa-1:0] wp_pl1;
|
||||
wire [`awa-1:0] wp_pl2;
|
||||
|
@ -3446,7 +3446,7 @@ reg full_n_r, empty_n_r;
|
|||
// manually assign
|
||||
assign junk_in = 60'b000000000000000000000000000000000000000000000000000000000000;
|
||||
|
||||
dual_port_ram ram1(
|
||||
dual_port_ram_64x60 ram1(
|
||||
.clk( clk ),
|
||||
.addr1( rp ),
|
||||
.addr2( wp ),
|
||||
|
@ -3798,17 +3798,17 @@ input [`dwb-1:0] din;
|
|||
input we;
|
||||
output [`dwb-1:0] dout;
|
||||
input re;
|
||||
output full, full_r;
|
||||
output empty, empty_r;
|
||||
output full_n, full_n_r;
|
||||
output empty_n, empty_n_r;
|
||||
output [1:0] level;
|
||||
output full_r;
|
||||
output empty_r;
|
||||
output full_n_r;
|
||||
output empty_n_r;
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Local Wires
|
||||
//
|
||||
|
||||
wire [1:0] level;
|
||||
reg [`awb-1:0] wp;
|
||||
wire [`awb-1:0] wp_pl1;
|
||||
wire [`awb-1:0] wp_pl2;
|
||||
|
@ -3835,7 +3835,7 @@ reg full_n_r, empty_n_r;
|
|||
// manually assign
|
||||
assign junk_in = 34'b0000000000000000000000000000000000;
|
||||
|
||||
dual_port_ram ram1(
|
||||
dual_port_ram_4x32 ram1(
|
||||
.clk( clk ),
|
||||
.addr1( rp ),
|
||||
.addr2( wp ),
|
||||
|
@ -4189,17 +4189,17 @@ input [`dwc-1:0] din;
|
|||
input we;
|
||||
output [`dwc-1:0] dout;
|
||||
input re;
|
||||
output full, full_r;
|
||||
output empty, empty_r;
|
||||
output full_n, full_n_r;
|
||||
output empty_n, empty_n_r;
|
||||
output [1:0] level;
|
||||
output full_r;
|
||||
output empty_r;
|
||||
output full_n_r;
|
||||
output empty_n_r;
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Local Wires
|
||||
//
|
||||
|
||||
wire [1:0] level;
|
||||
reg [`awc-1:0] wp;
|
||||
wire [`awc-1:0] wp_pl1;
|
||||
wire [`awc-1:0] wp_pl2;
|
||||
|
@ -4226,7 +4226,7 @@ reg full_n_r, empty_n_r;
|
|||
// manually assign
|
||||
assign junk_in = 61'b0000000000000000000000000000000000000000000000000000000000000;
|
||||
|
||||
dual_port_ram ram1(
|
||||
dual_port_ram_8x61 ram1(
|
||||
.clk( clk ),
|
||||
.addr1( rp ),
|
||||
.addr2( wp ),
|
||||
|
@ -4373,3 +4373,140 @@ VAL=1'b0;
|
|||
end
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM 64x60
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram_64x60 (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [6 - 1 : 0] addr1,
|
||||
input [60 - 1 : 0] data1,
|
||||
output [60 - 1 : 0] out1,
|
||||
input [6 - 1 : 0] addr2,
|
||||
input [60 - 1 : 0] data2,
|
||||
output [60 - 1 : 0] out2
|
||||
);
|
||||
reg [60 - 1 : 0] ram[2**6 - 1 : 0];
|
||||
reg [60 - 1 : 0] data_out1;
|
||||
reg [60 - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM 4x32
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram_4x32 (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [2 - 1 : 0] addr1,
|
||||
input [32 - 1 : 0] data1,
|
||||
output [32 - 1 : 0] out1,
|
||||
input [2 - 1 : 0] addr2,
|
||||
input [32 - 1 : 0] data2,
|
||||
output [32 - 1 : 0] out2
|
||||
);
|
||||
reg [32 - 1 : 0] ram[2**2 - 1 : 0];
|
||||
reg [32 - 1 : 0] data_out1;
|
||||
reg [32 - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM 8x61
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram_8x61 (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [3 - 1 : 0] addr1,
|
||||
input [61 - 1 : 0] data1,
|
||||
output [61 - 1 : 0] out1,
|
||||
input [3 - 1 : 0] addr2,
|
||||
input [61 - 1 : 0] data2,
|
||||
output [61 - 1 : 0] out2
|
||||
);
|
||||
reg [61 - 1 : 0] ram[2**3 - 1 : 0];
|
||||
reg [61 - 1 : 0] data_out1;
|
||||
reg [61 - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
|
|
@ -5234,3 +5234,49 @@ end
|
|||
wire[8:0] unused_signal;
|
||||
assign unused_signal = lsu_op;
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A dual-port RAM
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module dual_port_ram (
|
||||
input clk,
|
||||
input we1,
|
||||
input we2,
|
||||
input [`OR1200_REGFILE_ADDR_WIDTH - 1 : 0] addr1,
|
||||
input [`OR1200_OPERAND_WIDTH - 1 : 0] data1,
|
||||
output [`OR1200_OPERAND_WIDTH - 1 : 0] out1,
|
||||
input [`OR1200_REGFILE_ADDR_WIDTH - 1 : 0] addr2,
|
||||
input [`OR1200_OPERAND_WIDTH - 1 : 0] data2,
|
||||
output [`OR1200_OPERAND_WIDTH - 1 : 0] out2
|
||||
);
|
||||
|
||||
reg [`OR1200_OPERAND_WIDTH - 1 : 0] ram[2**`OR1200_REGFILE_ADDR_WIDTH - 1 : 0];
|
||||
reg [`OR1200_OPERAND_WIDTH - 1 : 0] data_out1;
|
||||
reg [`OR1200_OPERAND_WIDTH - 1 : 0] data_out2;
|
||||
|
||||
assign out1 = data_out1;
|
||||
assign out2 = data_out2;
|
||||
|
||||
// If writen enable 1 is activated,
|
||||
// data1 will be loaded through addr1
|
||||
// Otherwise, data will be read out through addr1
|
||||
always @(posedge clk) begin
|
||||
if (we1) begin
|
||||
ram[addr1] <= data1;
|
||||
end else begin
|
||||
data_out1 <= ram[addr1];
|
||||
end
|
||||
end
|
||||
|
||||
// If writen enable 2 is activated,
|
||||
// data1 will be loaded through addr2
|
||||
// Otherwise, data will be read out through addr2
|
||||
always @(posedge clk) begin
|
||||
if (we2) begin
|
||||
ram[addr2] <= data2;
|
||||
end else begin
|
||||
data_out2 <= ram[addr2];
|
||||
end
|
||||
end
|
||||
endmodule
|
||||
|
|
|
@ -2974,3 +2974,30 @@ module fifo3 (datain, writeen, dataout, shiften, globalreset, clk);
|
|||
end
|
||||
endmodule
|
||||
|
||||
//---------------------------------------
|
||||
// A single-port 256x21bit RAM
|
||||
// This module is tuned for VTR's benchmarks
|
||||
//---------------------------------------
|
||||
module single_port_ram (
|
||||
input clk,
|
||||
input we,
|
||||
input [7:0] addr,
|
||||
input [20:0] data,
|
||||
output [20:0] out );
|
||||
|
||||
reg [20:0] ram[255:0];
|
||||
reg [20:0] internal;
|
||||
|
||||
assign out = internal;
|
||||
|
||||
always @(posedge clk) begin
|
||||
if(wen) begin
|
||||
ram[addr] <= data;
|
||||
end
|
||||
|
||||
if(ren) begin
|
||||
internal <= ram[addr];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
|
|
@ -19,6 +19,9 @@ valid_flows = vpr_blif,yosys_vpr
|
|||
[DEFAULT_PARSE_RESULT_VPR]
|
||||
# parser format <name of variable> = <regex string>, <lambda function/type>
|
||||
clb_blocks = "Netlist clb blocks: ([0-9]+)", str
|
||||
io_blocks = "Netlist io blocks: ([0-9]+)", str
|
||||
mult_blocks = "Netlist mult_36 blocks: ([0-9]+)", str
|
||||
memory_blocks = "Netlist memory blocks: ([0-9]+)", str
|
||||
logic_delay = "Total logic delay: ([0-9.]+)", str
|
||||
total_net_delay = "total net delay: ([0-9.]+)", str
|
||||
total_routing_area = "Total routing area: ([0-9.]+)", str
|
||||
|
|
|
@ -0,0 +1,105 @@
|
|||
# Yosys synthesis script for ${TOP_MODULE}
|
||||
|
||||
#########################
|
||||
# Parse input files
|
||||
#########################
|
||||
# Read verilog files
|
||||
${READ_VERILOG_FILE}
|
||||
# Read technology library
|
||||
read_verilog -lib -specify ${YOSYS_CELL_SIM_VERILOG}
|
||||
|
||||
#########################
|
||||
# Prepare for synthesis
|
||||
#########################
|
||||
# Identify top module from hierarchy
|
||||
hierarchy -check -top ${TOP_MODULE}
|
||||
# - Convert process blocks to AST
|
||||
proc
|
||||
# Flatten all the gates/primitives
|
||||
flatten
|
||||
# Identify tri-state buffers from 'z' signal in AST
|
||||
# with follow-up optimizations to clean up AST
|
||||
tribuf -logic
|
||||
opt_expr
|
||||
opt_clean
|
||||
# demote inout ports to input or output port
|
||||
# with follow-up optimizations to clean up AST
|
||||
deminout
|
||||
opt
|
||||
|
||||
opt_expr
|
||||
opt_clean
|
||||
check
|
||||
opt
|
||||
wreduce -keepdc
|
||||
peepopt
|
||||
pmuxtree
|
||||
opt_clean
|
||||
|
||||
########################
|
||||
# Map multipliers
|
||||
# Inspired from synth_xilinx.cc
|
||||
#########################
|
||||
# Avoid merging any registers into DSP, reserve memory port registers first
|
||||
memory_dff
|
||||
wreduce t:$mul
|
||||
techmap -map +/mul2dsp.v -map ${YOSYS_DSP_MAP_VERILOG} ${YOSYS_DSP_MAP_PARAMETERS}
|
||||
select a:mul2dsp
|
||||
setattr -unset mul2dsp
|
||||
opt_expr -fine
|
||||
wreduce
|
||||
select -clear
|
||||
chtype -set $mul t:$__soft_mul# Extract arithmetic functions
|
||||
|
||||
#########################
|
||||
# Run coarse synthesis
|
||||
#########################
|
||||
# Run a tech map with default library
|
||||
techmap
|
||||
alumacc
|
||||
share
|
||||
opt
|
||||
fsm
|
||||
# Run a quick follow-up optimization to sweep out unused nets/signals
|
||||
opt -fast
|
||||
# Optimize any memory cells by merging share-able ports and collecting all the ports belonging to memorcy cells
|
||||
memory -nomap
|
||||
opt_clean
|
||||
|
||||
#########################
|
||||
# Map logics to BRAMs
|
||||
#########################
|
||||
memory_bram -rules ${YOSYS_BRAM_MAP_RULES}
|
||||
techmap -map ${YOSYS_BRAM_MAP_VERILOG}
|
||||
opt -fast -mux_undef -undriven -fine
|
||||
memory_map
|
||||
opt -undriven -fine
|
||||
|
||||
#########################
|
||||
# Map flip-flops
|
||||
#########################
|
||||
techmap -map +/adff2dff.v
|
||||
opt_expr -mux_undef
|
||||
simplemap
|
||||
opt_expr
|
||||
opt_merge
|
||||
opt_rmdff
|
||||
opt_clean
|
||||
opt
|
||||
|
||||
#########################
|
||||
# Map LUTs
|
||||
#########################
|
||||
abc -lut ${LUT_SIZE}
|
||||
|
||||
#########################
|
||||
# Check and show statisitics
|
||||
#########################
|
||||
hierarchy -check
|
||||
stat
|
||||
|
||||
#########################
|
||||
# Output netlists
|
||||
#########################
|
||||
opt_clean -purge
|
||||
write_blif ${OUTPUT_BLIF}
|
|
@ -206,6 +206,16 @@
|
|||
<port type="output" prefix="data_out" size="8"/>
|
||||
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="hard_logic" name="mult_36x36" prefix="mult_36x36" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/mult_36x36.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/mult_36x36.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<output_buffer exist="true" circuit_model_name="INVTX1"/>
|
||||
<port type="input" prefix="A" lib_name="A" size="36"/>
|
||||
<port type="input" prefix="B" lib_name="B" size="36"/>
|
||||
<port type="output" prefix="Y" lib_name="out" size="72"/>
|
||||
<!-- As a fracturable multiplier, it requires 2 configuration bits to operate in 4 different modes -->
|
||||
<port type="sram" prefix="mode" size="2" mode_select="true" circuit_model_name="DFFR" default_val="1"/>
|
||||
</circuit_model>
|
||||
</circuit_library>
|
||||
<configuration_protocol>
|
||||
<organization type="scan_chain" circuit_model_name="DFFR"/>
|
||||
|
@ -265,6 +275,10 @@
|
|||
<pb_type name="clb.fle[n1_lut6].ble6.ff" physical_pb_type_name="clb.fle[physical].fabric.ff" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0"/>
|
||||
<!-- End physical pb_type binding in complex block clb -->
|
||||
|
||||
<!-- physical pb_type binding in complex block dsp -->
|
||||
<pb_type name="mult_36" physical_mode_name="mult_36x36" idle_mode_name="mult_36x36"/>
|
||||
<!-- Bind the primitive pb_type in the physical mode to a circuit model -->
|
||||
<pb_type name="mult_36[mult_36x36].mult_36x36_slice.mult_36x36" circuit_model_name="mult_36x36" mode_bits="00"/>
|
||||
|
||||
<!-- physical pb_type binding in complex block memory -->
|
||||
<pb_type name="memory[mem_1024x8_dp].mem_1024x8_dp" circuit_model_name="dpram_1024x8"/>
|
|
@ -2,7 +2,7 @@
|
|||
# When the global clock is defined as a port of a tile, clock routing in VPR should be skipped
|
||||
# This is due to the Fc_in of clock port is set to 0 for global wiring
|
||||
#--write_rr_graph example_rr_graph.xml
|
||||
vpr ${VPR_ARCH_FILE} ${VPR_TESTBENCH_BLIF}
|
||||
vpr ${VPR_ARCH_FILE} ${VPR_TESTBENCH_BLIF} --route_chan_width ${VPR_ROUTE_CHAN_WIDTH}
|
||||
|
||||
# Read OpenFPGA architecture definition
|
||||
read_openfpga_arch -f ${OPENFPGA_ARCH_FILE}
|
||||
|
@ -22,15 +22,17 @@ link_openfpga_arch --sort_gsb_chan_node_in_edges
|
|||
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
|
||||
|
||||
# Apply fix-up to clustering nets based on routing results
|
||||
pb_pin_fixup --verbose
|
||||
pb_pin_fixup #--verbose
|
||||
|
||||
# Apply fix-up to Look-Up Table truth tables based on packing results
|
||||
lut_truth_table_fixup
|
||||
|
||||
# Build the module graph
|
||||
# - Enabled compression on routing architecture modules
|
||||
# - Enable pin duplication on grid modules
|
||||
build_fabric --compress_routing #--verbose
|
||||
# - Enabled frame view creation to save runtime and memory
|
||||
# Note that this is turned on when bitstream generation
|
||||
# is the ONLY purpose of the flow!!!
|
||||
build_fabric --compress_routing --frame_view #--verbose
|
||||
|
||||
# Write the fabric hierarchy of module graph to a file
|
||||
# This is used by hierarchical PnR flows
|
||||
|
@ -51,28 +53,6 @@ build_fabric_bitstream --verbose
|
|||
# Write fabric-dependent bitstream
|
||||
write_fabric_bitstream --file fabric_bitstream.xml --format xml
|
||||
|
||||
# Write the Verilog netlist for FPGA fabric
|
||||
# - Enable the use of explicit port mapping in Verilog netlist
|
||||
write_fabric_verilog --file ./SRC --explicit_port_mapping --include_timing --print_user_defined_template --verbose
|
||||
|
||||
# Write the Verilog testbench for FPGA fabric
|
||||
# - We suggest the use of same output directory as fabric Verilog netlists
|
||||
# - Must specify the reference benchmark file if you want to output any testbenches
|
||||
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
|
||||
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
|
||||
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
|
||||
write_verilog_testbench --file ./SRC --reference_benchmark_file_path ${REFERENCE_VERILOG_TESTBENCH} --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini ./SimulationDeck/simulation_deck.ini --include_signal_init --support_icarus_simulator #--explicit_port_mapping
|
||||
|
||||
# Write the SDC files for PnR backend
|
||||
# - Turn on every options here
|
||||
write_pnr_sdc --file ./SDC
|
||||
|
||||
# Write SDC to disable timing for configure ports
|
||||
write_sdc_disable_timing_configure_ports --file ./SDC/disable_configure_ports.sdc
|
||||
|
||||
# Write the SDC to run timing analysis for a mapped FPGA fabric
|
||||
write_analysis_sdc --file ./SDC_analysis
|
||||
|
||||
# Finish and exit OpenFPGA
|
||||
exit
|
||||
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
module $__MY_DPRAM_1024x8 (
|
||||
output [7:0] B1DATA,
|
||||
output [0:7] B1DATA,
|
||||
input CLK1,
|
||||
input [9:0] B1ADDR,
|
||||
input [9:0] A1ADDR,
|
||||
input [7:0] A1DATA,
|
||||
input [0:9] B1ADDR,
|
||||
input [0:9] A1ADDR,
|
||||
input [0:7] A1DATA,
|
||||
input A1EN,
|
||||
input B1EN );
|
||||
|
|
@ -5,15 +5,15 @@
|
|||
module dpram_1024x8_core (
|
||||
input wclk,
|
||||
input wen,
|
||||
input [9:0] waddr,
|
||||
input [7:0] data_in,
|
||||
input [0:9] waddr,
|
||||
input [0:7] data_in,
|
||||
input rclk,
|
||||
input ren,
|
||||
input [9:0] raddr,
|
||||
output [7:0] data_out );
|
||||
input [0:9] raddr,
|
||||
output [0:7] data_out );
|
||||
|
||||
reg [7:0] ram[1023:0];
|
||||
reg [7:0] internal;
|
||||
reg [0:7] ram[0:1023];
|
||||
reg [0:7] internal;
|
||||
|
||||
assign data_out = internal;
|
||||
|
||||
|
@ -40,10 +40,10 @@ module dpram_1024x8 (
|
|||
input clk,
|
||||
input wen,
|
||||
input ren,
|
||||
input [9:0] waddr,
|
||||
input [9:0] raddr,
|
||||
input [7:0] data_in,
|
||||
output [7:0] data_out );
|
||||
input [0:9] waddr,
|
||||
input [0:9] raddr,
|
||||
input [0:7] data_in,
|
||||
output [0:7] data_out );
|
||||
|
||||
dpram_1024x8_core memory_0 (
|
||||
.wclk (clk),
|
||||
|
@ -57,3 +57,16 @@ module dpram_1024x8 (
|
|||
|
||||
endmodule
|
||||
|
||||
//-----------------------------
|
||||
// 36-bit multiplier
|
||||
//-----------------------------
|
||||
module mult_36(
|
||||
input [0:35] A,
|
||||
input [0:35] B,
|
||||
output [0:71] Y
|
||||
);
|
||||
|
||||
assign Y = A * B;
|
||||
|
||||
endmodule
|
||||
|
|
@ -0,0 +1,17 @@
|
|||
module mult_36x36 (
|
||||
input [0:35] A,
|
||||
input [0:35] B,
|
||||
output [0:71] Y
|
||||
);
|
||||
parameter A_SIGNED = 0;
|
||||
parameter B_SIGNED = 0;
|
||||
parameter A_WIDTH = 0;
|
||||
parameter B_WIDTH = 0;
|
||||
parameter Y_WIDTH = 0;
|
||||
|
||||
mult_36 #() _TECHMAP_REPLACE_ (
|
||||
.A (A),
|
||||
.B (B),
|
||||
.Y (Y) );
|
||||
|
||||
endmodule
|
|
@ -8,3 +8,5 @@ PYTHON_EXEC=python3.8
|
|||
##############################################
|
||||
echo -e "VTR benchmark regression tests";
|
||||
run-task benchmark_sweep/vtr_benchmarks --debug --show_thread_logs
|
||||
# Run a quick but relaxed QoR check for heterogeneous blocks
|
||||
python3 openfpga_flow/scripts/check_qor.py --reference_csv_file openfpga_flow/tasks/benchmark_sweep/vtr_benchmarks/config/vtr_benchmark_golden_results.csv --check_csv_file openfpga_flow/tasks/benchmark_sweep/vtr_benchmarks/latest/task_result.csv --metric_checklist_csv_file openfpga_flow/tasks/benchmark_sweep/vtr_benchmarks/config/metric_checklist.csv --check_tolerance 0.2,100
|
||||
|
|
|
@ -0,0 +1,129 @@
|
|||
#####################################################################
|
||||
# Python script to check if heterogeneous blocks, e.g., RAM and multipliers
|
||||
# have been inferred during openfpga flow
|
||||
# # This script will
|
||||
# - Check the .csv file generated by openfpga task-run to find out
|
||||
# the number of each type of heterogeneous blocks
|
||||
#####################################################################
|
||||
|
||||
import os
|
||||
from os.path import dirname, abspath, isfile
|
||||
import shutil
|
||||
import re
|
||||
import argparse
|
||||
import logging
|
||||
import csv
|
||||
|
||||
#####################################################################
|
||||
# Contants
|
||||
#####################################################################
|
||||
csv_name_tag = "name"
|
||||
csv_metric_tag = "metric"
|
||||
|
||||
#####################################################################
|
||||
# Initialize logger
|
||||
#####################################################################
|
||||
logging.basicConfig(format='%(levelname)s: %(message)s', level=logging.DEBUG)
|
||||
|
||||
#####################################################################
|
||||
# Parse the options
|
||||
# - [mandatory option] the file path to .csv file
|
||||
#####################################################################
|
||||
parser = argparse.ArgumentParser(
|
||||
description='A checker for hetergeneous block mapping in OpenFPGA flow')
|
||||
parser.add_argument('--check_csv_file', required=True,
|
||||
help='Specify the to-be-checked csv file constaining flow-run information')
|
||||
parser.add_argument('--reference_csv_file', required=True,
|
||||
help='Specify the reference csv file constaining flow-run information')
|
||||
parser.add_argument('--metric_checklist_csv_file', required=True,
|
||||
help='Specify the csv file constaining metrics to be checked')
|
||||
# By default, allow a 50% tolerance when checking metrics
|
||||
parser.add_argument('--check_tolerance', default="0.5,1.5",
|
||||
help='Specify the tolerance when checking metrics. Format <lower_bound>,<upper_bound>')
|
||||
args = parser.parse_args()
|
||||
|
||||
#####################################################################
|
||||
# Check options:
|
||||
# - Input csv files must be valid
|
||||
# Otherwise, error out
|
||||
#####################################################################
|
||||
if not isfile(args.check_csv_file):
|
||||
logging.error("Invalid csv file to check: " + args.check_csv_file + "\nFile does not exist!\n")
|
||||
exit(1)
|
||||
|
||||
if not isfile(args.reference_csv_file):
|
||||
logging.error("Invalid reference csv file: " + args.reference_csv_file + "\nFile does not exist!\n")
|
||||
exit(1)
|
||||
|
||||
if not isfile(args.metric_checklist_csv_file):
|
||||
logging.error("Invalid metric checklist csv file: " + args.metric_checklist_csv_file + "\nFile does not exist!\n")
|
||||
exit(1)
|
||||
|
||||
#####################################################################
|
||||
# Parse a checklist for metrics to be checked
|
||||
#####################################################################
|
||||
metric_checklist_csv_file = open(args.metric_checklist_csv_file, "r")
|
||||
metric_checklist_csv_content = csv.DictReader(filter(lambda row : row[0]!='#', metric_checklist_csv_file), delimiter=',')
|
||||
# Hash the reference results with the name tag
|
||||
metric_checklist = []
|
||||
for row in metric_checklist_csv_content:
|
||||
metric_checklist.append(row[csv_metric_tag]);
|
||||
|
||||
#####################################################################
|
||||
# Parse the reference csv file
|
||||
# Skip any line start with '#' which is treated as comments
|
||||
#####################################################################
|
||||
ref_csv_file = open(args.reference_csv_file, "r")
|
||||
ref_csv_content = csv.DictReader(filter(lambda row : row[0]!='#', ref_csv_file), delimiter=',')
|
||||
# Hash the reference results with the name tag
|
||||
ref_results = {}
|
||||
for row in ref_csv_content:
|
||||
ref_results[row[csv_name_tag]] = row;
|
||||
|
||||
#####################################################################
|
||||
# Parse the tolerance to be applied when checking metrics
|
||||
#####################################################################
|
||||
lower_bound_factor = float(args.check_tolerance.split(",")[0])
|
||||
upper_bound_factor = float(args.check_tolerance.split(",")[1])
|
||||
|
||||
#####################################################################
|
||||
# Parse the csv file to check
|
||||
#####################################################################
|
||||
with open(args.check_csv_file, newline='') as check_csv_file:
|
||||
results_to_check = csv.DictReader(check_csv_file, delimiter=',')
|
||||
checkpoint_count = 0
|
||||
check_error_count = 0
|
||||
for row in results_to_check:
|
||||
# Start from line 1 and check information
|
||||
for metric_to_check in metric_checklist:
|
||||
# Check if the metric is in a range
|
||||
if (lower_bound_factor * float(ref_results[row[csv_name_tag]][metric_to_check]) > float(row[metric_to_check])) or (upper_bound_factor * float(ref_results[row[csv_name_tag]][metric_to_check]) < float(row[metric_to_check])) :
|
||||
# Check QoR failed, error out
|
||||
logging.error("Benchmark " + str(row[csv_name_tag]) + " failed in checking '" + str(metric_to_check) +"'\n" + "Found: " + str(row[metric_to_check]) + " but expected: " + str(ref_results[row[csv_name_tag]][metric_to_check]) + " outside range [" + str(lower_bound_factor * 100) + "%, " + str(upper_bound_factor * 100) + "%]")
|
||||
check_error_count += 1
|
||||
# Pass this metric check, increase counter
|
||||
checkpoint_count += 1
|
||||
logging.info("Checked " + str(checkpoint_count) + " metrics")
|
||||
logging.info("See " + str(check_error_count) + " QoR failures")
|
||||
|
||||
if (0 < check_error_count):
|
||||
exit(1)
|
||||
|
||||
#####################################################################
|
||||
# Post checked results on stdout:
|
||||
# reaching here, it means all the checks have passed
|
||||
#####################################################################
|
||||
with open(args.check_csv_file, newline='') as check_csv_file:
|
||||
results_to_check = csv.DictReader(check_csv_file, delimiter=',')
|
||||
# Print out keywords: name + metric checklist
|
||||
print(str(csv_name_tag) + " ", end='')
|
||||
for metric_to_check in metric_checklist:
|
||||
print(str(metric_to_check) + " ", end='')
|
||||
print("")
|
||||
|
||||
for row in results_to_check:
|
||||
# Start from line 1, print checked metrics
|
||||
print(row[csv_name_tag] + " ", end='')
|
||||
for metric_to_check in metric_checklist:
|
||||
print(row[metric_to_check] + " ", end='')
|
||||
print("")
|
|
@ -0,0 +1,6 @@
|
|||
##########################################################
|
||||
# Metrics to check for VTR benchmark bitstream generation
|
||||
##########################################################
|
||||
metric
|
||||
mult_blocks
|
||||
memory_blocks
|
|
|
@ -17,23 +17,78 @@ fpga_flow=yosys_vpr
|
|||
|
||||
[OpenFPGA_SHELL]
|
||||
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/vtr_benchmark_example_script.openfpga
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_adder_chain_dpram8K_40nm_openfpga.xml
|
||||
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_adder_chain_dpram8K_dsp36_40nm_openfpga.xml
|
||||
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/fixed_sim_openfpga.xml
|
||||
# Yosys script parameters
|
||||
yosys_cell_sim_verilog=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/k6_frac_N10_tileable_adder_chain_dpram8K_40nm_cell_sim.v
|
||||
yosys_bram_map_rules=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/k6_frac_N10_tileable_adder_chain_dpram8K_40nm_bram.txt
|
||||
yosys_bram_map_verilog=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/k6_frac_N10_tileable_adder_chain_dpram8K_40nm_bram_map.v
|
||||
yosys_cell_sim_verilog=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/k6_frac_N10_tileable_adder_chain_dpram8K_dsp36_40nm_cell_sim.v
|
||||
yosys_bram_map_rules=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/k6_frac_N10_tileable_adder_chain_dpram8K_dsp36_40nm_bram.txt
|
||||
yosys_bram_map_verilog=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/k6_frac_N10_tileable_adder_chain_dpram8K_dsp36_40nm_bram_map.v
|
||||
yosys_dsp_map_verilog=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/k6_frac_N10_tileable_adder_chain_dpram8K_dsp36_40nm_dsp_map.v
|
||||
yosys_dsp_map_parameters=-D DSP_A_MAXWIDTH=36 -D DSP_B_MAXWIDTH=36 -D DSP_A_MINWIDTH=2 -D DSP_B_MINWIDTH=2 -D DSP_NAME=mult_36x36
|
||||
# VPR parameters
|
||||
# Use a fixed routing channel width to save runtime
|
||||
vpr_route_chan_width=300
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k6_frac_N10_tileable_adder_chain_dpram8K_40nm.xml
|
||||
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k6_frac_N10_tileable_adder_chain_dpram8K_dsp36_40nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/vtr_benchmark/ch_intrinsics.v
|
||||
# Official benchmarks from VTR benchmark release
|
||||
# Comment out due to high runtime
|
||||
#bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/vtr_benchmark/bgm.v
|
||||
bench1=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/vtr_benchmark/blob_merge.v
|
||||
# Failed due to an unknown error in VPR netlist parser
|
||||
#bench2=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/vtr_benchmark/boundtop.v
|
||||
bench3=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/vtr_benchmark/ch_intrinsics.v
|
||||
bench4=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/vtr_benchmark/diffeq1.v
|
||||
bench5=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/vtr_benchmark/diffeq2.v
|
||||
# Comment out due to high runtime
|
||||
#bench6=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/vtr_benchmark/LU8PEEng.v
|
||||
# Comment out due to high runtime
|
||||
#bench7=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/vtr_benchmark/LU32PEEng.v
|
||||
# Comment out due to high runtime
|
||||
#bench8=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/vtr_benchmark/mcml.v
|
||||
bench9=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/vtr_benchmark/mkDelayWorker32B.v
|
||||
bench10=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/vtr_benchmark/mkPktMerge.v
|
||||
bench11=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/vtr_benchmark/mkSMAdapter4B.v
|
||||
bench12=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/vtr_benchmark/or1200.v
|
||||
bench13=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/vtr_benchmark/raygentop.v
|
||||
bench14=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/vtr_benchmark/sha.v
|
||||
bench15=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/vtr_benchmark/stereovision0.v
|
||||
bench16=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/vtr_benchmark/stereovision1.v
|
||||
# Comment out due to high runtime
|
||||
#bench17=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/vtr_benchmark/stereovision2.v
|
||||
bench18=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/vtr_benchmark/stereovision3.v
|
||||
# Additional benchmarks after VTR benchmark release
|
||||
#bench19=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/vtr_benchmark/arm_core.v
|
||||
#bench20=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/vtr_benchmark/spree.v
|
||||
#bench21=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/vtr_benchmark/LU64PEEng.v
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench_yosys_common=${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_yosys_vpr_bram_flow.ys
|
||||
bench_yosys_common=${PATH:OPENFPGA_PATH}/openfpga_flow/misc/ys_tmpl_yosys_vpr_bram_dsp_flow.ys
|
||||
# Benchmark ch_intrinsics
|
||||
bench0_top = memset
|
||||
bench0_top = bgm
|
||||
bench1_top = RLE_BlobMerging
|
||||
bench2_top = paj_boundtop_hierarchy_no_mem
|
||||
bench3_top = memset
|
||||
bench4_top = diffeq_paj_convert
|
||||
bench5_top = diffeq_f_systemC
|
||||
bench6_top = LU8PEEng
|
||||
bench7_top = LU32PEEng
|
||||
bench8_top = mcml
|
||||
bench9_top = mkDelayWorker32B
|
||||
bench10_top = mkPktMerge
|
||||
bench11_top = mkSMAdapter4B
|
||||
bench12_top = or1200_flat
|
||||
bench13_top = paj_raygentop_hierarchy_no_mem
|
||||
bench14_top = sha1
|
||||
bench15_top = sv_chip0_hierarchy_no_mem
|
||||
bench16_top = sv_chip1_hierarchy_no_mem
|
||||
bench17_top = sv_chip2_hierarchy_no_mem
|
||||
bench18_top = sv_chip3_hierarchy_no_mem
|
||||
bench19_top = arm_core
|
||||
bench20_top = system
|
||||
bench21_top = LU64PEEng
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
#end_flow_with_test=
|
||||
|
|
|
@ -0,0 +1,28 @@
|
|||
#####################################################################
|
||||
# A database of benchmarks to be checked
|
||||
# Reference: https://janders.eecg.utoronto.ca/pdfs/p77-rose.pdf
|
||||
# Name,number of multipliers,number of RAMs
|
||||
# IMPORTANT:
|
||||
# - the name is tuned due to the naming convention of openfpga task-run script
|
||||
# - the limitation should be CHANGED!!!
|
||||
#####################################################################
|
||||
name,mult_blocks,memory_blocks
|
||||
00_bgm_MIN_ROUTE_CHAN_WIDTH,11,0
|
||||
00_RLE_BlobMerging_MIN_ROUTE_CHAN_WIDTH,0,0
|
||||
00_paj_boundtop_hierarchy_no_mem_MIN_ROUTE_CHAN_WIDTH,0,1
|
||||
00_memset_MIN_ROUTE_CHAN_WIDTH,0,1
|
||||
00_diffeq_paj_convert_MIN_ROUTE_CHAN_WIDTH,5,0
|
||||
00_diffeq_f_systemC_MIN_ROUTE_CHAN_WIDTH,5,0
|
||||
00_LU8PEEng_MIN_ROUTE_CHAN_WIDTH,8,9
|
||||
00_LU32PEEng_MIN_ROUTE_CHAN_WIDTH,32,9
|
||||
00_mcml_MIN_ROUTE_CHAN_WIDTH,30,10
|
||||
00_mkDelayWorker32B_MIN_ROUTE_CHAN_WIDTH,0,9
|
||||
00_mkPktMerge_MIN_ROUTE_CHAN_WIDTH,0,3
|
||||
00_mkSMAdapter4B_MIN_ROUTE_CHAN_WIDTH,0,3
|
||||
00_or1200_flat_MIN_ROUTE_CHAN_WIDTH,1,2
|
||||
00_paj_raygentop_hierarchy_no_mem_MIN_ROUTE_CHAN_WIDTH,18,1
|
||||
00_sha1_MIN_ROUTE_CHAN_WIDTH,0,0
|
||||
00_sv_chip0_hierarchy_no_mem_MIN_ROUTE_CHAN_WIDTH,0,0
|
||||
00_sv_chip1_hierarchy_no_mem_MIN_ROUTE_CHAN_WIDTH,152,0
|
||||
00_sv_chip2_hierarchy_no_mem_MIN_ROUTE_CHAN_WIDTH,564,0
|
||||
00_sv_chip3_hierarchy_no_mem_MIN_ROUTE_CHAN_WIDTH,0,0
|
|
|
@ -138,6 +138,15 @@
|
|||
<port name="data_out" clock="clk"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
<model name="mult_36">
|
||||
<input_ports>
|
||||
<port name="A" combinational_sink_ports="Y"/>
|
||||
<port name="B" combinational_sink_ports="Y"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="Y"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
</models>
|
||||
<tiles>
|
||||
<tile name="io" capacity="8" area="0">
|
||||
|
@ -196,6 +205,23 @@
|
|||
<loc side="bottom">memory.waddr[9:5] memory.raddr[9:5] memory.data_in[7:4] memory.ren memory.data_out[7:4]</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<tile name="mult_36" height="6" area="396000">
|
||||
<equivalent_sites>
|
||||
<site pb_type="mult_36" pin_mapping="direct"/>
|
||||
</equivalent_sites>
|
||||
<input name="a" num_pins="36"/>
|
||||
<input name="b" num_pins="36"/>
|
||||
<output name="out" num_pins="72"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<!-- Highly recommand to customize pin location when direct connection is used!!! -->
|
||||
<!-- pinlocations are designed to spread pin on 4 sides evenly -->
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">mult_36.b[0:9] mult_36.b[10:35] mult_36.out[36:71]</loc>
|
||||
<loc side="top"></loc>
|
||||
<loc side="right">mult_36.a[0:9] mult_36.a[10:35] mult_36.out[0:35]</loc>
|
||||
<loc side="bottom"></loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
</tiles>
|
||||
<!-- ODIN II specific config ends -->
|
||||
<!-- Physical descriptions begin -->
|
||||
|
@ -208,6 +234,8 @@
|
|||
<fill type="clb" priority="10"/>
|
||||
<!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical offset by 1 for perimeter.-->
|
||||
<col type="memory" startx="2" starty="1" repeatx="8" priority="20"/>
|
||||
<!--Column of 'mult_36' with 'EMPTY' blocks wherever a 'mult_36' does not fit. Vertical offset by 1 for perimeter.-->
|
||||
<col type="mult_36" startx="6" starty="1" repeatx="8" priority="20"/>
|
||||
<col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
|
||||
</auto_layout>
|
||||
<fixed_layout name="3x2" width="5" height="4">
|
||||
|
@ -686,6 +714,58 @@
|
|||
</interconnect>
|
||||
</pb_type>
|
||||
<!-- Define general purpose logic block (CLB) ends -->
|
||||
<!-- Define 36-bit multiplier begin -->
|
||||
<pb_type name="mult_36">
|
||||
<input name="a" num_pins="36"/>
|
||||
<input name="b" num_pins="36"/>
|
||||
<output name="out" num_pins="72"/>
|
||||
<mode name="mult_36x36">
|
||||
<pb_type name="mult_36x36_slice" num_pb="1">
|
||||
<input name="A_cfg" num_pins="36"/>
|
||||
<input name="B_cfg" num_pins="36"/>
|
||||
<output name="OUT_cfg" num_pins="72"/>
|
||||
<pb_type name="mult_36x36" blif_model=".subckt mult_36" num_pb="1">
|
||||
<input name="A" num_pins="36"/>
|
||||
<input name="B" num_pins="36"/>
|
||||
<output name="Y" num_pins="72"/>
|
||||
<delay_constant max="1.523e-9" min="0.776e-9" in_port="mult_36x36.A" out_port="mult_36x36.Y"/>
|
||||
<delay_constant max="1.523e-9" min="0.776e-9" in_port="mult_36x36.B" out_port="mult_36x36.Y"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="a2a" input="mult_36x36_slice.A_cfg" output="mult_36x36.A">
|
||||
</direct>
|
||||
<direct name="b2b" input="mult_36x36_slice.B_cfg" output="mult_36x36.B">
|
||||
</direct>
|
||||
<direct name="out2out" input="mult_36x36.Y" output="mult_36x36_slice.OUT_cfg">
|
||||
</direct>
|
||||
</interconnect>
|
||||
<power method="pin-toggle">
|
||||
<port name="A_cfg" energy_per_toggle="2.13e-12"/>
|
||||
<port name="B_cfg" energy_per_toggle="2.13e-12"/>
|
||||
<static_power power_per_instance="0.0"/>
|
||||
</power>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<!-- Stratix IV input delay of 207ps is conservative for this architecture because this architecture does not have an input crossbar in the multiplier.
|
||||
Subtract 72.5 ps delay, which is already in the connection block input mux, leading
|
||||
to a 134 ps delay.
|
||||
The interconnect difference for DSP blocks is 0.5523, which leads to a minimum delay of 74 ps
|
||||
-->
|
||||
<direct name="a2a" input="mult_36.a" output="mult_36x36_slice.A_cfg">
|
||||
<delay_constant max="134e-12" min="74e-12" in_port="mult_36.a" out_port="mult_36x36_slice.A_cfg"/>
|
||||
</direct>
|
||||
<direct name="b2b" input="mult_36.b" output="mult_36x36_slice.B_cfg">
|
||||
<delay_constant max="134e-12" min="74e-12" in_port="mult_36.b" out_port="mult_36x36_slice.B_cfg"/>
|
||||
</direct>
|
||||
<direct name="out2out" input="mult_36x36_slice.OUT_cfg" output="mult_36.out">
|
||||
<delay_constant max="1.93e-9" min="74e-12" in_port="mult_36x36_slice.OUT_cfg" out_port="mult_36.out"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Place this multiplier block every 8 columns from (and including) the sixth column -->
|
||||
<power method="sum-of-children"/>
|
||||
</pb_type>
|
||||
<!-- Define fracturable multiplier end -->
|
||||
<!-- Define single-mode dual-port memory begin -->
|
||||
<pb_type name="memory">
|
||||
<input name="waddr" num_pins="10"/>
|
|
@ -193,7 +193,16 @@
|
|||
<!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical offset by 1 for perimeter.-->
|
||||
<col type="memory" startx="16" starty="1" repeatx="16" priority="20"/>
|
||||
<col type="EMPTY" startx="16" repeatx="16" starty="1" priority="19"/>
|
||||
</auto_layout-->
|
||||
</auto_layout>
|
||||
<fixed_layout name="6x6" width="8" height="8">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
<!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical offset by 1 for perimeter.-->
|
||||
<col type="EMPTY" startx="16" repeatx="16" starty="1" priority="19"/>
|
||||
</fixed_layout>
|
||||
<!-- Apply a fixed layout of 2x2 core array.
|
||||
VPR8 considers the I/O ring in the array size
|
||||
Therefore the height and width are both 4
|
||||
|
|
Loading…
Reference in New Issue